A bilinear form relating two Leonard pairs and its applications

Hajime Tanaka

Graduate School of Information Sciences Tohoku University

Geometric and Algebraic Combinatorics 4 August 20, 2008

イロト イポト イヨト イヨト

Background Definition of a Leonard system

- Background
- Definition of a Leonard system
- 2 Bilinear form relating two Leonard systems
 - Balanced bilinear form
 - Motivations
 - Parameter array of a Leonard system
 - Results
 - Remarks

イロト イポト イヨト イヨト

Background Definition of a Leonard system

Thin irreducible modules and Leonard pairs

- $\Gamma = (X, R)$: a *Q*-polynomial distance-regular graph
- Fix $x \in X$.
- T = T(x): the Terwilliger algebra with respect to x

Remark

- Each irreducible *T*-module affords a tridiagonal pair.
- If it is a Leonard pair then the module is said to be thin.

ヘロン 人間 とくほど くほとう

Background Definition of a Leonard system

Thin irreducible modules and Leonard pairs

- $\Gamma = (X, R)$: a *Q*-polynomial distance-regular graph
- Fix $x \in X$.
- T = T(x): the Terwilliger algebra with respect to x

Remark

- Each irreducible *T*-module affords a tridiagonal pair.
- If it is a Leonard pair then the module is said to be thin.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Background Definition of a Leonard system

Thin irreducible modules and Leonard pairs

- $\Gamma = (X, R)$: a *Q*-polynomial distance-regular graph
- Fix $x \in X$.
- T = T(x): the Terwilliger algebra with respect to x

Remark

- Each irreducible *T*-module affords a tridiagonal pair.
- If it is a Leonard pair then the module is said to be thin.

ヘロト ヘ戸ト ヘヨト ヘヨト

Background Definition of a Leonard system

• the primary *T*-module : the *T*-module generated by the characteristic vector of {*x*}

Remark

The primary *T*-module is always thin.

Remark

Every irreducible *T*-module is thin when Γ is a Hamming, Johnson, Grassmann or dual polar graph.

イロト イポト イヨト イヨト

Background Definition of a Leonard system

• the primary *T*-module : the *T*-module generated by the characteristic vector of {*x*}

Remark

The primary *T*-module is always thin.

Remark

Every irreducible T-module is thin when Γ is a Hamming, Johnson, Grassmann or dual polar graph.

イロト 不得 とくほ とくほとう

Background Definition of a Leonard system

• the primary *T*-module : the *T*-module generated by the characteristic vector of {*x*}

Remark

The primary *T*-module is always thin.

Remark

Every irreducible *T*-module is thin when Γ is a Hamming, Johnson, Grassmann or dual polar graph.

イロト イポト イヨト イヨト

Background Definition of a Leonard system

Terminology

- K : a field
- $d \in \mathbb{N}$
- $V := \mathbb{K}^{d+1}$ $\land Mat_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\operatorname{def}}{\longleftrightarrow} A$ has d + 1 distinct eigenvalues in \mathbb{K}
- Suppose *A* is multiplicity-free.
- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of *A*
- ${E_i}_{i=0}^d \subseteq \text{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of *A*; i.e.,

 $\begin{cases} V = \sum_{i=0}^{d} E_i V & \text{(direct sum)} \\ AE_i V = \theta_i E_i V & (0 \le i \le d) \end{cases}$

ヘロン ヘアン ヘビン ヘビン

Background Definition of a Leonard system

Terminology

- K : a field
- $d \in \mathbb{N}$
- $V := \mathbb{K}^{d+1}$ $\land Mat_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\operatorname{def}}{\longleftrightarrow} A$ has d+1 distinct eigenvalues in \mathbb{K}
- Suppose *A* is multiplicity-free.
- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of *A*
- ${E_i}_{i=0}^d \subseteq Mat_{d+1}(\mathbb{K})$: the primitive idempotents of *A*; i.e.,

 $\begin{cases} V = \sum_{i=0}^{d} E_i V & \text{(direct sum)} \\ AE_i V = \theta_i E_i V & (0 \le i \le d) \end{cases}$

