A bilinear form relating two Leonard pairs and its applications

Hajime Tanaka

Graduate School of Information Sciences
Tohoku University

Geometric and Algebraic Combinatorics 4 August 20, 2008

Outline

(1) Leonard systems

- Background
- Definition of a Leonard system
(2) Bilinear form relating two Leonard systems
- Balanced bilinear form
- Motivations
- Parameter array of a Leonard system
- Results
- Remarks

Thin irreducible modules and Leonard pairs

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph
- Fix $x \in X$.
- $T=T(x)$: the Terwilliger algebra with respect to x

Remark

- Each irreducible T-module affords a tridiagonal pair.

Thin irreducible modules and Leonard pairs

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph
- Fix $x \in X$.
- $T=T(x)$: the Terwilliger algebra with respect to x

Remark

- Each irreducible T-module affords a tridiagonal pair.
- If it is a Leonard pair then the module is said to be thin.

Thin irreducible modules and Leonard pairs

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph
- Fix $x \in X$.
- $T=T(x)$: the Terwilliger algebra with respect to x

Remark

- Each irreducible T-module affords a tridiagonal pair.
- If it is a Leonard pair then the module is said to be thin.

Examples

- the primary T-module : the T-module generated by the characteristic vector of $\{x\}$

Remark
 The primary T-module is always thin.

Remark
Every irreducible T-module is thin when Γ is a Hamming, Johnson, Grassmann or dual polar graph.

Examples

- the primary T-module : the T-module generated by the characteristic vector of $\{x\}$

Remark

The primary T-module is always thin.

$$
\begin{aligned}
& \text { Remark } \\
& \text { Every irreducible } T \text {-module is thin when } \Gamma \text { is a Hamming, } \\
& \text { Johnson, Grassmann or dual polar graph. }
\end{aligned}
$$

Examples

- the primary T-module : the T-module generated by the characteristic vector of $\{x\}$

Remark

The primary T-module is always thin.

Remark

Every irreducible T-module is thin when Γ is a Hamming, Johnson, Grassmann or dual polar graph.

Background
Definition of a Leonard system

Terminology

- \mathbb{K} : a field
- $d \in \mathbb{N}$
- $V:=\mathbb{K}^{d+1}$
- $A \in \mathrm{Mat}_{d+1}\left(\mathbb{K} \mathbb{K}_{\mathrm{K}}\right):$ multiplicity-free $\stackrel{\text { def }}{\Longleftrightarrow} A$ has $d+1$ distinct eigenvalues in \mathbb{K}
- Suppose A is multiplicity-free.
- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{E_{i}\right\}_{i=0}^{d} \subseteq \operatorname{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of A; i.e.,

Background
Definition of a Leonard system

Terminology

- \mathbb{K} : a field
- $d \in \mathbb{N}$
- $V:=\mathbb{K}^{d+1}$
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\text { def }}{\Longleftrightarrow} A$ has $d+1$ distinct eigenvalues in \mathbb{K}
- Suppose A is multiplicity-free.
- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{E_{i}\right\}_{i=0}^{d} \subseteq \operatorname{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of A; i.e.,

Terminology

- \mathbb{K} : a field
- $d \in \mathbb{N}$
- $V:=\mathbb{K}^{d+1} \curvearrowleft \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free
$\stackrel{\text { def }}{\Longleftrightarrow} A$ has $d+1$ distinct eigenvalues in \mathbb{K}
- Suppose A is multiplicity-free.
- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{E_{i}\right\}_{i=0}^{d} \subseteq \operatorname{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of A; i.e.,

Terminology

- \mathbb{K} : a field
- $d \in \mathbb{N}$
- $V:=\mathbb{K}^{d+1} \curvearrowleft \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free
$\stackrel{\text { def }}{\Longleftrightarrow} A$ has $d+1$ distinct eigenvalues in \mathbb{K}
- Suppose A is multiplicity-free.
- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{E_{i}\right\}_{i=0}^{d} \subseteq \operatorname{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of A; i.e.,

Terminology

- \mathbb{K} : a field
- $d \in \mathbb{N}$
- $V:=\mathbb{K}^{d+1} \curvearrowleft \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free
$\stackrel{\text { def }}{\Longleftrightarrow} A$ has $d+1$ distinct eigenvalues in \mathbb{K}
- Suppose A is multiplicity-free.
- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{E_{i}\right\}_{i=0}^{d} \subseteq \operatorname{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of A; i.e.,

Terminology

- \mathbb{K} : a field
- $d \in \mathbb{N}$
- $V:=\mathbb{K}^{d+1} \curvearrowleft \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\text { def }}{\Longleftrightarrow} A$ has $d+1$ distinct eigenvalues in \mathbb{K}
- Suppose A is multiplicity-free.

Terminology

- \mathbb{K} : a field
- $d \in \mathbb{N}$
- $V:=\mathbb{K}^{d+1} \curvearrowleft \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\text { def }}{\Longleftrightarrow} A$ has $d+1$ distinct eigenvalues in \mathbb{K}
- Suppose A is multiplicity-free.
- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{E_{i}\right\}_{i=0}^{d} \subseteq \operatorname{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of A; i.e.

