Delsarte 理論入門 Introduction to Delsarte Theory

Hajime Tanaka

Research Center for Pure and Applied Mathematics Graduate School of Information Sciences Tohoku University

June 16, 2014 Algebraic Combinatorics Summer School 2014

What is Delsarte Theory?

- Philippe Delsarte,
 An algebraic approach to the association schemes of coding theory,
 Philips Res. Rep. Suppl. No. 10 (1973).
- ... studies codes and designs within the unifying framework of association schemes;
- ... has been playing a central role in Algebraic Combinatorics;
- ... is still important. Applications include extremal set theory and finite geometry.

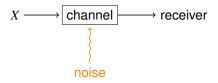
What is Delsarte Theory?

Keywords:

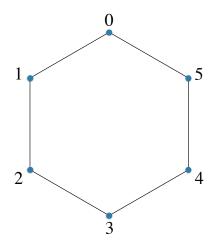
- codes
- designs
- linear programming bound
- P-polynomial and Q-polynomial properties
- 4 fundamental parameters (including minimum distance and strength)
- duality (in the case of translation association schemes)

Coding theory (in a very general form)

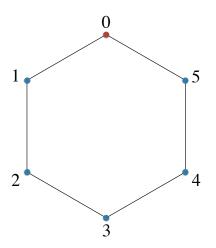
• X: a finite set = a set of codewords



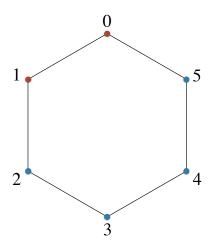
- $x \sim y \stackrel{\text{def}}{\Longleftrightarrow} x$ and y can be "confused" $(x, y \in X)$
- Find a large subset C of X which can be sent without confusion!!



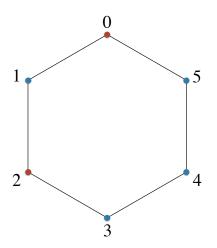
•
$$C = \{0\}$$



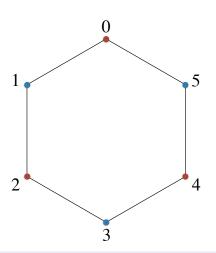
•
$$C = \{0, 1\}$$



•
$$C = \{0, 2\}$$



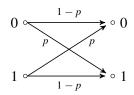
•
$$C = \{0, 2, 4\}$$



• Find the independence number of the graph !!

- a good upper bound on

- $H(6,2) = (X, \{R_i\}_{i=0}^6)$: the binary Hamming scheme of class 6
- $X = \{0, 1\}^6$
- ullet Consider the binary symmetric channel with error probability $p\ll 1$



Example

- Let us send 000000.
- Prob[$000000 \longmapsto 100000$] = $p(1-p)^5$
- Prob[1 error occurs] = $6 \times p(1-p)^5$
- Prob[$000000 \longmapsto 110000$] = $p^2(1-p)^4$
- Prob[2 errors occur] = $\binom{6}{2} \times p^2 (1-p)^4 = 15 \times p^2 (1-p)^4$
- Prob[3 errors occur] = $\binom{6}{3} \times p^3 (1-p)^3 = 20 \times p^3 (1-p)^3$
- $20 \times p^3 (1-p)^3 \ll 15 \times p^2 (1-p)^4 \ll 6 \times p(1-p)^5$

─ Ignore this possibility, i.e., at most 2 errors occur !!

We assume that at most 2 errors occur.

Example

- 000000 and 100000 can be confused.
- 000000 and 110000 can be confused.
- 000000 and 111000 can be confused. Indeed:

$$000000 \, \longmapsto 100000 \, \longleftrightarrow 111000$$

• 000000 and 111100 can still be confused. Indeed:

$$000000 \longmapsto 110000 \longleftrightarrow 111100$$

• 000000 and 111110 (or 111111) can **not** be confused.

- $x \sim y \iff 0 < \partial(x,y) < 5$ the Hamming distance
- The edge set of our graph is $R_1 \cup R_2 \cup R_3 \cup R_4$.

