A strengthening of the Assmus–Mattson theorem based on the displacement and split decompositions

Hajime Tanaka

Worcester Polytechnic Institute Worcester, MA, U.S.A.

> CanaDAM 2007 May 29, 2007

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Motivation/Background
Discussions	
Remarks	The Assmus–Mattson Theorem

<ロト <回 > < 注 > < 注 > 、

Motivation/Background Preliminaries The Assmus–Mattson Theorem

Motivation/Background

Bose–Mesner algebra (1959)

- commutative
- codes and designs (Delsarte, 1973)
- LP bound

Terwilliger algebra (1992)

- on non-commutative
- more information
- SDP bound (Schrijver, 2005)

ヘロト ヘワト ヘビト ヘビト

Extend the Delsarte theory based on the Terwilliger algebra!!

Today's topic: the Assmus–Mattson theorem

Motivation/Background Preliminaries The Assmus–Mattson Theorem

Motivation/Background

Bose–Mesner algebra (1959)

- commutative
- codes and designs (Delsarte, 1973)
- LP bound

Terwilliger algebra (1992)

- on non-commutative
- more information
- SDP bound (Schrijver, 2005)

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Extend the Delsarte theory based on the Terwilliger algebra!!

Today's topic: the Assmus–Mattson theorem

Motivation/Background Preliminaries The Assmus–Mattson Theorem

Motivation/Background

Bose–Mesner algebra (1959)

- commutative
- codes and designs (Delsarte, 1973)
- LP bound

Terwilliger algebra (1992)

- non-commutative
- more information
- SDP bound (Schrijver, 2005)

ヘロア 人間 アメヨア 人口 ア

Extend the Delsarte theory based on the Terwilliger algebra!!

Today's topic: the Assmus–Mattson theorem

Motivation/Background Preliminaries The Assmus–Mattson Theorem

Motivation/Background

Bose–Mesner algebra (1959)

- commutative
- codes and designs (Delsarte, 1973)
- LP bound

Terwilliger algebra (1992)

- non-commutative
- more information
- SDP bound (Schrijver, 2005)

ヘロト 人間 ト ヘヨト ヘヨト

Extend the Delsarte theory based on the Terwilliger algebra!!

Today's topic: the Assmus-Mattson theorem

Basic notations from coding theory

In this talk, we consider codes of length *D* over \mathbb{F}_q .

- $\mathbf{0} := (0, 0, \dots, 0)$: the zero vector
- $\partial(x, y) := |\{1 \leq i \leq D : x_i \neq y_i\}|$: the Hamming distance
- $supp(x) = \{1 \leq i \leq D : x_i \neq 0\}$: the support of x
- $wt(x) := \partial(x, \mathbf{0}) = |supp(x)|$: the Hamming weight of x

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Motivation/Background Preliminaries The Assmus–Mattson Theorem

The Bose–Mesner algebra (of the Hamming scheme)

• $A \in \operatorname{Mat}_{\mathbb{F}_{a}^{D}}(\mathbb{C})$: the adjacency matrix:

$$A_{xy} := \begin{cases} 1 & \text{if } \partial(x,y) = 1 \\ 0 & \text{otherwise} \end{cases}$$

- $M := \mathbb{C}[A] \subseteq \operatorname{Mat}_{\mathbb{F}_{q}^{D}}(\mathbb{C})$: the Bose–Mesner algebra
- E_0, E_1, \ldots, E_D : the primitive idempotents of *M*

Motivation/Background Preliminaries The Assmus–Mattson Theorem

The Bose–Mesner algebra (of the Hamming scheme)

• $A \in \operatorname{Mat}_{\mathbb{F}^D_a}(\mathbb{C})$: the adjacency matrix:

$$A_{xy} := \begin{cases} 1 & \text{if } \partial(x,y) = 1 \\ 0 & \text{otherwise} \end{cases}$$

