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Background
Definition of a Leonard system

Thin irreducible modules and Leonard pairs

Γ = (X, R) : a Q-polynomial distance-regular graph
Fix x ∈ X.
T = T(x) : the Terwilliger algebra with respect to x

Remark
Each irreducible T-module affords a tridiagonal pair.
If it is a Leonard pair then the module is said to be thin.
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Examples

the primary T-module : the T-module generated by the
characteristic vector of {x}

Remark
The primary T-module is always thin.

Remark
Every irreducible T-module is thin when Γ is a Hamming,
Johnson, Grassmann or dual polar graph.
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Background
Definition of a Leonard system

Terminology

K : a field
d ∈ N
V := Kd+1 x Matd+1(K) (from the left)

A ∈ Matd+1(K) : multiplicity-free
def⇐⇒ A has d + 1 distinct eigenvalues in K

Suppose A is multiplicity-free.
{θi}d

i=0 ⊆ K : the eigenvalues of A
{Ei}d

i=0 ⊆ Matd+1(K) : the primitive idempotents of A; i.e.,{
V =

∑d
i=0 EiV (direct sum)

AEiV = θiEiV (0 6 i 6 d)
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Background
Definition of a Leonard system

Five axioms (Terwilliger, 2001)

Definition
A Leonard system in Matd+1(K) is a sequence
Φ =

(
A; A∗; {Ei}d

i=0; {E∗
i }d

i=0

)
such that:

A, A∗ : multiplicity-free elements in Matd+1(K)
{Ei}d

i=0 : the primitive idempotents of A

{E∗
i }d

i=0 : the primitive idempotents of A∗

E∗
i AE∗

j =

{
0 if |i− j| > 1
6= 0 if |i− j| = 1

EiA∗Ej =

{
0 if |i− j| > 1
6= 0 if |i− j| = 1
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Background
Definition of a Leonard system

Notation

Remark
The pair (A, A∗) is called a Leonard pair.

We use the following notation:

{θi}d
i=0 ⊆ K : the eigenvalues of A

{θ∗i }d
i=0 ⊆ K : the eigenvalues of A∗
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Balanced bilinear form
Motivations
Parameter array of a Leonard system
Results
Remarks

Definition of a balanced bilinear form

Φ′ =
(
A′; A∗′; {E′

i}d′
i=0; {E∗′

i }d′
i=0

)
: another Leonard system

with 1 6 d′ 6 d

Use ′ for objects corresponding to Φ′ (Example: V ′, θ′i, θ∗′i )
〈〈, 〉〉 : V × V ′ −→ K : a nonzero bilinear form

Definition
〈〈, 〉〉 : balanced with respect to Φ,Φ′

def⇐⇒


(i) There is ρ (0 6 ρ 6 d − d′) such that

〈〈E∗
i V, E∗′

j V ′〉〉 = 0 if i− ρ 6= j,
(ii) 〈〈EiV, E′

jV
′〉〉 = 0 if i < j or i > j + d − d′.
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Condition (i)

There is ρ (0 6 ρ 6 d − d′) such that 〈〈E∗
i V, E∗′

j V ′〉〉 = 0 if
i− ρ 6= j :

E∗′
0 V ′ E∗′

1 V ′ E∗′
d′V ′

E∗
0V E∗

1V E∗
d′V E∗

dV

We call ρ the endpoint of 〈〈, 〉〉.
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jV
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0V ′ E′

1V ′ E′
d′V ′

E0V E1V Ed′V EdV
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Motivation 1: Subsets with w + w∗ = d

Γ = (X, R) : a Q-polynomial distance-regular graph with
diameter d

C : a proper subset of X

Brouwer et al. introduced the width w, dual width w∗ of C.

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

w + w∗ > d.
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Motivation 1: Subsets with w + w∗ = d (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)
Suppose w + w∗ = d. Then:

C is completely-regular.
If moreover C is connected then C induces a Q-polynomial
distance-regular graph.

Example

J(v, d) : the Johnson graph

J(v, d) ⊇ J(v− 1, d − 1) ⊇ J(v− 2, d − 2) ⊇ · · ·
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Theorem (Brouwer-Godsil-Koolen-Martin, 2003)
Suppose w + w∗ = d. Then:
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distance-regular graph.
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Motivation 1: Subsets with w + w∗ = d (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)
Suppose w + w∗ = d. Then:

C is completely-regular.
If moreover C is connected then C induces a Q-polynomial
distance-regular graph.

Example

H(d, q) : the Hamming graph

H(d, q) ⊇ H(d − 1, q) ⊇ H(d − 2, q) ⊇ · · ·
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Suppose w + w∗ = d. Then:
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If moreover C is connected then C induces a Q-polynomial
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Example
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Motivation 1: Subsets with w + w∗ = d (continued)

Remark
Subsets with w + w∗ = d have been applied to:

Erdős–Ko–Rado Theorem (extremal set theory; 2006)
Assmus–Mattson Theorem (coding theory; to appear)
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Motivation 1: Subsets with w + w∗ = d (continued)

C : connected, w + w∗ = d

Fix x ∈ C.
T : the Terwilliger algebra of Γ with respect to x

T ′ : the Terwilliger algebra of Γ|C with respect to x

The standard inner product on CX is balanced with respect to
the primary modules for T and T ′ (with K = C, d′ = w, ρ = 0).
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Motivation 2: Base-point change lemma

Γ = (X, R) : a Q-polynomial distance-regular graph
Fix x, y ∈ X (x 6= y).
T : the Terwilliger algebra with respect to x

T ′ : the Terwilliger algebra with respect to y

Terwilliger (1993) studied how thin irreducible modules for
T and T ′ are related.