Terminology

- \mathbb{K} : a field
- $d \in \mathbb{N}$
- $V:=\mathbb{K}^{d+1} \curvearrowleft \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\text { def }}{\Longleftrightarrow} A$ has $d+1$ distinct eigenvalues in \mathbb{K}
- Suppose A is multiplicity-free.
- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{E_{i}\right\}_{i=0}^{d} \subseteq \operatorname{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of A; i.e.,

$$
\begin{cases}V=\sum_{i=0}^{d} E_{i} V & \text { (direct sum) } \\ A E_{i} V=\theta_{i} E_{i} V & (0 \leqslant i \leqslant d)\end{cases}
$$

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $\operatorname{Mat}_{d+1}(\mathbb{K})$ is a sequence $\Phi=\left(A ; A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ such that:

- A, A^{*} : multiplicity-free elements in $\operatorname{Mat}_{d+1}(\mathbb{K})$
- $\left\{E_{i}\right\}_{i=0}^{d}$: the primitive idempotents of A
- $\left\{E_{i}^{*}\right\} d$: the nrimitive idemnotents of A
- $E_{i}^{*} A E_{j}^{*}$

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $\operatorname{Mat}_{d+1}(\mathbb{K})$ is a sequence $\Phi=\left(A ; A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ such that:

- A, A^{*} : multiplicity-free elements in $\operatorname{Mat}_{d+1}(\mathbb{K})$
- $\left\{E_{i}\right\}_{i=0}^{d}$: the primitive idempotents of A
- $\left\{E_{i}^{*}\right\}_{i=0}^{d}$: the primitive idempotents of A

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $\operatorname{Mat}_{d+1}(\mathbb{K})$ is a sequence $\Phi=\left(A ; A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ such that:

- A, A^{*} : multiplicity-free elements in $\operatorname{Mat}_{d+1}(\mathbb{K})$
- $\left\{E_{i}\right\}_{i=0}^{d}$: the primitive idempotents of A
- $\left\{E_{i}^{*}\right\}_{i=0}^{d}$: the primitive idempotents of A

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $\operatorname{Mat}_{d+1}(\mathbb{K})$ is a sequence $\Phi=\left(A ; A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ such that:

- A, A^{*} : multiplicity-free elements in $\operatorname{Mat}_{d+1}(\mathbb{K})$
- $\left\{E_{i}\right\}_{i=0}^{d}$: the primitive idempotents of A
- $\left\{E_{i}^{*}\right\}_{i=0}^{d}$: the primitive idempotents of A^{*}

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in Mat ${ }_{d+1}(\mathbb{K})$ is a sequence $\Phi=\left(A ; A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ such that:

- A, A^{*} : multiplicity-free elements in $\operatorname{Mat}_{d+1}(\mathbb{K})$
- $\left\{E_{i}\right\}_{i=0}^{d}$: the primitive idempotents of A
- $\left\{E_{i}^{*}\right\}_{i=0}^{d}$: the primitive idempotents of A^{*}
- $E_{i}^{*} A E_{j}^{*}= \begin{cases}0 & \text { if }|i-j|>1 \\ \neq 0 & \text { if }|i-j|=1\end{cases}$

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $\operatorname{Mat}_{d+1}(\mathbb{K})$ is a sequence $\Phi=\left(A ; A^{*} ;\left\{E_{i}\right\}_{i=0}^{d} ;\left\{E_{i}^{*}\right\}_{i=0}^{d}\right)$ such that:

- A, A^{*} : multiplicity-free elements in $\operatorname{Mat}_{d+1}(\mathbb{K})$
- $\left\{E_{i}\right\}_{i=0}^{d}$: the primitive idempotents of A
- $\left\{E_{i}^{*}\right\}_{i=0}^{d}$: the primitive idempotents of A^{*}
- $E_{i}^{*} A E_{j}^{*}= \begin{cases}0 & \text { if }|i-j|>1 \\ \neq 0 & \text { if }|i-j|=1\end{cases}$
- $E_{i} A^{*} E_{j}= \begin{cases}0 & \text { if }|i-j|>1 \\ \neq 0 & \text { if }|i-j|=1\end{cases}$

Background
Definition of a Leonard system

Notation

Remark

The pair $\left(A, A^{*}\right)$ is called a Leonard pair.

We use the following notation:

- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{\theta_{i}^{*}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A

Notation

Remark
The pair $\left(A, A^{*}\right)$ is called a Leonard pair.