- $M := \mathbb{C}[A] \subseteq \operatorname{Mat}_{\mathbb{F}_q^D}(\mathbb{C})$: the Bose–Mesner algebra
- E_0, E_1, \ldots, E_D : the primitive idempotents of M

Motivation/Background Preliminaries The Assmus–Mattson Theorem

The Bose–Mesner algebra (of the Hamming scheme)

• $A \in \operatorname{Mat}_{\mathbb{F}^D_a}(\mathbb{C})$: the adjacency matrix:

$$A_{xy} := \begin{cases} 1 & \text{if } \partial(x, y) = 1 \\ 0 & \text{otherwise} \end{cases}$$

- $M := \mathbb{C}[A] \subseteq \operatorname{Mat}_{\mathbb{F}^D_a}(\mathbb{C})$: the Bose–Mesner algebra
- E_0, E_1, \ldots, E_D : the primitive idempotents of M

The Terwilliger algebra

• $E_0^*, E_1^*, \dots, E_D^* \in \operatorname{Mat}_{\mathbb{F}_q^D}(\mathbb{C})$: the *dual idempotents*: $(E_i^*)_{xy} = \begin{cases} 1 & \text{if } \operatorname{wt}(x) = i, \ x = y \\ 0 & \text{otherwise} \end{cases}$

- T := C[A, E₀^{*}, E₁^{*}, ..., E_D^{*}] : the *Terwilliger algebra*T[∩]V := Span_C{x̂ : x ∈ F_q^D}
- V, \langle , \rangle : the standard *T*-module ($\langle \hat{x}, \hat{y} \rangle := \delta_{xy}$)
- $M\hat{\mathbf{0}}$: the primary T-module

<ロ> <四> <四> <四> <三</td>

The Terwilliger algebra

- $E_0^*, E_1^*, \dots, E_D^* \in \operatorname{Mat}_{\mathbb{F}_q^D}(\mathbb{C})$: the *dual idempotents*: $(E_i^*)_{xy} = \begin{cases} 1 & \text{if } \operatorname{wt}(x) = i, \ x = y \\ 0 & \text{otherwise} \end{cases}$
- $T := \mathbb{C}[A, E_0^*, E_1^*, \dots, E_D^*]$: the *Terwilliger algebra* • $T \cap V := \operatorname{Span}_{\mathbb{C}}\{\hat{x} : x \in \mathbb{F}_q^D\}$
- V, \langle , \rangle : the *standard T*-module ($\langle \hat{x}, \hat{y} \rangle := \delta_{xy}$)
- $M\hat{\mathbf{0}}$: the primary T-module

<ロ> <四> <四> <四> <三</td>

The Terwilliger algebra

- $E_0^*, E_1^*, \dots, E_D^* \in \operatorname{Mat}_{\mathbb{F}_q^D}(\mathbb{C})$: the *dual idempotents*: $(E_i^*)_{xy} = \begin{cases} 1 & \text{if } \operatorname{wt}(x) = i, \ x = y \\ 0 & \text{otherwise} \end{cases}$
- $T := \mathbb{C}[A, E_0^*, E_1^*, \dots, E_D^*]$: the *Terwilliger algebra* • $T \frown V := \operatorname{Span}_{\mathbb{C}} \{ \hat{x} : x \in \mathbb{F}_q^D \}$
- V, \langle , \rangle : the *standard T*-module ($\langle \hat{x}, \hat{y} \rangle := \delta_{xy}$)
- $M\hat{\mathbf{0}}$: the primary T-module

<ロ> (四) (四) (三) (三) (三)

The Terwilliger algebra

•
$$E_0^*, E_1^*, \dots, E_D^* \in \operatorname{Mat}_{\mathbb{F}_q^D}(\mathbb{C})$$
: the dual idempotents
 $(E_i^*)_{xy} = \begin{cases} 1 & \text{if } \operatorname{wt}(x) = i, \ x = y \\ 0 & \text{otherwise} \end{cases}$

