
Introduction
Discussions

Remarks

A strengthening of the Assmus–Mattson
theorem based on the displacement and split

decompositions

Hajime Tanaka

Worcester Polytechnic Institute
Worcester, MA, U.S.A.

CanaDAM 2007
May 29, 2007

Hajime Tanaka Assmus–Mattson theorem



Introduction
Discussions

Remarks

Motivation/Background
Preliminaries
The Assmus–Mattson Theorem

Outline

1 Introduction

2 Discussions

3 Remarks

Hajime Tanaka Assmus–Mattson theorem



Introduction
Discussions

Remarks

Motivation/Background
Preliminaries
The Assmus–Mattson Theorem

Motivation/Background

Bose–Mesner algebra (1959)
commutative
codes and designs
(Delsarte, 1973)
LP bound

Terwilliger algebra (1992)
non-commutative
more information
SDP bound
(Schrijver, 2005)

Extend the Delsarte theory based on the Terwilliger algebra!!

Today’s topic: the Assmus–Mattson theorem

Hajime Tanaka Assmus–Mattson theorem



Introduction
Discussions

Remarks

Motivation/Background
Preliminaries
The Assmus–Mattson Theorem

Motivation/Background

Bose–Mesner algebra (1959)
commutative
codes and designs
(Delsarte, 1973)
LP bound

Terwilliger algebra (1992)
non-commutative
more information
SDP bound
(Schrijver, 2005)

Extend the Delsarte theory based on the Terwilliger algebra!!

Today’s topic: the Assmus–Mattson theorem

Hajime Tanaka Assmus–Mattson theorem



Introduction
Discussions

Remarks

Motivation/Background
Preliminaries
The Assmus–Mattson Theorem

Motivation/Background

Bose–Mesner algebra (1959)
commutative
codes and designs
(Delsarte, 1973)
LP bound

Terwilliger algebra (1992)
non-commutative
more information
SDP bound
(Schrijver, 2005)

Extend the Delsarte theory based on the Terwilliger algebra!!

Today’s topic: the Assmus–Mattson theorem

Hajime Tanaka Assmus–Mattson theorem



Introduction
Discussions

Remarks

Motivation/Background
Preliminaries
The Assmus–Mattson Theorem

Motivation/Background

Bose–Mesner algebra (1959)
commutative
codes and designs
(Delsarte, 1973)
LP bound

Terwilliger algebra (1992)
non-commutative
more information
SDP bound
(Schrijver, 2005)

Extend the Delsarte theory based on the Terwilliger algebra!!

Today’s topic: the Assmus–Mattson theorem

Hajime Tanaka Assmus–Mattson theorem



Introduction
Discussions

Remarks

Motivation/Background
Preliminaries
The Assmus–Mattson Theorem

Basic notations from coding theory

In this talk, we consider codes of length D over Fq.

0 := (0, 0, . . . , 0) : the zero vector
∂(x, y) := |{1 6 i 6 D : xi 6= yi}| : the Hamming distance
supp(x) = {1 6 i 6 D : xi 6= 0} : the support of x

wt(x) := ∂(x, 0) = |supp(x)| : the Hamming weight of x

Hajime Tanaka Assmus–Mattson theorem
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The Bose–Mesner algebra (of the Hamming scheme)

A ∈ MatFD
q
(C) : the adjacency matrix:

Axy :=

{
1 if ∂(x, y) = 1
0 otherwise

M := C[A] ⊆ MatFD
q
(C) : the Bose–Mesner algebra

E0, E1, . . . , ED : the primitive idempotents of M
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The Terwilliger algebra

E∗0 , E∗1 , . . . , E∗D ∈ MatFD
q
(C) : the dual idempotents:

(E∗i )xy =

{
1 if wt(x) = i, x = y
0 otherwise

T := C[A, E∗0 , E∗1 , . . . , E∗D] : the Terwilliger algebra
TyV := SpanC{x̂ : x ∈ FD

q }
V, 〈 , 〉 : the standard T-module (〈x̂, ŷ〉 := δxy)

M0̂ : the primary T-module
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The Assmus–Mattson Theorem (1969)

C ⊆ FD
q : a linear code with minimum weight δ

C⊥ ⊆ FD
q : the dual code of C, with minimum weight δ∗

χC ∈ V : the characteristic vector of C:

χC :=
∑
x∈C

x̂
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The Assmus–Mattson Theorem (1969)

Assumption (algebraic):

Suppose t ∈ {1, 2, . . . , D} is such that at least one of the
following holds:

|{1 6 i 6 D− t : EiχC 6= 0}| 6 δ − t

|{1 6 i 6 D− t : E∗i χC 6= 0}| 6 δ∗ − t

Conclusion (combinatorial):
For every 0 6 k 6 D,

{supp(x) : x ∈ C, wt(x) = k} (counting repeats)

forms a combinatorial t-design.

Hajime Tanaka Assmus–Mattson theorem
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The goal of this talk

Interpret the Assmus–Mattson theorem in terms of the
irreducible T-modules!