Notation

- $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$: a symmetric association scheme
- A_0, A_1, \ldots, A_d : the adjacency matrices

$$A_i^{\mathsf{T}} = A_i$$

- $\mathfrak{A} = \langle A_0, A_1, \dots, A_d \rangle$: the Bose–Mesner algebra (over \mathbb{R})
- E_0, E_1, \dots, E_d : the primitive idempotents

$$\overline{E_i} = E_i^{\mathsf{T}} = E_i$$

• *P*, *Q*: the first and second eigenmatrices, i.e.,

$$A_i = \sum_{j=0}^{d} P_{j,i} E_j, \quad E_i = \frac{1}{|X|} \sum_{j=0}^{d} Q_{j,i} A_j$$

M-codes

- $M \subseteq \{1, 2, ..., d\}$
- $C \subseteq X$: an M-code

 $\overset{\mathrm{def}}{\Longleftrightarrow} C$: an independent set of the graph $(X, \bigcup_{i \in M} R_i)$

$$\iff (C \times C) \cap \bigcup_{i \in M} R_i = \emptyset$$

$$\iff (C \times C) \cap R_i = \emptyset \text{ for } \forall i \in M$$

A review

- B: a (real) $n \times n$ matrix
- ullet $u\in\mathbb{R}^n$: an n-dimensional column vector

$$\bullet \ \mathbf{u}^{\mathsf{T}}B\mathbf{u} = \sum_{i,j=1}^{n} B_{i,j} \mathbf{u}_{i} \mathbf{u}_{j}$$

M-codes (continued)

- \bullet $C \subseteq X$
- $\chi \in \mathbb{R}^X$: the (column) characteristic vector of C, i.e.,

$$\chi_x = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases} \quad (x \in X)$$

- $\chi^{\mathsf{T}} A_i \chi = \sum_{x,y \in X} (A_i)_{x,y} \chi_x \chi_y = \left| (C \times C) \cap R_i \right|$
- $C \subseteq X$: an M-code

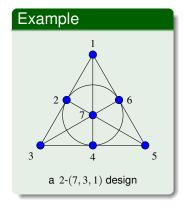
$$\iff (C \times C) \cap R_i = \emptyset \text{ for } \forall i \in M$$

$$\iff \chi^{\mathsf{T}} A_i \chi = 0 \text{ for } \forall i \in M$$

t- (v, d, λ) designs

- ullet Ω : a finite set with $|\Omega|=v$
- $\binom{\Omega}{k}$: the set of k-subsets of Ω
- $D \subseteq \binom{\Omega}{d}$: a t- (v, d, λ) design

$$\stackrel{\text{def}}{\iff} \forall z \in \binom{\Omega}{t} \ \left| \left\{ x \in D : z \subseteq x \right\} \right| = \lambda$$



• Given t, v, d, find a small t- (v, d, λ) design !!

$$\binom{v}{t}\lambda = \binom{d}{t}|D|$$

t- (v, d, λ) designs

- $J(v,d) = (X, \{R_i\}_{i=0}^d)$: the Johnson scheme
- $X = \binom{\Omega}{d}$
- \bullet $D \subseteq X$
- ullet $\chi \in \mathbb{R}^X$: the characteristic vector of D

Theorem (Delsarte, 1973)

• D : a t-(v, d, λ) design (for some λ)

$$\iff \chi^{\mathsf{T}} E_i \chi = 0 \text{ for } \forall i \in \{1, 2, \dots, t\}$$

M-designs

More generally:

- $M \subseteq \{1, 2, ..., d\}$
- $D \subseteq X$: an M-design $\stackrel{\text{def}}{\Longleftrightarrow} \chi^{\mathsf{T}} E_i \chi = 0$ for $\forall i \in M$

Remark

ullet $C\subseteq X$: an M-code $\iff \chi^\mathsf{T} A_i \chi = 0$ for $\forall i\in M$

M-designs

Theorem (Delsarte, 1973)

- Suppose $\mathfrak{X} = H(d,q)$.
- D : a {1,2,...,t}-design

 $\iff D$: an orthogonal array of strength t

Remark

- Many more concepts of t-designs can be viewed as Delsarte M-designs in some association schemes.
- See, e.g., [7, Section 8].