ヘロン ヘアン ヘビン ヘビン

Background Definition of a Leonard system

Terminology

- K : a field
- $d \in \mathbb{N}$
- $V := \mathbb{K}^{d+1}$ \land $Mat_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\operatorname{def}}{\longleftrightarrow} A$ has d+1 distinct eigenvalues in \mathbb{K}
- Suppose *A* is multiplicity-free.
- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of *A*
- ${E_i}_{i=0}^d \subseteq Mat_{d+1}(\mathbb{K})$: the primitive idempotents of *A*; i.e.,

 $\begin{cases} V = \sum_{i=0}^{d} E_i V & \text{(direct sum)} \\ AE_i V = \theta_i E_i V & (0 \le i \le d) \end{cases}$

ヘロア 人間 アメヨア 人口 ア

Background Definition of a Leonard system

Terminology

- K : a field
- $d \in \mathbb{N}$
- $V := \mathbb{K}^{d+1} \curvearrowleft \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\operatorname{def}}{\longleftrightarrow} A$ has d + 1 distinct eigenvalues in \mathbb{K}
- Suppose *A* is multiplicity-free.
- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of *A*
- ${E_i}_{i=0}^d \subseteq Mat_{d+1}(\mathbb{K})$: the primitive idempotents of *A*; i.e.,

 $\begin{cases} V = \sum_{i=0}^{d} E_i V & \text{(direct sum)} \\ AE_i V = \theta_i E_i V & (0 \le i \le d) \end{cases}$

ヘロン ヘアン ヘビン ヘビン

Background Definition of a Leonard system

Terminology

- K : a field
- $d \in \mathbb{N}$
- $V := \mathbb{K}^{d+1} \land \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\operatorname{def}}{\longleftrightarrow} A$ has d + 1 distinct eigenvalues in \mathbb{K}
- Suppose *A* is multiplicity-free.
- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of *A*
- ${E_i}_{i=0}^d \subseteq Mat_{d+1}(\mathbb{K})$: the primitive idempotents of *A*; i.e.,

 $\begin{cases} V = \sum_{i=0}^{d} E_i V & \text{(direct sum)} \\ AE_i V = \theta_i E_i V & (0 \leq i \leq d) \end{cases}$

・ロト ・ 理 ト ・ ヨ ト ・

Background Definition of a Leonard system

Terminology

- K : a field
- $d \in \mathbb{N}$
- $V := \mathbb{K}^{d+1} \curvearrowleft \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\text{def}}{\longleftrightarrow} A \text{ has } d+1 \text{ distinct eigenvalues in } \mathbb{K}$
- Suppose *A* is multiplicity-free.
- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of A
- ${E_i}_{i=0}^d \subseteq Mat_{d+1}(\mathbb{K})$: the primitive idempotents of *A*; i.e.,

 $\begin{cases} V = \sum_{i=0}^{d} E_i V & \text{(direct sum)} \\ AE_i V = \theta_i E_i V & (0 \leq i \leq d) \end{cases}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Background Definition of a Leonard system

Terminology

- K : a field
- $d \in \mathbb{N}$
- $V := \mathbb{K}^{d+1} \land \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\text{def}}{\longleftrightarrow} A \text{ has } d+1 \text{ distinct eigenvalues in } \mathbb{K}$
- Suppose *A* is multiplicity-free.
- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of *A*
- ${E_i}_{i=0}^d \subseteq \text{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of *A*; i.e.,

 $\begin{cases} V = \sum_{i=0}^{d} E_i V & \text{(direct sum)} \\ AE_i V = \theta_i E_i V & (0 \le i \le d) \end{cases}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Background Definition of a Leonard system

Terminology

- K : a field
- $d \in \mathbb{N}$
- $V := \mathbb{K}^{d+1} \curvearrowleft \operatorname{Mat}_{d+1}(\mathbb{K})$ (from the left)
- $A \in \operatorname{Mat}_{d+1}(\mathbb{K})$: multiplicity-free $\stackrel{\text{def}}{\longleftrightarrow} A \text{ has } d+1 \text{ distinct eigenvalues in } \mathbb{K}$
- Suppose A is multiplicity-free.
- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of *A*
- ${E_i}_{i=0}^d \subseteq \operatorname{Mat}_{d+1}(\mathbb{K})$: the primitive idempotents of *A*; i.e.,

$$\begin{cases} V = \sum_{i=0}^{d} E_i V & \text{(direct sum)} \\ AE_i V = \theta_i E_i V & (0 \leq i \leq d) \end{cases}$$