We use the following notation:

- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{\theta_{i}^{*}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A^{*}

Outline

(1) Leonard systems

- Background
- Definition of a Leonard system
(2) Bilinear form relating two Leonard systems
- Balanced bilinear form
- Motivations
- Parameter array of a Leonard system
- Results
- Remarks

Definition of a balanced bilinear form

- $\Phi^{\prime}=\left(A^{\prime} ; A^{* \prime} ;\left\{E_{i}^{\prime}\right\}_{i=0}^{d^{\prime}} ;\left\{E_{i}^{* \prime}\right\}_{i=0}^{d^{\prime}}\right)$: another Leonard system with $1 \leqslant d^{\prime} \leqslant d$
- Use ' for objects corresponding to Φ^{\prime} (Example: $V^{\prime}, \theta_{i}^{\prime}, \theta_{i}^{* \prime}$) - $\langle\langle\rangle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}$: a nonzero bilinear form

Definition

balanced with respect to Φ, Φ^{\prime}

Definition of a balanced bilinear form

- $\Phi^{\prime}=\left(A^{\prime} ; A^{* \prime} ;\left\{E_{i}^{\prime}\right\}_{i=0}^{d^{\prime}} ;\left\{E_{i}^{* \prime}\right\}_{i=0}^{d^{\prime}}\right)$: another Leonard system with $1 \leqslant d^{\prime} \leqslant d$
- Use ' for objects corresponding to Φ^{\prime} (Example: $V^{\prime}, \theta_{i}^{\prime}, \theta_{i}^{* \prime}$)
: a nonzero bilinear form

Definition

halanced with respect to Φ, Φ^{\prime}

Definition of a balanced bilinear form

- $\Phi^{\prime}=\left(A^{\prime} ; A^{* \prime} ;\left\{E_{i}^{\prime}\right\}_{i=0}^{d^{\prime}} ;\left\{E_{i}^{* \prime}\right\}_{i=0}^{d^{\prime}}\right)$: another Leonard system with $1 \leqslant d^{\prime} \leqslant d$
- Use ' for objects corresponding to Φ^{\prime} (Example: $V^{\prime}, \theta_{i}^{\prime}, \theta_{i}^{* \prime}$)
- $\langle\langle\rangle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}:$ a nonzero bilinear form

Definition

halanced with respect to Φ, Φ^{\prime}

Definition of a balanced bilinear form

- $\Phi^{\prime}=\left(A^{\prime} ; A^{* \prime} ;\left\{E_{i}^{\prime}\right\}_{i=0}^{d^{\prime}} ;\left\{E_{i}^{* \prime}\right\}_{i=0}^{d^{\prime}}\right)$: another Leonard system with $1 \leqslant d^{\prime} \leqslant d$
- Use ' for objects corresponding to Φ^{\prime} (Example: $V^{\prime}, \theta_{i}^{\prime}, \theta_{i}^{* \prime}$)
- $\langle\langle\rangle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}$: a nonzero bilinear form

Definition

$\langle\langle\rangle$,$\rangle : balanced with respect to \Phi, \Phi^{\prime}$

Definition of a balanced bilinear form

- $\Phi^{\prime}=\left(A^{\prime} ; A^{* \prime} ;\left\{E_{i}^{\prime}\right\}_{i=0}^{d^{\prime}} ;\left\{E_{i}^{* \prime}\right\}_{i=0}^{d^{\prime}}\right)$: another Leonard system with $1 \leqslant d^{\prime} \leqslant d$
- Use ' for objects corresponding to Φ^{\prime} (Example: $V^{\prime}, \theta_{i}^{\prime}, \theta_{i}^{* \prime}$)
- $\left\langle\langle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}\right.$: a nonzero bilinear form

Definition

$《<$,$\rangle : balanced with respect to \Phi, \Phi^{\prime}$

$$
\begin{aligned}
& \text { def (i) There is } \rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right) \text { such that } \\
& \left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0 \text { if } i-\rho \neq j,
\end{aligned}
$$

(ii)

Definition of a balanced bilinear form

- $\Phi^{\prime}=\left(A^{\prime} ; A^{* \prime} ;\left\{E_{i}^{\prime}\right\}_{i=0}^{d^{\prime \prime}} ;\left\{E_{i}^{* \prime}\right\}_{i=0}^{d^{\prime}}\right)$: another Leonard system with $1 \leqslant d^{\prime} \leqslant d$
- Use ' for objects corresponding to Φ^{\prime} (Example: $V^{\prime}, \theta_{i}^{\prime}, \theta_{i}^{* \prime}$)
- $\left\langle\langle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}\right.$: a nonzero bilinear form

Definition

$《<$,$\rangle : balanced with respect to \Phi, \Phi^{\prime}$

$$
\stackrel{\text { def }}{\rightleftharpoons} \begin{cases}\text { (i) } \quad \text { There is } \rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right) \text { such that } \\ & \left\langle\left\langle E_{i}^{*} V, E_{j}^{* *} V^{\prime}\right\rangle=0 \text { if } i-\rho \neq j,\right. \\ \text { (ii) }\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle=0 \text { if } i<j \text { or } i>j+d-d^{\prime} .\right.\end{cases}
$$

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
E_{0}^{*} V \quad E_{1}^{*} V \quad \ldots \ldots \ldots .
$$

$$
E_{0}^{* \prime} V^{\prime} E_{1}^{* \prime} V^{\prime} \cdots \cdots \cdots \cdots \cdots \quad E_{d^{\prime}}^{* \prime} V^{\prime}
$$

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
\begin{aligned}
& E_{0}^{*} V \quad E_{1}^{*} V E_{\rho}^{*} V \ldots \ldots . . . E_{d^{\prime}}^{*} V \quad \ldots . . . \\
& E_{0}^{* \prime} V^{\prime} E_{1}^{* \prime} V^{\prime} \ldots \ldots \ldots \ldots .
\end{aligned}
$$