- $T := \mathbb{C}[A, E_0^*, E_1^*, \dots, E_D^*]$: the *Terwilliger algebra* • $T \frown V := \operatorname{Span}_{\mathbb{C}} \{ \hat{x} : x \in \mathbb{F}_q^D \}$
- V, \langle , \rangle : the *standard T*-module ($\langle \hat{x}, \hat{y} \rangle := \delta_{xy}$)
- $M\hat{\mathbf{0}}$: the primary T-module

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The Terwilliger algebra

•
$$E_0^*, E_1^*, \dots, E_D^* \in \operatorname{Mat}_{\mathbb{F}_q^D}(\mathbb{C})$$
: the dual idempotents
 $(E_i^*)_{xy} = \begin{cases} 1 & \text{if } \operatorname{wt}(x) = i, \ x = y \\ 0 & \text{otherwise} \end{cases}$

- $T := \mathbb{C}[A, E_0^*, E_1^*, \dots, E_D^*]$: the *Terwilliger algebra* • $T \frown V := \operatorname{Span}_{\mathbb{C}} \{ \hat{x} : x \in \mathbb{F}_q^D \}$
- V, \langle , \rangle : the standard *T*-module ($\langle \hat{x}, \hat{y} \rangle := \delta_{xy}$)
- $M\hat{\mathbf{0}}$: the primary *T*-module

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Terwilliger algebra

•
$$E_0^*, E_1^*, \dots, E_D^* \in \operatorname{Mat}_{\mathbb{F}_q^D}(\mathbb{C})$$
: the dual idempotents
 $(E_i^*)_{xy} = \begin{cases} 1 & \text{if } \operatorname{wt}(x) = i, \ x = y \\ 0 & \text{otherwise} \end{cases}$

- $T := \mathbb{C}[A, E_0^*, E_1^*, \dots, E_D^*]$: the *Terwilliger algebra* • $T \frown V := \operatorname{Span}_{\mathbb{C}} \{ \hat{x} : x \in \mathbb{F}_q^D \}$
- V, \langle , \rangle : the standard *T*-module ($\langle \hat{x}, \hat{y} \rangle := \delta_{xy}$)
- $M\hat{\mathbf{0}}$: the primary T-module

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The Assmus–Mattson Theorem (1969)

• $C \subseteq \mathbb{F}_q^D$: a linear code with minimum weight δ

- $C^{\perp} \subseteq \mathbb{F}_q^D$: the dual code of *C*, with minimum weight δ^*
- $\chi_C \in V$: the characteristic vector of *C*:

$$\chi_C := \sum_{x \in C} \hat{x}$$

<ロ> (四) (四) (三) (三) (三)

The Assmus–Mattson Theorem (1969)

- $C \subseteq \mathbb{F}_q^D$: a linear code with minimum weight δ
- $C^{\perp} \subseteq \mathbb{F}_q^D$: the dual code of *C*, with minimum weight δ^*
- $\chi_C \in V$: the characteristic vector of *C*:

$$\chi_C := \sum_{x \in C} \hat{x}$$

<ロ> (四) (四) (三) (三) (三)

The Assmus–Mattson Theorem (1969)

- $C \subseteq \mathbb{F}_q^D$: a linear code with minimum weight δ
- $C^{\perp} \subseteq \mathbb{F}_q^D$: the dual code of *C*, with minimum weight δ^*
- $\chi_C \in V$: the characteristic vector of *C*:

$$\chi_C := \sum_{x \in C} \hat{x}$$

ヘロト 人間 とくほとく ほとう

э.

The Assmus–Mattson Theorem (1969)

Assumption (algebraic):

Suppose $t \in \{1, 2, ..., D\}$ is such that at least one of the following holds:

•
$$|\{1 \leq i \leq D - t : E_i \chi_C \neq 0\}| \leq \delta - t$$

•
$$|\{1 \leq i \leq D - t : E_i^* \chi_C \neq 0\}| \leq \delta^* - t$$

Conclusion (combinatorial):

For every $0 \leq k \leq D$,

 $\{\operatorname{supp}(x) : x \in C, \operatorname{wt}(x) = k\}$ (counting repeats)

forms a combinatorial *t*-design.