A review

- B: a real symmetric $n \times n$ matrix
- B: positive semidefinite

$$\overset{\text{def}}{\Longleftrightarrow} \mathbf{u}^{\mathsf{T}} B \mathbf{u} = \sum_{i,j=1}^{n} B_{i,j} \mathbf{u}_{i} \mathbf{u}_{j} \geqslant 0 \text{ for } \forall \mathbf{u} \in \mathbb{R}^{n}$$

- $\eta_1, \eta_2, \dots, \eta_n \in \mathbb{R}$: the eigenvalues of B
- *B* : positive semidefinite $\iff \eta_1 \geqslant 0, \ \eta_2 \geqslant 0, \dots, \eta_n \geqslant 0$

Proof.

• $\exists U$: an orthogonal matrix (i.e., $U^{-1} = U^{\mathsf{T}}$) s.t.

$$U^{\mathsf{T}}BU = \mathrm{Diag}\left(\eta_1, \eta_2, \ldots, \eta_n\right)$$

- Set $\mathbf{v} = U^{\mathsf{T}}\mathbf{u} = U^{-1}\mathbf{u}$.
- $\bullet \ \mathbf{u}^{\mathsf{T}} B \mathbf{u} = (U \mathbf{v})^{\mathsf{T}} B (U \mathbf{v}) = \mathbf{v}^{\mathsf{T}} (U^{\mathsf{T}} B U) \mathbf{v} = \sum_{i=1}^{n} \eta_{i} \mathbf{v}_{i}^{2}$

- $C \subseteq X$: an M-code
- $\bullet \ \chi \in \mathbb{R}^X$: the characteristic vector of C

•
$$\chi^{\mathsf{T}} A_i \chi = \sum_{x,y \in X} (A_i)_{x,y} \chi_x \chi_y = \left| (C \times C) \cap R_i \right| \geqslant 0$$

- $i = 0 \implies \chi^{\mathsf{T}} A_0 \chi = |C| \quad (:A_0 = I)$
- $\bullet \ i \in M \implies \chi^{\mathsf{T}} A_i \chi = 0$

- *E_i* : a real symmetric matrix
- $E_i^2 = E_i \iff E_i(E_i I) = 0$ \iff every eigenvalue is 0 or 1 $\implies E_i$: positive semidefinite
- $\chi^{\mathsf{T}} E_i \chi \geqslant 0$

$$\begin{array}{|c|c|c|c|c|c|} \hline \chi^\mathsf{T} A_0 \chi & \chi^\mathsf{T} A_i \chi & \chi^\mathsf{T} A_i \chi & \chi^\mathsf{T} J \chi & \chi^\mathsf{T} E_i \chi \\ \hline |C| & 0 & \geqslant 0 & |C|^2 & \geqslant 0 \\ \hline \end{array}$$

- Set $e_i := \frac{\chi^1 A_i \chi}{|C|}$. $e = (e_0, e_1, \dots, e_d)$: the inner distribution of C
- $\bullet \chi^{\mathsf{T}} J \chi = \chi^{\mathsf{T}} \left(\sum_{i=0}^{d} A_i \right) \chi = |C| \sum_{i=0}^{d} e_i$
- $\chi^{\mathsf{T}} E_i \chi = \chi^{\mathsf{T}} \left(\frac{1}{|X|} \sum_{j=0}^d Q_{j,i} A_j \right) \chi = \frac{|C|}{|X|} \sum_{j=0}^d Q_{j,i} e_j$

e_0	e_i			$\sum_{j=0}^d Q_{j,i} e_j$
	$i \in M$	$i \in \{1, 2, \dots, d\} \setminus M$		$i \in \{1, 2, \ldots, d\}$
1	0	$\geqslant 0$	C	$\geqslant 0$

• View the e_i as real variables!!

Theorem (Delsarte, 1973)

Consider the following linear programming problem:

$$\begin{array}{l} \text{maximize } \vartheta = \sum_{i=0}^d e_i \\ \\ \text{subject to} & \bullet \ e_0 = 1 \\ & \bullet \ e_i = 0 \ \text{for } i \in M \\ & \bullet \ e_i \geqslant 0 \ \text{for } i \in \{1,2,\dots,d\} \backslash M \\ \\ & \bullet \ \sum_{i=0}^d Q_{j,i} \, e_j \geqslant 0 \ \text{for } i \in \{1,2,\dots,d\} \end{array}$$

• If C is an M-code, then $|C| \leq \vartheta$.