イロト 不得 とくほ とくほとう

Background Definition of a Leonard system

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $Mat_{d+1}(\mathbb{K})$ is a sequence $\Phi = (A; A^*; \{E_i\}_{i=0}^d; \{E_i^*\}_{i=0}^d)$ such that:

- A, A^* : multiplicity-free elements in $Mat_{d+1}(\mathbb{K})$
- ${E_i}_{i=0}^d$: the primitive idempotents of *A*
- ${E_i^*}_{i=0}^d$: the primitive idempotents of A^*

•
$$E_i^* A E_j^* = \begin{cases} 0 & \text{if } |i-j| > 1 \\ \neq 0 & \text{if } |i-j| = 1 \end{cases}$$

• $E_i A^* E_j = \begin{cases} 0 & \text{if } |i-j| > 1 \\ \neq 0 & \text{if } |i-j| = 1 \end{cases}$

Background Definition of a Leonard system

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $Mat_{d+1}(\mathbb{K})$ is a sequence $\Phi = (A; A^*; \{E_i\}_{i=0}^d; \{E_i^*\}_{i=0}^d)$ such that:

- A, A^* : multiplicity-free elements in $Mat_{d+1}(\mathbb{K})$
- ${E_i}_{i=0}^d$: the primitive idempotents of *A*
- $\{E_i^*\}_{i=0}^d$: the primitive idempotents of A^*

•
$$E_i^* A E_j^* = \begin{cases} 0 & \text{if } |i-j| > 1 \\ \neq 0 & \text{if } |i-j| = 1 \end{cases}$$

• $E_i A^* E_j = \begin{cases} 0 & \text{if } |i-j| > 1 \\ \neq 0 & \text{if } |i-j| = 1 \end{cases}$

Background Definition of a Leonard system

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $Mat_{d+1}(\mathbb{K})$ is a sequence $\Phi = (A; A^*; \{E_i\}_{i=0}^d; \{E_i^*\}_{i=0}^d)$ such that:

- A, A^* : multiplicity-free elements in $Mat_{d+1}(\mathbb{K})$
- ${E_i}_{i=0}^d$: the primitive idempotents of A
- ${E_i^*}_{i=0}^d$: the primitive idempotents of A^*

•
$$E_i^* A E_j^* = \begin{cases} 0 & \text{if } |i-j| > 1 \\ \neq 0 & \text{if } |i-j| = 1 \end{cases}$$

• $E_i A^* E_i = \begin{cases} 0 & \text{if } |i-j| > 1 \end{cases}$

Background Definition of a Leonard system

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $Mat_{d+1}(\mathbb{K})$ is a sequence $\Phi = (A; A^*; \{E_i\}_{i=0}^d; \{E_i^*\}_{i=0}^d)$ such that:

- A, A^* : multiplicity-free elements in $Mat_{d+1}(\mathbb{K})$
- $\{E_i\}_{i=0}^d$: the primitive idempotents of *A*
- $\{E_i^*\}_{i=0}^d$: the primitive idempotents of A^*

•
$$E_i^* A E_j^* = \begin{cases} 0 & \text{if } |i-j| > 1 \\ \neq 0 & \text{if } |i-j| = 1 \end{cases}$$

• $E_i A^* E_j = \begin{cases} 0 & \text{if } |i-j| > 1 \\ \neq 0 & \text{if } |i-j| = 1 \end{cases}$

< 口 > < 四 > < 三 > < 三 > < 三 >

Background Definition of a Leonard system

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $Mat_{d+1}(\mathbb{K})$ is a sequence $\Phi = (A; A^*; \{E_i\}_{i=0}^d; \{E_i^*\}_{i=0}^d)$ such that:

- A, A^* : multiplicity-free elements in $Mat_{d+1}(\mathbb{K})$
- $\{E_i\}_{i=0}^d$: the primitive idempotents of *A*
- $\{E_i^*\}_{i=0}^d$: the primitive idempotents of A^*

•
$$E_i^* A E_j^* = \begin{cases} 0 & \text{if } |i-j| > 1 \\ \neq 0 & \text{if } |i-j| = 1 \end{cases}$$

• $E_i A^* E_j = \begin{cases} 0 & \text{if } |i-j| > 1 \\ \neq 0 & \text{if } |i-j| = 1 \end{cases}$