ヘロト 人間 とくほとくほとう

ъ

The Assmus–Mattson Theorem (1969)

Assumption (algebraic):

Suppose $t \in \{1, 2, ..., D\}$ is such that at least one of the following holds:

•
$$|\{1 \leq i \leq D - t : E_i \chi_C \neq 0\}| \leq \delta - t$$

•
$$|\{1 \leq i \leq D - t : E_i^* \chi_C \neq 0\}| \leq \delta^* - t$$

Conclusion (combinatorial):

For every $0 \leq k \leq D$,

 $\{\operatorname{supp}(x) : x \in C, \operatorname{wt}(x) = k\}$ (counting repeats)

forms a combinatorial *t*-design.

・ロン・西方・ ・ ヨン・ ヨン・

3

Introduction Motivation/Background Discussions Preliminaries Remarks The Assmus–Mattson Theorem

The goal of this talk

Interpret the Assmus–Mattson theorem in terms of the irreducible *T*-modules!

(Algebraic property of C) \longleftrightarrow (Combinatorial property of C)

イロト イポト イヨト イヨト

ъ

The Hamming lattice The space Δ

Outline

ヘロト 人間 とくほとくほとう

The Hamming lattice (Delsarte, 1976)

• $\mathbb{F}_q \cup \{\infty\}$: the "claw semilattice" of order q+1

(ℒ, ≼): the direct product of *D* claw semilattices:
ℒ = (𝔽_q ∪ {∞})^D *u* ≼ *v* ⇔ *u_i* = ∞ or *u_i* = *v_i* (1 ≤ *i* ≤ *D*)

Remark

 $(\mathscr{L}, \preccurlyeq)$ is ranked: rank $(u) = |\{i : u_i \neq \infty\}|$

Remark

 \mathbb{F}_q^D forms the top fibre of $(\mathscr{L},\preccurlyeq)$

The Hamming lattice (Delsarte, 1976)

• $\mathbb{F}_q \cup \{\infty\}$: the "claw semilattice" of order q+1

(ℒ, ≼): the direct product of *D* claw semilattices:
ℒ = (𝔽_q ∪ {∞})^D *u* ≼ *v* ⇔ *u_i* = ∞ or *u_i* = *v_i* (1 ≤ *i* ≤ *D*)

Remark

 $(\mathscr{L}, \preccurlyeq)$ is ranked: rank $(u) = |\{i : u_i \neq \infty\}|$

Remark

 \mathbb{F}_q^D forms the top fibre of $(\mathscr{L},\preccurlyeq)$

The Hamming lattice (Delsarte, 1976)

• $\mathbb{F}_q \cup \{\infty\}$: the "claw semilattice" of order q+1

(ℒ, ≼): the direct product of *D* claw semilattices:
ℒ = (𝔽_q ∪ {∞})^D *u* ≼ *v* ⇐⇒ *u_i* = ∞ or *u_i* = *v_i* (1 ≤ *i* ≤ *D*)

Remark

 $(\mathscr{L}, \preccurlyeq)$ is ranked: rank $(u) = |\{i : u_i \neq \infty\}|$

Remark

 \mathbb{F}_q^D forms the top fibre of $(\mathscr{L},\preccurlyeq)$

The Hamming lattice (Delsarte, 1976)

• $\mathbb{F}_q \cup \{\infty\}$: the "claw semilattice" of order q+1

(ℒ, ≼): the direct product of *D* claw semilattices:
ℒ = (𝔽_q ∪ {∞})^D *u* ≼ *v* ⇐⇒ *u_i* = ∞ or *u_i* = *v_i* (1 ≤ *i* ≤ *D*)

Remark

 $(\mathscr{L}, \preccurlyeq)$ is ranked: rank $(u) = |\{i : u_i \neq \infty\}|$

Remark

 \mathbb{F}_q^D forms the top fibre of $(\mathscr{L},\preccurlyeq)$.