\square

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
E_{0}^{*} V \quad E_{1}^{*} V \quad \ldots E_{\rho+1}^{*} V \quad \ldots \quad E_{d^{\prime}}^{*} V \quad \ldots \ldots . E_{d}^{*} V
$$

$$
E_{0}^{* \prime} V^{\prime} E_{1}^{* \prime} V^{\prime} \ldots \ldots \ldots \ldots .
$$

- We call ρ the endpoint of $\langle\langle\rangle$,$\rangle .$

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
E_{0}^{*} V \quad E_{1}^{*} V \quad \ldots \ldots \ldots . . .
$$

- We call ρ the endpoint of \langle

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
E_{0}^{*} V \quad E_{1}^{*} V \quad \ldots \ldots \ldots . . .
$$

$$
E_{0}^{* \prime} V^{\prime} E_{1}^{* \prime} V^{\prime} \cdots \cdots \cdots \cdots \cdots \quad E_{d^{\prime}}^{* \prime} V^{\prime}
$$

- We call ρ the endpoint of $\langle\langle\rangle$,$\rangle .$

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
E_{0}^{*} V \quad E_{1}^{*} V \quad \ldots \ldots \ldots .
$$

$$
E_{0}^{* \prime} V^{\prime} E_{1}^{* \prime} V^{\prime} \ldots \ldots \ldots \ldots .
$$

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
E_{0}^{*} V \quad E_{1}^{*} V \quad \ldots \ldots \ldots . . .
$$

$$
E_{0}^{* \prime} V^{\prime} E_{1}^{* \prime} V^{\prime} \cdots \cdots \cdots \cdots \cdots \quad E_{d^{\prime}}^{* \prime} V^{\prime}
$$

- We call ρ the endpoint of $\langle\langle\rangle$,$\rangle .$

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
E_{0}^{*} V \quad E_{1}^{*} V \quad \ldots \ldots \ldots .
$$

$$
E_{0}^{* \prime} V^{\prime} E_{1}^{* \prime} V^{\prime} \cdots \cdots \cdots \cdots \cdots \quad E_{d^{\prime}}^{* \prime} V^{\prime}
$$

- We call ρ the endpoint of $\langle\langle\rangle$,$\rangle .$

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
E_{0}^{*} V \quad E_{1}^{*} V \quad \ldots \ldots \ldots .
$$

$$
E_{0}^{* \prime} V^{\prime} E_{1}^{* \prime} V^{\prime} \ldots \ldots \ldots \ldots .
$$

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
E_{0}^{*} V \quad E_{1}^{*} V \quad \ldots \ldots \ldots \ldots .
$$

$$
E_{0}^{* \prime} V^{\prime} E_{1}^{* \prime} V^{\prime} \ldots \ldots \ldots \ldots E_{d^{\prime}}^{* /} V^{\prime}
$$

- We call ρ the endpoint of $\langle\langle\rangle$,$\rangle .$

Condition (i)

- There is $\rho\left(0 \leqslant \rho \leqslant d-d^{\prime}\right)$ such that $\left\langle\left\langle E_{i}^{*} V, E_{j}^{* \prime} V^{\prime}\right\rangle\right\rangle=0$ if $i-\rho \neq j$:

$$
\begin{array}{lllll}
E_{0}^{*} V & E_{1}^{*} V & \ldots \ldots \ldots & E_{d^{\prime}}^{*} V & \cdots
\end{array} E_{\rho+d^{\prime}}^{*} V E_{d}^{*} V
$$

- We call ρ the endpoint of $\langle\langle\rangle$,$\rangle .$

Condition (i)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

$$
\begin{array}{lllll}
E_{0} V & E_{1} V & \cdots \cdots \cdots \cdots & E_{d^{\prime}} V & \cdots \cdots \cdots \\
E_{d} V
\end{array}
$$

Condition (i)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

$$
\begin{array}{lllllll}
E_{0} V & E_{1} V & \cdots & E_{d-d^{\prime}} V & \cdots & E_{d^{\prime}} V & \cdots \cdots \cdots \\
E_{0}^{\prime} V^{\prime} & E_{1}^{\prime} V^{\prime} & \cdots & \cdots & \cdots \cdots & E_{d} V \\
E_{d^{\prime}}^{\prime} V^{\prime}
\end{array}
$$

Condition (i)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

$$
\begin{array}{lllll}
E_{0} V & E_{1} V & E_{2} V \cdots E_{1+d-d^{\prime}} V E_{d^{\prime}} V & \cdots \cdots \cdots & E_{d} V \\
E_{0}^{\prime} V^{\prime} & E_{1}^{\prime} V^{\prime} \cdots \cdots \cdots \cdots \cdots E_{d^{\prime}}^{\prime} V^{\prime}
\end{array}
$$