Remark

 Linear programming problems can be solved by the simplex method.

Example

- Suppose $\mathfrak{X} = H(16,2)$, $M = \{1,2,3,4,5\}$.
- Then $\vartheta = 256$.
- This is attained by the Nordstrom-Robinson code.

Remarks on the linear programming bound

- Delsarte's linear programming bound, combined with the duality of linear programming, provides us with the most powerful method for bounding the sizes of general M-codes in association schemes.
- See, e.g., [6].
- Similarly, Delsarte formulated the linear programming (lower) bound for the sizes of *M*-designs.

P-polynomial association schemes

Definition (Delsarte, 1973)

• \mathfrak{X} : P-polynomial w.r.t. the ordering $\{R_i\}_{i=0}^d$

$$\stackrel{\text{def}}{\Longleftrightarrow} \exists v_0(t), v_1(t), \dots, v_d(t) \in \mathbb{R}[t], \ \exists \theta_0, \theta_1, \dots, \theta_d \in \mathbb{R}$$
 s.t.

- $\deg v_i(t) = i \quad (0 \leqslant i \leqslant d)$
- $P_{j,i} = v_i(\theta_j)$ $(0 \leqslant i, j \leqslant d)$

Remark

• By the orthogonality relation of P, the $v_i(t)$ form a system of orthogonal polynomials:

$$\sum_{\ell=0}^{d} v_i(\theta_\ell) v_j(\theta_\ell) m_\ell = \delta_{i,j} \cdot |X| k_i \quad (0 \leqslant i, j \leqslant d)$$

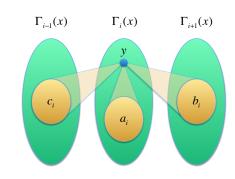
P-polynomial association schemes

Example

- The Hamming scheme H(d,q)
- The Johnson scheme J(v,d)

Distance-regular graphs

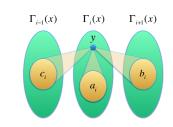
• $\Gamma = (X, R)$: a distance-regular graph with diameter d



Distance-regular graphs

- ullet ∂ : the path-length distance
- A_i : the i^{th} distance matrix:

$$(A_i)_{x,y} = \begin{cases} 1 & \text{if } \partial(x,y) = i \\ 0 & \text{otherwise} \end{cases}$$



- $A_0 = I$
- \bullet $A_0 + A_1 + \cdots + A_d = J$
- $A_1A_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1}$ where $A_{-1} = A_{d+1} = 0$

$$(A_1A_i)_{y,x} = |\Gamma_1(y) \cap \Gamma_i(x)|$$

Distance-regular graphs \Longrightarrow *P*-polynomial schemes

• $A_0 = I$

- $\bullet A_0 + A_1 + \dots + A_d = J$
- $A_1A_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1}$ where $A_{-1} = A_{d+1} = 0$
- $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$: a symmetric association scheme, where

$$R_i := \{(x, y) : \partial(x, y) = i\} \quad (0 \leqslant i \leqslant d)$$

- Set $v_0(t)=1$, $v_1(t)=t$, and $t\,v_i(t)=b_{i-1}\,v_{i-1}(x)+a_i\,v_i(x)+c_{i+1}\,v_{i+1}(t)\quad (1\leqslant i\leqslant d-1).$
- $A_i = v_i(A_1)$ \Longrightarrow $P_{j,i} = v_i(\theta_j)$ where $\theta_j := p_1(j)$
- \mathfrak{X} : *P*-polynomial w.r.t. the ordering $\{R_i\}_{i=0}^d$

P-polynomial schemes \Longrightarrow distance-regular graphs

Remark

- Conversely, if a symmetric association scheme $\mathfrak X$ is P-polynomial w.r.t. the ordering $\{R_i\}_{i=0}^d$ then the graph $\Gamma=(X,R_1)$ is distance-regular.
- This follows from the three-term recurrence relation for a system of orthogonal polynomials.