The Hamming lattice The space Δ

The Hamming lattice (Delsarte, 1976)

- $u \in \mathscr{L}$: rank t
- $\chi_{\succeq u}$: the characteristic vector of $\{x \in \mathbb{F}_q^D : u \preccurlyeq x\}$

Remark

 $E_0V + E_1V + \dots + E_tV = \operatorname{Span}\{\chi_{\succeq u} : u \in \mathscr{L}, \operatorname{rank}(u) = t\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

The Hamming lattice The space Δ

The Hamming lattice (Delsarte, 1976)

- $u \in \mathscr{L}$: rank t
- $\chi_{\succeq u}$: the characteristic vector of $\{x \in \mathbb{F}_q^D : u \preccurlyeq x\}$

Remark

$$E_0V + E_1V + \dots + E_tV = \operatorname{Span}\{\chi_{\succeq u} : u \in \mathscr{L}, \operatorname{rank}(u) = t\}$$

<ロ> (四) (四) (三) (三) (三)

Restatement of the conclusion (I)

The following are equivalent:
(a) {supp(x) : x ∈ C, wt(x) = k} : a *t*-design.
(b) {{1,2,...,D} - supp(x) : x ∈ C, wt(x) = k} : a *t*-design.
(c) ⟨E^{*}_kχ_C, χ_{≽u}⟩ is independent of u ≼ 0 with rank *t*.

$$(::) \qquad (\underbrace{0,0,\ldots,0}_{t},\infty,\infty,\ldots,\infty) \preccurlyeq \mathbf{0}$$
$$\{t\text{-subsets of } \{1,2,\ldots,D\}\} \xleftarrow{1:1} \{u \in \mathscr{L} : u \preccurlyeq \mathbf{0}, \text{ rank}(u) = t\}$$

<ロ> (四) (四) (三) (三) (三)

Restatement of the conclusion (I)

The following are equivalent: (a) {supp(x) : x ∈ C, wt(x) = k} : a *t*-design. (b) {{1,2,...,D} - supp(x) : x ∈ C, wt(x) = k} : a *t*-design. (c) ⟨E^{*}_kχ_C, χ_{≽u}⟩ is independent of u ≤ 0 with rank *t*.

(:.)
$$\underbrace{(0,0,\ldots,0)}_{t},\infty,\infty,\ldots,\infty) \preccurlyeq \mathbf{0}$$
$$\{t\text{-subsets of } \{1,2,\ldots,D\}\} \xleftarrow{1:1} \{u \in \mathscr{L} : u \preccurlyeq \mathbf{0}, \text{ rank}(u) = t\}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Restatement of the conclusion (I)

The following are equivalent:

- (a) {supp(x) : $x \in C$, wt(x) = k} : a *t*-design.
- (b) $\{\{1, 2, \dots, D\} \operatorname{supp}(x) : x \in C, \operatorname{wt}(x) = k\}$: a *t*-design.
- (c) $\langle E_k^* \chi_C, \chi_{\geq u} \rangle$ is independent of $u \leq 0$ with rank *t*.

$$(::) \qquad (\underbrace{0,0,\ldots,0}_{t},\infty,\infty,\ldots,\infty) \preccurlyeq \mathbf{0}$$
$$\{t\text{-subsets of } \{1,2,\ldots,D\}\} \xleftarrow{1:1} \{u \in \mathscr{L} : u \preccurlyeq \mathbf{0}, \text{ rank}(u) = t\}$$

イロト イポト イヨト イヨト 一臣

Restatement of the conclusion (I)

The following are equivalent:

- (a) {supp(x) : $x \in C$, wt(x) = k} : a *t*-design.
- (b) $\{\{1, 2, \dots, D\} \operatorname{supp}(x) : x \in C, \operatorname{wt}(x) = k\}$: a *t*-design.
- (c) $\langle E_k^* \chi_C, \chi_{\succeq u} \rangle$ is independent of $u \preccurlyeq 0$ with rank *t*.