Condition (ii)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

$$
\begin{array}{llllll}
E_{0} V & E_{1} V & \cdots \cdots \cdots \cdots \cdots & E_{d^{\prime}} V & \cdots \cdots \cdots & E_{d} V \\
E_{0}^{\prime} V^{\prime} & E_{1}^{\prime} V^{\prime} & \cdots \cdots \cdots \cdots \cdots & E_{d^{\prime}}^{\prime} V^{\prime}
\end{array}
$$

Condition (i)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

$$
\begin{array}{llllll}
E_{0} V & E_{1} V & \cdots & \cdots \cdots \cdots \cdots \cdots & E_{d^{\prime}} V & \cdots \cdots \cdots \\
E_{0}^{\prime} V^{\prime} & E_{1}^{\prime} V^{\prime} & \cdots \cdots \cdots \cdots \cdots & E_{d} V
\end{array}
$$

Condition (i)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

$$
\begin{aligned}
& E_{0} V \quad E_{1} V \cdots \cdots \cdots \cdots E_{d^{\prime}} V \quad \cdots \ldots . E_{d} V \\
& E_{0}^{\prime} V^{\prime} \quad E_{1}^{\prime} V^{\prime} \cdots \cdots \cdots \cdots \cdots \quad E_{d^{\prime}}^{\prime} V^{\prime}
\end{aligned}
$$

Condition (i)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

$$
\begin{array}{ccccccc}
E_{0} V & E_{1} V & \cdots \cdots \cdots \cdots \cdots & E_{d^{\prime}} V & \cdots \cdots \cdots & E_{d} V \\
E_{0}^{\prime} V^{\prime} & E_{1}^{\prime} V^{\prime} & \ldots \ldots \ldots \ldots & E_{d^{\prime}}^{\prime} V^{\prime}
\end{array}
$$

Condition (ii)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

$$
\begin{array}{llll}
E_{0} V & E_{1} V & \cdots \cdots \cdots \cdots \cdots & E_{d^{\prime}} V \\
\cdots \cdots \cdots & E_{d} V \\
E_{0}^{\prime} V^{\prime} & E_{1}^{\prime} V^{\prime} & \ldots \ldots \cdots \cdots \cdots E_{d^{\prime}}^{\prime} V^{\prime}
\end{array}
$$

Condition (ii)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

Condition (i)

- $\left\langle\left\langle E_{i} V, E_{j}^{\prime} V^{\prime}\right\rangle\right\rangle=0$ if $i<j$ or $i>j+d-d^{\prime}$:

$$
\begin{array}{llll}
E_{0} V & E_{1} V & \cdots \cdots \cdots \cdots \cdots & E_{d^{\prime}} V
\end{array}
$$

Motivation 1: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- C : a proper subset of X
- Brouwer et al. introduced the width w, dual width w^{*} of C.

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Motivation 1: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- C : a proper subset of X
- Brouwer et al. introduced the width w, dual width w^{*} of C.

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Motivation 1: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- C : a proper subset of X
- Brouwer et al. introduced the width w, dual width w^{*} of C.

Theorem (Brouwer-Godsi-Koolen-Martin, 2003)

Motivation 1: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- C : a proper subset of X
- Brouwer et al. introduced the width w, dual width w^{*} of C.

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

$$
w+w^{*} \geqslant d
$$

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w+w^{*}=d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

- $\mathrm{J}(v, d)$: the Johnson graph

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w+w^{*}=d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

- $\mathrm{J}(v, d)$: the Johnson graph

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w+w^{*}=d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

- $\mathrm{J}(v, d)$: the Johnson graph

$$
\mathrm{J}(v, d) \supseteq \mathrm{J}(v-1, d-1) \supseteq \mathrm{J}(v-2, d-2) \supseteq \cdots
$$

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w+w^{*}=d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

- $\mathrm{H}(d, q)$: the Hamming graph

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w+w^{*}=d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

- $\mathrm{H}(d, q)$: the Hamming graph

$$
\mathrm{H}(d, q) \supseteq \mathrm{H}(d-1, q) \supseteq \mathrm{H}(d-2, q) \supseteq \cdots
$$

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

Remark

Subsets with $w+w^{*}=d$ have been applied to:

- Erdős-Ko-Rado Theorem (extremal set theory; 2006)
- Assmus-Mattson Theorem (coding theory; to appear)

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

- C : connected, $w+w^{*}=d$
- Fix $x \in C$.
- T : the Terwilliger algebra of Γ with respect to x
- T^{\prime} : the Terwilliger algebra of $\left.\Gamma\right|_{C}$ with respect to x

The standard inner product on \mathbb{C}^{X} is balanced with respect to the primary modules for T and T^{\prime} (with $\mathbb{K}=\mathbb{C}, d^{\prime}=w, \rho=0$).

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

- C : connected, $w+w^{*}=d$
- Fix $x \in C$.
- T : the Terwilliger algebra of Γ with respect to x
- T^{\prime} : the Terwilliger algebra of $\left.\Gamma\right|_{C}$ with respect to x

The standard inner product on \mathbb{C}^{X} is balanced with respect to the primary modules for T and T^{\prime} (with $\mathbb{K}=\mathbb{C}, d^{\prime}=w, \rho=0$).