(Algebraic property of C)←→ (Combinatorial property of C)

Hajime Tanaka Assmus–Mattson theorem
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The Hamming lattice (Delsarte, 1976)

Fq ∪ {∞} : the “claw semilattice” of order q + 1
Fq

∞
(L ,4) : the direct product of D claw semilattices:

L = (Fq ∪ {∞})D

u 4 v⇐⇒ ui =∞ or ui = vi (1 6 i 6 D)

Remark
(L ,4) is ranked: rank(u) = |{i : ui 6=∞}|

Remark

FD
q forms the top fibre of (L ,4).
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The Hamming lattice (Delsarte, 1976)

u ∈ L : rank t

χ<u : the characteristic vector of {x ∈ FD
q : u 4 x}

u rank t

rank D

Remark

E0V + E1V + · · ·+ EtV = Span{χ<u : u ∈ L , rank(u) = t}

Hajime Tanaka Assmus–Mattson theorem
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Restatement of the conclusion (I)

The following are equivalent:
(a) {supp(x) : x ∈ C, wt(x) = k} : a t-design.
(b) {{1, 2, . . . , D} − supp(x) : x ∈ C, wt(x) = k} : a t-design.
(c) 〈E∗k χC, χ<u〉 is independent of u 4 0 with rank t.

(0, 0, . . . , 0︸ ︷︷ ︸
t

,∞,∞, . . . ,∞) 4 0(∵)

{t-subsets of {1, 2, . . . , D}} 1:1←→ {u ∈ L : u 4 0, rank(u) = t}

Hajime Tanaka Assmus–Mattson theorem
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Facts on irreducible T-modules

W : an irreducible T-module in V

r := min{i : E∗i W 6= 0} : the endpoint of W

d := |{i : E∗i W 6= 0}| − 1 : the diameter of W

Remark

W = E∗r W ⊥ E∗r+1W ⊥ · · · ⊥ E∗r+dW

= ErW ⊥ Er+1W ⊥ · · · ⊥ Er+dW

Remark

M0̂ : a unique irreducible T-module with r = 0 or d = D.

Hajime Tanaka Assmus–Mattson theorem
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The space ∆ (Terwilliger, 2005)

Caughman (1999) showed 2r + d > D.
η := 2r + d − D : the displacement of W > 0

∆ : the linear span of the irreducible T-modules W with
displacement 0

W = E∗r W ⊥ E∗r+1W ⊥ · · · ⊥ E∗D−rW

= ErW ⊥ Er+1W ⊥ · · · ⊥ ED−rW

Hajime Tanaka Assmus–Mattson theorem
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The structure of ∆

Lemma (Ito-Tanabe-Terwilliger, 2001)

∆ =
D∑

i=0

((E∗0V + · · ·+ E∗D−iV) ∩ (E0V + · · ·+ EiV)) (direct sum).

u 4 0 : rank t

Remark
χ<u ∈ (E∗0V + · · ·+ E∗D−tV) ∩ (E0V + · · ·+ EtV).

Remark
∆ = Span{χ<u : u ∈ L , u 4 0}.

Hajime Tanaka Assmus–Mattson theorem



Introduction
Discussions

Remarks

The Hamming lattice
The space ∆

The structure of ∆

Lemma (Ito-Tanabe-Terwilliger, 2001)

∆ =
D∑

i=0

((E∗0V + · · ·+ E∗D−iV) ∩ (E0V + · · ·+ EiV)) (direct sum).

u 4 0 : rank t

Remark
χ<u ∈ (E∗0V + · · ·+ E∗D−tV) ∩ (E0V + · · ·+ EtV).

Remark
∆ = Span{χ<u : u ∈ L , u 4 0}.

Hajime Tanaka Assmus–Mattson theorem



Introduction
Discussions

Remarks

The Hamming lattice
The space ∆

The structure of ∆

Lemma (Ito-Tanabe-Terwilliger, 2001)

∆ =
D∑

i=0

((E∗0V + · · ·+ E∗D−iV) ∩ (E0V + · · ·+ EiV)) (direct sum).

u 4 0 : rank t

Remark
χ<u ∈ (E∗0V + · · ·+ E∗D−tV) ∩ (E0V + · · ·+ EtV).

Remark
∆ = Span{χ<u : u ∈ L , u 4 0}.

Hajime Tanaka Assmus–Mattson theorem



Introduction
Discussions

Remarks

The Hamming lattice
The space ∆

Restatement of the conclusion (II)

(c) 〈E∗k χC, χ<u〉 is independent of u 4 0 with rank t.

Lemma
Condition (c) is implied by the following:
(d) χC is orthogonal to every irreducible T-module W with

η = 0 and 1 6 r 6 t.

(Algebraic property of C)←→ (Combinatorial property of C)

∆

Hajime Tanaka Assmus–Mattson theorem
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The Assmus–Mattson theorem is valid for nonlinear codes
as well.

Example

The [12, 6, 6] extended ternary Golay code is self-dual and has
weight distribution

(1, 0, 0,
δ=3
0, 0, 0, 264, 0, 0, 440, 0, 0︸ ︷︷ ︸

#(dual)weights=2

, 24
t=1

).

Thus each coset of weight 3 (i.e., δ = 3) supports 1-designs
since 2 6 3− 1.

Hajime Tanaka Assmus–Mattson theorem
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Remarks

The Assmus–Mattson theorem can be generalized to other
P-& Q-polynomial schemes.

Example
For Johnson schemes,

(designs & constant-weight codes) −→ (designs).

THE END.
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Definition of δ and δ∗

C ⊆ FD
q : a code

χC : the characteristic vector of C

Definition

δ := min{i 6= 0 : E∗i χC 6= 0} (minimum weight)
δ∗ := min{i 6= 0 : EiχC 6= 0}

Remark

If C is linear, then δ∗ equals the minimum weight of C⊥.
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