(:.)
$$(\underbrace{0,0,\ldots,0}_{t},\infty,\infty,\ldots,\infty) \preccurlyeq \mathbf{0}$$
$$\{t\text{-subsets of } \{1,2,\ldots,D\}\} \xleftarrow{1:1} \{u \in \mathscr{L} : u \preccurlyeq \mathbf{0}, \operatorname{rank}(u) = t\}$$

イロト イポト イヨト イヨト 一臣

Facts on irreducible *T*-modules

- W : an irreducible T-module in V
- $r := \min\{i : E_i^* W \neq 0\}$: the *endpoint* of W
- $d := |\{i : E_i^* W \neq 0\}| 1$: the *diameter* of *W*

Remark

$$W = E_r^* W \perp E_{r+1}^* W \perp \dots \perp E_{r+d}^* W$$
$$= E_r W \perp E_{r+1} W \perp \dots \perp E_{r+d} W$$

Remark

 $M\hat{\mathbf{0}}$: a unique irreducible *T*-module with r = 0 or d = D.

Facts on irreducible *T*-modules

- W : an irreducible T-module in V
- $r := \min\{i : E_i^* W \neq 0\}$: the *endpoint* of W
- $d := |\{i : E_i^* W \neq 0\}| 1$: the *diameter* of *W*

Remark

$$W = E_r^* W \perp E_{r+1}^* W \perp \dots \perp E_{r+d}^* W$$
$$= E_r W \perp E_{r+1} W \perp \dots \perp E_{r+d} W$$

Remark

 $M\hat{\mathbf{0}}$: a unique irreducible *T*-module with r = 0 or d = D.

ヘロト 人間 とくほとくほとう

ъ

Facts on irreducible *T*-modules

- W : an irreducible T-module in V
- $r := \min\{i : E_i^* W \neq 0\}$: the *endpoint* of W
- $d := |\{i : E_i^* W \neq 0\}| 1$: the *diameter* of *W*

Remark

$$W = E_r^* W \perp E_{r+1}^* W \perp \dots \perp E_{r+d}^* W$$
$$= E_r W \perp E_{r+1} W \perp \dots \perp E_{r+d} W$$

Remark

 $M\hat{\mathbf{0}}$: a unique irreducible *T*-module with r = 0 or d = D.

ヘロト 人間 とくほとくほとう

ъ

The Hamming lattice The space Δ

The space Δ (Terwilliger, 2005)

• Caughman (1999) showed $2r + d \ge D$.

- $\eta := 2r + d D$: the *displacement* of $W \ge 0$
- Δ : the linear span of the irreducible *T*-modules *W* with displacement 0

$$W = E_r^* W \perp E_{r+1}^* W \perp \cdots \perp E_{D-r}^* W$$
$$= E_r W \perp E_{r+1} W \perp \cdots \perp E_{D-r} W$$

イロン イ理 とく ヨン イヨン

The Hamming lattic The space Δ

The space Δ (Terwilliger, 2005)

- Caughman (1999) showed $2r + d \ge D$.
- $\eta := 2r + d D$: the *displacement* of $W \ge 0$
- Δ : the linear span of the irreducible *T*-modules *W* with displacement 0

$$W = E_r^* W \perp E_{r+1}^* W \perp \cdots \perp E_{D-r}^* W$$
$$= E_r W \perp E_{r+1} W \perp \cdots \perp E_{D-r} W$$

イロン イ理 とく ヨン イヨン

The Hamming lattice The space Δ

The space Δ (Terwilliger, 2005)

- Caughman (1999) showed $2r + d \ge D$.
- $\eta := 2r + d D$: the *displacement* of $W \ge 0$
- Δ : the linear span of the irreducible *T*-modules *W* with displacement 0

$$W = E_r^* W \perp E_{r+1}^* W \perp \dots \perp E_{D-r}^* W$$
$$= E_r W \perp E_{r+1} W \perp \dots \perp E_{D-r} W$$