< 口 > < 四 > < 三 > < 三 > < 三 >

Background Definition of a Leonard system

Five axioms (Terwilliger, 2001)

Definition

A Leonard system in $Mat_{d+1}(\mathbb{K})$ is a sequence $\Phi = (A; A^*; \{E_i\}_{i=0}^d; \{E_i^*\}_{i=0}^d)$ such that:

- A, A^* : multiplicity-free elements in $Mat_{d+1}(\mathbb{K})$
- $\{E_i\}_{i=0}^d$: the primitive idempotents of *A*
- $\{E_i^*\}_{i=0}^d$: the primitive idempotents of A^*

•
$$E_i^* A E_j^* = \begin{cases} 0 & \text{if } |i - j| > 1 \\ \neq 0 & \text{if } |i - j| = 1 \end{cases}$$

• $E_i A^* E_j = \begin{cases} 0 & \text{if } |i - j| > 1 \\ \neq 0 & \text{if } |i - j| = 1 \end{cases}$

< 口 > < 四 > < 三 > < 三 > < 三 >

Background Definition of a Leonard system

Notation

Remark

The pair (A, A^*) is called a Leonard pair.

We use the following notation:

- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of *A*
- $\{\theta_i^*\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of A^*

・ロット (雪) (日) (日)

ъ

Background Definition of a Leonard system

Notation

Remark

The pair (A, A^*) is called a Leonard pair.

We use the following notation:

- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of *A*
- $\{\theta_i^*\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of A^*

イロト イポト イヨト イヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Leonard systems

- Background
- Definition of a Leonard system

Bilinear form relating two Leonard systems

- Balanced bilinear form
- Motivations
- Parameter array of a Leonard system
- Results
- Remarks

イロト イポト イヨト イヨト

æ

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Definition of a balanced bilinear form

- $\Phi' = (A'; A^{*'}; \{E'_i\}_{i=0}^{d'}; \{E^{*'}_i\}_{i=0}^{d'})$: another Leonard system with $1 \leq d' \leq d$
- Use ' for objects corresponding to Φ' (Example: $V', \theta'_i, \theta^{*'}_i$)
- $\langle\!\langle, \rangle\!\rangle: V \times V' \longrightarrow \mathbb{K}$: a nonzero bilinear form

Definition

 $\langle\!\langle, \rangle\!\rangle$: balanced with respect to Φ, Φ'

 i) There is ρ (0 ≤ ρ ≤ d − d') such that ⟨⟨E_i^{*}V, E_j^{*}/V'⟩⟩ = 0 if i − ρ ≠ j,
 ii) ⟨⟨E_iV, E'_iV'⟩⟩ = 0 if i < j or i > j + d − j

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Definition of a balanced bilinear form

- $\Phi' = (A'; A^{*'}; \{E'_i\}_{i=0}^{d'}; \{E^{*'}_i\}_{i=0}^{d'})$: another Leonard system with $1 \leq d' \leq d$
- Use ' for objects corresponding to Φ' (Example: V', θ'_i , $\theta^{*'}_i$)

• $\langle\!\langle,\rangle\!\rangle:V\times V'\longrightarrow\mathbb{K}$: a nonzero bilinear form

Definition

 $\langle\!\langle, \rangle\!\rangle$: balanced with respect to Φ, Φ'

 i) There is ρ (0 ≤ ρ ≤ d − d') such that ⟨⟨E_i^{*}V, E_j^{*}/V'⟩⟩ = 0 if i − ρ ≠ j,
 ii) ⟨⟨E_iV, E'_i/V'⟩⟩ = 0 if i < j or i > j + d −

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Definition of a balanced bilinear form

- $\Phi' = (A'; A^{*'}; \{E'_i\}_{i=0}^{d'}; \{E^{*'}_i\}_{i=0}^{d'})$: another Leonard system with $1 \leq d' \leq d$
- Use ' for objects corresponding to Φ' (Example: V', θ'_i , $\theta^{*'}_i$)
- $\langle\!\langle, \rangle\!\rangle: V imes V' \longrightarrow \mathbb{K}$: a nonzero bilinear form

Definition

```
\langle\!\langle, \rangle\!\rangle : balanced with respect to \Phi, \Phi'
```