Codes in P-polynomial schemes

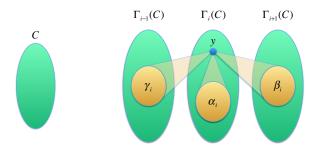
- Suppose \mathfrak{X} is *P*-polynomial w.r.t. the ordering $\{R_i\}_{i=0}^d$.
- $C \subseteq X$ (1 < |C| < |X|)
- $\chi \in \mathbb{R}^X$: the characteristic vector of C
- $\delta := \min\{i \neq 0 : \chi^{\mathsf{T}} A_i \chi \neq 0\}$: the minimum distance of C= $\max\{i \neq 0 : C \text{ is a } \{1, 2, \dots, i-1\}\text{-code}\}$
- $s^* := \left| \{ i \neq 0 : \chi^\mathsf{T} E_i \chi \neq 0 \} \right|$: the dual degree of C

Theorem (Delsarte, 1973)

- $\delta \leq 2s^* + 1$;
- If $\delta \geqslant 2s^* 1$ then *C* is completely regular.

Codes in P-polynomial schemes

Complete regularity of C is illustrated as follows:



- $\rho := \max\{\partial(x,C) : x \in X\}$: the covering radius of C
- $\chi_i \in \mathbb{R}^X$: the characteristic vector of $\Gamma_i(C)$ $(0 \leqslant i \leqslant \rho)$
- $A_1\chi_i = \beta_{i-1}\chi_{i-1} + \alpha_i\chi_i + \gamma_{i+1}\chi_{i+1}$ where $\chi_{-1} = \chi_{\rho+1} = 0$

The role of s^* : the outer distribution of C

• $s^* = \left| \{ i \neq 0 : \chi^\mathsf{T} E_i \chi \neq 0 \} \right|$ computable from the inner distribution

Remark

•
$$\chi^\mathsf{T} E_i \chi = \chi^\mathsf{T} (E_i)^2 \chi = (E_i \chi)^\mathsf{T} (E_i \chi) = ||E_i \chi||^2$$
, so that

$$s^* = \left| \{ i \neq 0 : \underline{E}_i \chi \neq 0 \} \right|.$$

The role of s^* : the outer distribution of C

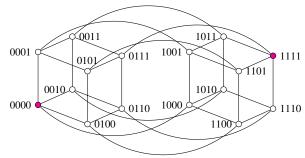
• $B = [A_0\chi, A_1\chi, \dots, A_d\chi]$: the outer distribution of C:

$$B_{x,i} = (A_i \chi)_x = \sum_{y \in X} (A_i)_{x,y} \chi_y = \left| \Gamma_i(x) \cap C \right| \quad (x \in X, \ 0 \leqslant i \leqslant d)$$

- Recall $E_i \chi = \frac{1}{|X|} \sum_{j=0}^d Q_{j,i} A_j \chi$.
- $\bullet \ \frac{1}{|X|}BQ = [E_0\chi, E_1\chi, \dots, E_d\chi]$
- $\operatorname{rank} B = \operatorname{rank} BQ = s^* + 1$

The role of s^* : the outer distribution of C

• As an example, suppose $\mathfrak{X} = H(4,2)$ and $C = \{0000, 1111\}$:



- covering radius

•
$$\delta = 4$$
, $\rho = 2$, $s^* = 2 \implies \delta \geqslant 2s^* - 1$

• Some of the rows of B:

$$B_{x,i} = \left| \Gamma_i(x) \cap C \right|$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 \end{bmatrix} \cdots \cdots 0000^{\text{th}} \text{ row}$$

The role of s^* : the outer distribution of C

• Some of the rows of *B*:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 \end{bmatrix} \cdots \cdots 0000^{\text{th}} \text{ row} \\ \vdots \\ \rho^{\text{th}} \text{ column}$$

Observation

• $A_0\chi, A_1\chi, \dots, A_\rho\chi$: linearly independent

Theorem (Delsarte, 1973)

• $\rho \leqslant s^*$

- hard to compute in general

Proof.