イロン イ理 とく ヨン イヨン

The Hamming lattic The space Δ

The space Δ (Terwilliger, 2005)

- Caughman (1999) showed $2r + d \ge D$.
- $\eta := 2r + d D$: the *displacement* of $W \ge 0$
- Δ: the linear span of the irreducible *T*-modules *W* with displacement 0

$$W = E_r^* W \perp E_{r+1}^* W \perp \cdots \perp E_{D-r}^* W$$
$$= E_r W \perp E_{r+1} W \perp \cdots \perp E_{D-r} W$$

イロン 不同 とくほ とくほ とう

æ

The Hamming lattice The space Δ

The structure of Δ

Lemma (Ito-Tanabe-Terwilliger, 2001)

$$\Delta = \sum_{i=0}^{D} ((E_0^*V + \dots + E_{D-i}^*V) \cap (E_0V + \dots + E_iV)) \text{ (direct sum)}.$$

• $u \preccurlyeq 0$: rank *t*

Remark

 $\chi_{\succeq u} \in (E_0^*V + \dots + E_{D-t}^*V) \cap (E_0V + \dots + E_tV).$

Remark

$$\Delta = \operatorname{Span}\{\chi_{\succeq u} : u \in \mathscr{L}, \ u \preccurlyeq \mathbf{0}\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The Hamming lattice The space Δ

The structure of Δ

Lemma (Ito-Tanabe-Terwilliger, 2001)

$$\Delta = \sum_{i=0}^{D} ((E_0^*V + \dots + E_{D-i}^*V) \cap (E_0V + \dots + E_iV)) \text{ (direct sum)}.$$

• $u \preccurlyeq 0$: rank t

Remark

$$\chi_{\succeq u} \in (E_0^*V + \dots + E_{D-t}^*V) \cap (E_0V + \dots + E_tV).$$

Remark

$$\Delta = \operatorname{Span}\{\chi_{\succeq u} : u \in \mathscr{L}, \ u \preccurlyeq \mathbf{0}\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The Hamming lattice The space Δ

The structure of Δ

Lemma (Ito-Tanabe-Terwilliger, 2001)

$$\Delta = \sum_{i=0}^{D} ((E_0^*V + \dots + E_{D-i}^*V) \cap (E_0V + \dots + E_iV)) \text{ (direct sum)}.$$

• $u \preccurlyeq 0$: rank t

Remark

$$\chi_{\succeq u} \in (E_0^*V + \dots + E_{D-t}^*V) \cap (E_0V + \dots + E_tV).$$

Remark

$$\Delta = \operatorname{Span}\{\chi_{\succ u} : u \in \mathscr{L}, \ u \preccurlyeq \mathbf{0}\}.$$

<ロト <回 > < 注 > < 注 > 、

æ

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Discussions} \\ \mbox{Remarks} \end{array} \\ \begin{array}{c} \mbox{The Hamming} \\ \mbox{The space } \Delta \end{array}$

Restatement of the conclusion (II)

(c) $\langle E_k^* \chi_C, \chi_{\geq u} \rangle$ is independent of $u \preccurlyeq 0$ with rank *t*.

_emma

Condition (c) is implied by the following: (d) χ_C is orthogonal to every irreducible *T*-module *W* with $\eta = 0$ and $1 \le r \le t$.

(Algebraic property of C) \longleftrightarrow (Combinatorial property of C)

(日) (同) (国) (日)

Restatement of the conclusion (II)

(c) $\langle E_k^* \chi_C, \chi_{\succeq u} \rangle$ is independent of $u \preccurlyeq 0$ with rank *t*.

Lemma

Condition (c) is implied by the following:

(d) χ_C is orthogonal to every irreducible *T*-module *W* with $\eta = 0$ and $1 \leq r \leq t$.

ヘロト 人間 ト ヘヨト ヘヨト

Restatement of the conclusion (II)

(c) $\langle E_k^* \chi_C, \chi_{\succeq u} \rangle$ is independent of $u \preccurlyeq 0$ with rank *t*.