Project
Reformulate and extend the “base-point change lemma” in
terms of the (new) theory of Leonard systems.
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Motivation 2: Base-point change lemma (continued)

W ′ : an irreducible T ′-module
Terwilliger introduced the endpoint ν, dual endpoint ν∗,
diameter d′ of W ′.

Lemma (Terwilliger, 1993; Caughman, 1999)

2ν + d′ > d, 2ν∗ + d′ > d.
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Motivation 2: Base-point change lemma (continued)

Theorem (Suzuki, 2005)

If 2ν + d′ = d then W ′ is thin.

Suppose 2ν + d′ = d and ∂Γ(x, y) = ν.
W : the primary module for T

If W, W ′ are not orthogonal then the standard inner product on
CX is balanced with respect to W, W ′ (with K = C, ρ = ν∗).
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What is the parameter array?

The parameter array of Φ is a sequence of the form

p(Φ) =
(
{θi}d

i=0; {θ∗i }d
i=0; {ϕi}d

i=1; {φi}d
i=1

)
.

{θi}d
i=0 ⊆ K : the eigenvalues of A

{θ∗i }d
i=0 ⊆ K : the eigenvalues of A∗

ϕi, φi ∈ K× (1 6 i 6 d)
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Comments on the parameter array

Theorem (Terwilliger, 2001)
Two Leonard systems are isomorphic if and only if they have
the same parameter array.

Remark
Terwilliger (2001, 2005) classified all possible parameter arrays.
(“Leonard’s theorem”)

Hajime Tanaka A bilinear form relating two Leonard pairs



Leonard systems
Bilinear form relating two Leonard systems

Balanced bilinear form
Motivations
Parameter array of a Leonard system
Results
Remarks

Comments on the parameter array

Theorem (Terwilliger, 2001)
Two Leonard systems are isomorphic if and only if they have
the same parameter array.

Remark
Terwilliger (2001, 2005) classified all possible parameter arrays.
(“Leonard’s theorem”)

Hajime Tanaka A bilinear form relating two Leonard pairs



Leonard systems
Bilinear form relating two Leonard systems

Balanced bilinear form
Motivations
Parameter array of a Leonard system
Results
Remarks

Comments on the parameter array

Theorem (Terwilliger, 2001)
Two Leonard systems are isomorphic if and only if they have
the same parameter array.

Remark
Terwilliger (2001, 2005) classified all possible parameter arrays.
(“Leonard’s theorem”)

Hajime Tanaka A bilinear form relating two Leonard pairs



Leonard systems
Bilinear form relating two Leonard systems

Balanced bilinear form
Motivations
Parameter array of a Leonard system
Results
Remarks

Main result

Theorem
There is 〈〈, 〉〉 : V × V ′ −→ K which is balanced with respect to
Φ, Φ′ and with endpoint ρ if and only if (i), (ii) hold below:

(i) There are ξ∗, ζ∗ ∈ K such that

θ∗′i = ξ∗θ∗ρ+i + ζ∗ (0 6 i 6 d′).

(ii)
φρ+i

ϕρ+i
=

φ′i
ϕ′

i
(1 6 i 6 d′).

Moreover, if (i), (ii) hold above, then 〈〈, 〉〉 is unique up to scalar
multiplication.
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Generic case; q-Racah

The most general form of the parameter array is as follows:

p(Φ) = p(q, r1, r2, s, s∗, d) where r1r2 = ss∗qd+1 6= 0,

θi = θ0 + h(1− qi)(1− sqi+1)q−i,

θ∗i = θ∗0 + h∗(1− qi)(1− s∗qi+1)q−i

for 0 6 i 6 d,

ϕi = hh∗q1−2i(1− qi)(1− qi−d−1)(1− r1qi)(1− r2qi),

φi = hh∗q1−2i(1− qi)(1− qi−d−1)(r1 − s∗qi)(r2 − s∗qi)/s∗

for 1 6 i 6 d.
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Closed form of the main result (generic case; q-Racah)

Suppose
p(Φ) = p(q, r1, r2, s, s∗, d)

where r1r2 = ss∗qd+1 6= 0.

Theorem
There is 〈〈, 〉〉 : V × V ′ −→ K which is balanced with respect to
Φ, Φ′ and with endpoint ρ if and only if

p(Φ′) = p(q, r1qρ, r2qρ, sqd−d′
, s∗q2ρ, d′).

(Recall (r1qρ)(r2qρ) = (sqd−d′
)(s∗q2ρ)qd′+1.)
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Application: Subsets with w + w∗ = d

Γ = (X, R) : a Q-polynomial distance-regular graph with
diameter d

C ⊆ X : w + w∗ = d

The following information follow from our theory:
1 When does C induce a Q-polynomial distance-regular

graph?
2 When is C “Q-polynomial”?
3 When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) q 6= −1; (2) q 6= −1; (3) Γ has classical parameters.

The END.
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