• $\dim \langle A_0 \chi, A_1 \chi, \dots, A_d \chi \rangle = \operatorname{rank} B = s^* + 1$

Perfect codes and Lloyd polynomials

Theorem (Delsarte, 1973)

- $\delta \leq 2s^* + 1$;
- If $\delta \geqslant 2s^* 1$ then *C* is completely regular.
- $U_r(x) := \{ y \in X : \partial(x, y) \le r \}$: the "ball" of radius r centered at x
- $\bullet \ C : \mathsf{perfect} \ \stackrel{\mathsf{def}}{\Longleftrightarrow} \ X = \coprod_{x \in C} U_\rho(x)$
- $L_r(t) := v_0(t) + v_1(t) + \cdots + v_r(t)$: the Lloyd polynomial of degree r

Theorem (Delsarte, 1973; "Lloyd Theorem")

• $\delta = 2s^* + 1 \iff C$: perfect $\implies \rho = s^*$ and $L_{\rho}(t)$ has ρ simple roots $\inf_{\sigma} \{\theta_0, \theta_1, \dots, \theta_d\}$.

an extremely strong condition!!

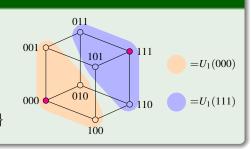
Perfect codes and Lloyd polynomials

Theorem (Delsarte, 1973; "Lloyd Theorem")

• $\delta = 2s^* + 1 \iff C$: perfect $\implies \rho = s^*$ and $L_{\rho}(t)$ has ρ simple roots $\inf \{\theta_0, \theta_1, \dots, \theta_d\}$.

Example

- $\mathfrak{X} = H(3,2)$
- $C = \{000, 111\}$
- $L_1(t) = 1 + t$ $v_0(t) = v_1(t)$
- $\{\theta_0, \theta_1, \theta_2, \theta_3\} = \{3, 1, -1, -3\}$



Q-polynomial association schemes

Definition (Delsarte, 1973)

ullet \mathfrak{X} : ${\color{red}\mathcal{Q}}$ -polynomial w.r.t. the ordering $\{E_i\}_{i=0}^d$

$$\stackrel{\text{def}}{\iff} \exists v_0^*(t), v_1^*(t), \dots, v_d^*(t) \in \mathbb{R}[t], \ \exists \theta_0^*, \theta_1^*, \dots, \theta_d^* \in \mathbb{R} \ \text{s.t.}$$

- $\deg v_i^*(t) = i \quad (0 \leqslant i \leqslant d)$
- $Q_{j,i} = v_i^*(\theta_j^*)$ $(0 \leqslant i, j \leqslant d)$

Remark

• By the orthogonality relation of Q, the $v_i^*(t)$ form a system of orthogonal polynomials:

$$\sum_{\ell=0}^{d} v_i^*(\theta_\ell^*) v_j^*(\theta_\ell^*) k_\ell = \delta_{i,j} \cdot |X| m_i \quad (0 \leqslant i, j \leqslant d)$$

Q-polynomial association schemes

Example

- The Hamming scheme H(d,q)
- The Johnson scheme J(v,d)

Designs in Q-polynomial schemes

- Suppose \mathfrak{X} is Q-polynomial w.r.t. the ordering $\{E_i\}_{i=0}^d$.
- $\bullet \ D \subseteq X \quad (1 < |D| < |X|)$
- $\bullet \ \chi \in \mathbb{R}^X$: the characteristic vector of D
- $\tau := \min\{i \neq 0 : \chi^{\mathsf{T}} E_i \chi \neq 0\} 1$: the (maximum) strength of D= $\max\{i : D \text{ is a } \{1, 2, \dots, i\}\text{-design}\}$
- $s := \left| \{ i \neq 0 : \chi^\mathsf{T} A_i \chi \neq 0 \} \right|$: the degree of D

Theorem (Delsarte, 1973)

- $\tau \leqslant 2s$;
- If $\tau \geqslant 2s 2$ then $\left(D, \left\{(D \times D) \cap R_i\right\}_{i=0}^d\right)$ is a Q-polynomial scheme (called a subscheme). \uparrow

remove empty relations

Tight designs and Wilson polynomials

Theorem (Delsarte, 1973)