Lemma

Condition (c) is implied by the following:

(d) χ_C is orthogonal to every irreducible *T*-module *W* with $\eta = 0$ and $1 \leq r \leq t$.

(Algebraic property of C) \longleftrightarrow (Combinatorial property of C)

ヘロン 人間 とくほ とくほ とう

1

Restatement of the conclusion (II)

(c) $\langle E_k^* \chi_C, \chi_{\succeq u} \rangle$ is independent of $u \preccurlyeq 0$ with rank *t*.

Lemma

Condition (c) is implied by the following:

(d) χ_C is orthogonal to every irreducible *T*-module *W* with $\eta = 0$ and $1 \leq r \leq t$.

イロト 不得 とくほと くほとう

Hajime Tanaka Assmus–Mattson theorem

<ロト <回 > < 注 > < 注 > 、

Remarks

• The Assmus–Mattson theorem is valid for nonlinear codes as well.

Example

The [12, 6, 6] extended ternary Golay code is self-dual and has weight distribution

$$(1, \underbrace{0, 0, 0, 0, 0, 264, 0, 0, 440, 0, 0}_{\#(dual)weights = 2}, \underbrace{24}_{t=1}).$$

Thus each coset of weight 3 (i.e., $\delta = 3$) supports 1-designs since $2 \leq 3 - 1$.

ヘロト 人間 とくほとくほとう

э

Remarks

• The Assmus–Mattson theorem is valid for nonlinear codes as well.

Example

The $\left[12,6,6\right]$ extended ternary Golay code is self-dual and has weight distribution

$$(1, \underbrace{0, 0, 0, 0, 0, 264, 0, 0, 440, 0, 0}_{\#(\text{dual})\text{weights}=2}, \underbrace{24}_{t=1}).$$

Thus each coset of weight 3 (i.e., $\delta = 3$) supports 1-designs since $2 \leq 3 - 1$.

・ロト ・回ト ・ヨト ・ヨト

э

• The Assmus–Mattson theorem can be generalized to other *P*-& *Q*-polynomial schemes.

Example

For Johnson schemes,

(designs & constant-weight codes) \longrightarrow (designs).

THE END.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• The Assmus–Mattson theorem can be generalized to other *P*-& *Q*-polynomial schemes.

Example

For Johnson schemes,

(designs & constant-weight codes) \longrightarrow (designs).

THE END.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• The Assmus–Mattson theorem can be generalized to other *P*-& *Q*-polynomial schemes.

Example

For Johnson schemes,

(designs & constant-weight codes) \longrightarrow (designs).

THE END.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition of δ and δ^*

- $C \subseteq \mathbb{F}_q^D$: a code
- χ_C : the characteristic vector of C

Definition

 $\delta := \min\{i \neq 0 : E_i^* \chi_C \neq 0\} \quad (\text{minimum weight})$ $\delta^* := \min\{i \neq 0 : E_i \chi_C \neq 0\}$

Remark

If *C* is linear, then δ^* equals the minimum weight of C^{\perp} .

イロン 不得 とくほ とくほ とうほ

Definition of δ and δ^*

- $C \subseteq \mathbb{F}_q^D$: a code
- χ_C : the characteristic vector of C

Definition

$$\delta := \min\{i \neq 0 : E_i^* \chi_C \neq 0\} \quad (\text{minimum weight})$$

$$\delta^* := \min\{i \neq 0 : E_i \chi_C \neq 0\}$$

Remark

If *C* is linear, then δ^* equals the minimum weight of C^{\perp} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Definition of δ and δ^*

- $C \subseteq \mathbb{F}_q^D$: a code
- χ_C : the characteristic vector of C

Definition

$$\delta := \min\{i \neq 0 : E_i^* \chi_C \neq 0\} \quad (\text{minimum weight})$$

$$\delta^* := \min\{i \neq 0 : E_i \chi_C \neq 0\}$$

Remark

If *C* is linear, then δ^* equals the minimum weight of C^{\perp} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○