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

- C : connected, $w+w^{*}=d$
- Fix $x \in C$.
- T : the Terwilliger algebra of Γ with respect to x
- T^{\prime} : the Terwilliger algebra of $\left.\Gamma\right|_{C}$ with respect to x

The standard inner product on \mathbb{C}^{X} is balanced with respect to the primary modules for T and T^{\prime} (with $\mathbb{K}=\mathbb{C}, d^{\prime}=w, \rho=0$).

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

- C : connected, $w+w^{*}=d$
- Fix $x \in C$.
- T : the Terwilliger algebra of Γ with respect to x
- T^{\prime} : the Terwilliger algebra of $\left.\Gamma\right|_{C}$ with respect to x

The standard inner product on \mathbb{C}^{X} is balanced with respect to the primary modules for T and T^{\prime} (with $\mathbb{K}=\mathbb{C}, d^{\prime}=w, \rho=0$).

Motivation 1: Subsets with $w+w^{*}=d$ (continued)

- C : connected, $w+w^{*}=d$
- Fix $x \in C$.
- T : the Terwilliger algebra of Γ with respect to x
- T^{\prime} : the Terwilliger algebra of $\left.\Gamma\right|_{C}$ with respect to x

The standard inner product on \mathbb{C}^{X} is balanced with respect to the primary modules for T and T^{\prime} (with $\mathbb{K}=\mathbb{C}, d^{\prime}=w, \rho=0$).

Motivation 2: Base-point change lemma

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph
- Fix $x, y \in X(x \neq y)$.
- T : the Terwilliger algebra with respect to x
- T^{\prime} : the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for T and T^{\prime} are related.

Project

Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

Motivation 2: Base-point change lemma

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph
- Fix $x, y \in X(x \neq y)$.
- T : the Terwilliger algebra with respect to x
- T^{\prime} : the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for T and T^{\prime} are related.

Project

Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

Motivation 2: Base-point change lemma

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph
- Fix $x, y \in X(x \neq y)$.
- T : the Terwilliger algebra with respect to x
- T^{\prime} : the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for T and T^{\prime} are related.

[^0]
Motivation 2: Base-point change lemma

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph
- Fix $x, y \in X(x \neq y)$.
- T : the Terwilliger algebra with respect to x
- T^{\prime} : the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for T and T^{\prime} are related.

[^1]
Motivation 2: Base-point change lemma

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph
- Fix $x, y \in X(x \neq y)$.
- T : the Terwilliger algebra with respect to x
- T^{\prime} : the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for T and T^{\prime} are related.

Project

Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

Parameter array of a Leonard system
Results
Remarks

Motivation 2: Base-point change lemma (continued)

- W^{\prime} : an irreducible T^{\prime}-module
- Terwilliger introduced the endpoint ν, dual endpoint ν^{*}, diameter d^{\prime} of W^{\prime}.

Lemma (Terwilliger, 1993; Caughman, 1999)

Motivation 2: Base-point change lemma (continued)

- W^{\prime} : an irreducible T^{\prime}-module
- Terwilliger introduced the endpoint ν, dual endpoint ν^{*}, diameter d^{\prime} of W^{\prime}.

Lemma (Terwilliger, 1993; Caughman, 1999)

Motivation 2: Base-point change lemma (continued)

- W^{\prime} : an irreducible T^{\prime}-module
- Terwilliger introduced the endpoint ν, dual endpoint ν^{*}, diameter d^{\prime} of W^{\prime}.

Lemma (Terwilliger, 1993; Caughman, 1999)

$$
2 \nu+d^{\prime} \geqslant d, \quad 2 \nu^{*}+d^{\prime} \geqslant d
$$

Motivation 2: Base-point change lemma (continued)

Theorem (Suzuki, 2005)
 If $2 \nu+d^{\prime}=d$ then W^{\prime} is thin.

- Suppose $2 \nu+d^{\prime}=d$ and $\partial_{\Gamma}(x, y)=\nu$.
- W : the primary module for T

If W, W^{\prime} are not orthogonal then the standard inner product on is balanced with respect to W, W^{\prime} (with $\mathbb{K}=\mathbb{C}, \rho=\nu^{*}$).

Motivation 2: Base-point change lemma (continued)

Theorem (Suzuki, 2005)
 If $2 \nu+d^{\prime}=d$ then W^{\prime} is thin.

- Suppose $2 \nu+d^{\prime}=d$ and $\partial_{\Gamma}(x, y)=\nu$.
- W : the primary module for T
\square

Motivation 2: Base-point change lemma (continued)

Theorem (Suzuki, 2005)
 If $2 \nu+d^{\prime}=d$ then W^{\prime} is thin.

- Suppose $2 \nu+d^{\prime}=d$ and $\partial_{\Gamma}(x, y)=\nu$.
- W : the primary module for T
\square

Motivation 2: Base-point change lemma (continued)

Theorem (Suzuki, 2005)
If $2 \nu+d^{\prime}=d$ then W^{\prime} is thin.

- Suppose $2 \nu+d^{\prime}=d$ and $\partial_{\Gamma}(x, y)=\nu$.
- W : the primary module for T

If W, W^{\prime} are not orthogonal then the standard inner product on \mathbb{C}^{X} is balanced with respect to W, W^{\prime} (with $\mathbb{K}=\mathbb{C}, \rho=\nu^{*}$).