- $\tau \leqslant 2s$;
- If $\tau \geqslant 2s-2$ then $\left(D,\left\{(D\times D)\cap R_i\right\}_{i=0}^d\right)$ is a Q-polynomial subscheme.
- In general, $|D|\geqslant m_0+m_1+\cdots+m_{\lfloor \tau/2\rfloor}$ (the Fisher type bound).
- D: tight $\stackrel{\text{def}}{\Longleftrightarrow} |D| = m_0 + m_1 + \cdots + m_{\lfloor \tau/2 \rfloor}$
- $W_r(t) := v_0^*(t) + v_1^*(t) + \cdots + v_r^*(t)$: the Wilson polynomial of degree r

Theorem (Delsarte, 1973)

• $\tau = 2s \iff D$: tight $\implies W_s(t)$ has s simple roots in $\{\theta_0^*, \theta_1^*, \dots, \theta_d^*\}$.

Translation association schemes

- Suppose $\mathfrak{X} = (X, \{R_i\}_{i=0}^d)$ is a translation scheme on the abelian group X.
- $\widehat{\mathfrak{X}}=(\widehat{X},\{S_i\}_{i=0}^d)$: the dual of $\mathfrak{X},$ where \widehat{X} : the character group of X

Remark

- \mathfrak{X} : *P*-polynomial $\iff \widehat{\mathfrak{X}}$: *Q*-polynomial
- $\mathfrak{X}: Q$ -polynomial $\iff \widehat{\mathfrak{X}}: P$ -polynomial

Translation association schemes

- $C \leqslant X$: a subgroup of X
- $\bullet \ C^{\perp} := \{ f \in \widehat{X} : f(x) = 1 \text{ for } \forall x \in C \, \} \leqslant \widehat{X}$

Theorem (Delsarte, 1973)

- Let $M \subseteq \{1, 2, ..., d\}$.
- C : an M-code $\iff C^{\perp}$: an M-design
- C: an M-design $\iff C^{\perp}$: an M-code
- In particular, if \mathfrak{X} is *P*-polynomial and/or *Q*-polynomial, then

$$\delta(C) = \tau(C^\perp) + 1, \qquad s^*(C) = s(C^\perp),$$

$$\tau(C) = \delta(C^\perp) - 1, \qquad s(C) = s^*(C^\perp).$$
 minimum distance
$$\text{dual degree}$$

Further reading

- Classification problem of P- & Q-polynomial schemes
 - See, e.g., [1, Chapter III], [2, Chapters 8,9], [4, Section 5].
 - The Terwilliger algebra; cf. [9]
 - Orthogonal polynomials, Leonard pairs, tridiagonal pairs; cf. [10]
- Two more fundamental parameters (width w, dual width w*) [3]
- The semidefinite programming bound [8]

References I

- [1] E. Bannai and T. Ito, Algebraic combinatorics I: Association schemes, Benjamin/Cummings, Menlo Park, CA, 1984.
- [2] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin, 1989.
- [3] A. E. Brouwer, C. D. Godsil, J. H. Koolen, and W. J. Martin, Width and dual width of subsets in polynomial association schemes, J. Combin. Theory Ser. A 102 (2003) 255–271.
- [4] E. R. van Dam, J. H. Koolen, and H. Tanaka, Distance-regular graphs, in preparation.
- [5] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973).
- [6] P. Delsarte and V. I. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory 44 (1998) 2477–2504.

References II

- [7] W. J. Martin and H. Tanaka, Commutative association schemes, European J. Combin. 30 (2009) 1497–1525; arXiv:0811.2475.
- [8] A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (2005) 2859–2866.
- [9] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (1992) 363–388.
- [10] P. Terwilliger, An algebraic approach to the Askey scheme of orthogonal polynomials, in: F. Marcellán and W. Van Assche (Eds.), Orthogonal polynomials and special functions, Computation and applications, Lecture Notes in Mathematics, vol. 1883, Springer-Verlag, Berlin, 2006, pp. 255–330; arXiv:math/0408390.