What is the parameter array?

The parameter array of Φ is a sequence of the form

$$
p(\Phi)=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d} ;\left\{\varphi_{i}\right\}_{i=1}^{d} ;\left\{\phi_{i}\right\}_{i=1}^{d}\right) .
$$

- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{\theta_{i}^{*}\right\}_{i=n}^{d} \subseteq \mathbb{K}$: the eigenvalues of A^{*}

What is the parameter array?

The parameter array of Φ is a sequence of the form

$$
p(\Phi)=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d} ;\left\{\varphi_{i}\right\}_{i=1}^{d} ;\left\{\phi_{i}\right\}_{i=1}^{d}\right) .
$$

- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{\theta_{i}^{*}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A^{*}

What is the parameter array?

The parameter array of Φ is a sequence of the form

$$
p(\Phi)=\left(\left\{\theta_{i}\right\}_{i=0}^{d} ;\left\{\theta_{i}^{*}\right\}_{i=0}^{d} ;\left\{\varphi_{i}\right\}_{i=1}^{d} ;\left\{\phi_{i}\right\}_{i=1}^{d}\right) .
$$

- $\left\{\theta_{i}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A
- $\left\{\theta_{i}^{*}\right\}_{i=0}^{d} \subseteq \mathbb{K}$: the eigenvalues of A^{*}
- $\varphi_{i}, \phi_{i} \in \mathbb{K}^{\times}(1 \leqslant i \leqslant d)$

Comments on the parameter array

Theorem (Terwilliger, 2001)
 Two Leonard systems are isomorphic if and only if they have the same parameter array.

Remark
Terwilliger $(2001,2005)$ classified all possible parameter arrays.

Comments on the parameter array

Theorem (Terwilliger, 2001)
 Two Leonard systems are isomorphic if and only if they have the same parameter array.

Remark

Terwilliger $(2001,2005)$ classified all possible parameter arrays.

Comments on the parameter array

Theorem (Terwilliger, 2001)
 Two Leonard systems are isomorphic if and only if they have the same parameter array.

Remark

Terwilliger $(2001,2005)$ classified all possible parameter arrays. ("Leonard's theorem")

Main result

Theorem

There is $\langle\langle\rangle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ^{\prime} and with endpoint ρ if and only if (i), (ii) hold below:

(i) There are $\xi^{*}, \zeta^{*} \in \mathbb{K}$ such that

Moreover, if (i), (ii) hold above, then $\langle\langle\rangle$,$\rangle is unique up to scalar$ multiplication.

Main result

Theorem

There is $\langle\langle\rangle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ^{\prime} and with endpoint ρ if and only if (i), (ii) hold below:
(i) There are $\xi^{*}, \zeta^{*} \in \mathbb{K}$ such that

$$
\theta_{i}^{* \prime}=\xi^{*} \theta_{\rho+i}^{*}+\zeta^{*} \quad\left(0 \leqslant i \leqslant d^{\prime}\right) .
$$

Moreover, if (i), (ii) hold above, then $\langle\langle\rangle$,$\rangle is unique up to scalar$ multiplication.

Main result

Theorem

There is $\langle\langle\rangle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ^{\prime} and with endpoint ρ if and only if (i), (ii) hold below:
(i) There are $\xi^{*}, \zeta^{*} \in \mathbb{K}$ such that

$$
\theta_{i}^{* \prime}=\xi^{*} \theta_{\rho+i}^{*}+\zeta^{*} \quad\left(0 \leqslant i \leqslant d^{\prime}\right) .
$$

(ii) $\frac{\phi_{\rho+i}}{\varphi_{\rho+i}}=\frac{\phi_{i}^{\prime}}{\varphi_{i}^{\prime}}\left(1 \leqslant i \leqslant d^{\prime}\right)$.

Moreover, if (i), (ii) hold above, then $\langle\langle\rangle$,$\rangle is unique up to scalar$ multiplication.

Main result

Theorem

There is $\langle\langle\rangle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ^{\prime} and with endpoint ρ if and only if (i), (ii) hold below:
(i) There are $\xi^{*}, \zeta^{*} \in \mathbb{K}$ such that

$$
\theta_{i}^{* \prime}=\xi^{*} \theta_{\rho+i}^{*}+\zeta^{*} \quad\left(0 \leqslant i \leqslant d^{\prime}\right) .
$$

(ii) $\frac{\phi_{\rho+i}}{\varphi_{\rho+i}}=\frac{\phi_{i}^{\prime}}{\varphi_{i}^{\prime}}\left(1 \leqslant i \leqslant d^{\prime}\right)$.

Moreover, if (i), (ii) hold above, then $\langle,$,$\rangle is unique up to scalar$ multiplication.

Generic case; q-Racah

The most general form of the parameter array is as follows:

$$
\begin{gathered}
p(\Phi)=p\left(q, r_{1}, r_{2}, s, s^{*}, d\right) \text { where } r_{1} r_{2}=s s^{*} q^{d+1} \neq 0, \\
\theta_{i}=\theta_{0}+h\left(1-q^{i}\right)\left(1-s q^{i+1}\right) q^{-i}, \\
\theta_{i}^{*}=\theta_{0}^{*}+h^{*}\left(1-q^{i}\right)\left(1-s^{*} q^{i+1}\right) q^{-i}
\end{gathered}
$$

for $0 \leqslant i \leqslant d$,

$$
\begin{aligned}
\varphi_{i} & =h h^{*} q^{1-2 i}\left(1-q^{i}\right)\left(1-q^{i-d-1}\right)\left(1-r_{1} q^{i}\right)\left(1-r_{2} q^{i}\right), \\
\phi_{i} & =h h^{*} q^{1-2 i}\left(1-q^{i}\right)\left(1-q^{i-d-1}\right)\left(r_{1}-s^{*} q^{i}\right)\left(r_{2}-s^{*} q^{i}\right) / s^{*}
\end{aligned}
$$

for $1 \leqslant i \leqslant d$.

Closed form of the main result (generic case; q-Racah)

- Suppose

$$
p(\Phi)=p\left(q, r_{1}, r_{2}, s, s^{*}, d\right)
$$

where $r_{1} r_{2}=s s^{*} q^{d+1} \neq 0$.

Theorem
 There is $\left\langle\langle\rangle:. V \times V^{\prime} \longrightarrow \mathbb{K}\right.$ which is balanced with respect to Φ, Φ^{\prime} and with endpoint ρ if and only if

Closed form of the main result (generic case; q-Racah)

- Suppose

$$
p(\Phi)=p\left(q, r_{1}, r_{2}, s, s^{*}, d\right)
$$

where $r_{1} r_{2}=s s^{*} q^{d+1} \neq 0$.

Theorem

There is $\langle\langle\rangle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ^{\prime} and with endpoint ρ if and only if

$$
p\left(\Phi^{\prime}\right)=p\left(q, r_{1} q^{\rho}, r_{2} q^{\rho}, s q^{d-d^{\prime}}, s^{*} q^{2 \rho}, d^{\prime}\right)
$$

Closed form of the main result (generic case; q-Racah)

- Suppose

$$
p(\Phi)=p\left(q, r_{1}, r_{2}, s, s^{*}, d\right)
$$

where $r_{1} r_{2}=s s^{*} q^{d+1} \neq 0$.

Theorem

There is $\langle\langle\rangle\rangle:, V \times V^{\prime} \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ^{\prime} and with endpoint ρ if and only if

$$
p\left(\Phi^{\prime}\right)=p\left(q, r_{1} q^{\rho}, r_{2} q^{\rho}, s q^{d-d^{\prime}}, s^{*} q^{2 \rho}, d^{\prime}\right)
$$

$\left(\right.$ Recall $\left.\left(r_{1} q^{\rho}\right)\left(r_{2} q^{\rho}\right)=\left(s q^{d-d^{\prime}}\right)\left(s^{*} q^{2 \rho}\right) q^{d^{\prime}+1}.\right)$

Application: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d

The following information follow from our theory:

Answer : (Roughly) (1) $q \neq-1$; (2) $q \neq-1$; (3) Γ has classical parameters.

Application: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X: w+w^{*}=d$

The following information follow from our theory:

Answer : (Roughly) (1) $q \neq-1$; (2) $q \neq-1$; (3) Γ has classical parameters.

Application: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X: w+w^{*}=d$

The following information follow from our theory:

Answer : (Roughly) (1) $q \neq-1$; (2) $q \neq-1$; (3) Γ has classical parameters.

Parameter array of a Leonard system
Results
Remarks

Application: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X: w+w^{*}=d$

The following information follow from our theory:
(1) When does C induce a Q-polynomial distance-regular graph?
(2) When is C " Q-polynomial"?
(3) When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq-1$; (2) $q \neq-1$; (3) Γ has classical parameters.

Parameter array of a Leonard system
Results
Remarks

Application: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X: w+w^{*}=d$

The following information follow from our theory:
(1) When does C induce a Q-polynomial distance-regular graph?
(2) When is C " Q-polynomial"?
(8) When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq-1$; (2) $q \neq-1$; (3) Γ has classical parameters.

Application: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X: w+w^{*}=d$

The following information follow from our theory:
(1) When does C induce a Q-polynomial distance-regular graph?
(2) When is C " Q-polynomial"?
(c) When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq-1$; (2) $q \neq-1$; (3) Γ has classical parameters.

Application: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X: w+w^{*}=d$

The following information follow from our theory:
(1) When does C induce a Q-polynomial distance-regular graph?
(2) When is C " Q-polynomial"?
(3) When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq-1$; (2) $q \neq-1$; (3) Γ has classical parameters.

Application: Subsets with $w+w^{*}=d$

- $\Gamma=(X, R)$: a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X: w+w^{*}=d$

The following information follow from our theory:
(1) When does C induce a Q-polynomial distance-regular graph?
(2) When is C " Q-polynomial"?
(3) When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq-1$; (2) $q \neq-1$; (3) Γ has classical parameters.

[^0]: Project
 Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

[^1]: Project
 Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