・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Definition of a balanced bilinear form

- $\Phi' = (A'; A^{*'}; \{E'_i\}_{i=0}^{d'}; \{E^{*'}_i\}_{i=0}^{d'})$: another Leonard system with $1 \leq d' \leq d$
- Use ' for objects corresponding to Φ' (Example: V', θ'_i , $\theta^{*'}_i$)
- $\langle\!\langle, \rangle\!\rangle: V imes V' \longrightarrow \mathbb{K}$: a nonzero bilinear form

Definition

 $\stackrel{\text{def}}{\iff}$

 $\langle\!\langle,\rangle\!\rangle$: balanced with respect to Φ,Φ'

イロン イロン イヨン イヨン

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Definition of a balanced bilinear form

- $\Phi' = (A'; A^{*'}; \{E'_i\}_{i=0}^{d'}; \{E^{*'}_i\}_{i=0}^{d'})$: another Leonard system with $1 \leq d' \leq d$
- Use ' for objects corresponding to Φ' (Example: V', θ'_i , $\theta^{*'}_i$)
- $\langle\!\langle, \rangle\!\rangle: V imes V' \longrightarrow \mathbb{K}$: a nonzero bilinear form

Definition

 $\langle\!\langle,\rangle\!\rangle$: balanced with respect to Φ,Φ'

$$\stackrel{\text{def}}{\iff} \left\{ \right.$$

i) There is
$$\rho$$
 ($0 \le \rho \le d - d'$) such that
 $\langle \langle E_i^* V, E_j^{*'} V' \rangle \rangle = 0$ if $i - \rho \ne j$,
ii) $\langle \langle E_i V, E_i' V' \rangle \rangle = 0$ if $i < j$ or $i > j + d - d$

・ロト ・ 同ト ・ ヨト ・ ヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Definition of a balanced bilinear form

- $\Phi' = (A'; A^{*'}; \{E'_i\}_{i=0}^{d'}; \{E^{*'}_i\}_{i=0}^{d'})$: another Leonard system with $1 \leq d' \leq d$
- Use ' for objects corresponding to Φ' (Example: V', θ'_i , $\theta^{*'}_i$)
- $\langle\!\langle, \rangle\!\rangle: V imes V' \longrightarrow \mathbb{K}$: a nonzero bilinear form

Definition

_def

 $\langle\!\langle,\rangle\!\rangle$: balanced with respect to Φ,Φ'

$$\left\{ \begin{aligned} \text{(i)} \quad & \text{There is } \rho \; (0 \leqslant \rho \leqslant d - d') \text{ such that} \\ & \langle \langle E_i^* V, E_j^{*\prime} V' \rangle \rangle = 0 \text{ if } i - \rho \neq j, \\ \text{(ii)} \quad & \langle \langle E_i V, E_j' V' \rangle \rangle = 0 \text{ if } i < j \text{ or } i > j + d - d' \end{aligned} \right.$$

ヘロト ヘワト ヘビト ヘビト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is ρ $(0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

$$E_0^*V \quad E_1^*V \quad \cdots \quad E_{d'}^*V \quad \cdots \quad E_{d'}^*V$$

$$E_0^{*'}V' \quad E_1^{*'}V' \quad \cdots \quad E_{d''}^{*'}V'$$

• We call ρ the endpoint of $\langle\!\langle,\rangle\!\rangle$.

イロト 不得 とくほと くほとう

3

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is $\rho \ (0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

• We call ρ the endpoint of $\langle\!\langle,\rangle\!\rangle$.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is ρ $(0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

• We call ρ the endpoint of $\langle\!\langle,\rangle\!\rangle$.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is $\rho \ (0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

• We call ρ the endpoint of $\langle\!\langle,\rangle\!\rangle$.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is $\rho \ (0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

• We call ρ the endpoint of $\langle\!\langle,\rangle\!\rangle$.
Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is $\rho \ (0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

• We call ρ the endpoint of $\langle\!\langle,\rangle\!\rangle$.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is $\rho \ (0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

• We call ρ the endpoint of $\langle\!\langle,\rangle\!\rangle$.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is ρ $(0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

• We call ρ the endpoint of $\langle\!\langle, \rangle\!\rangle$.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is ρ $(0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

• We call ρ the endpoint of $\langle\!\langle,\rangle\!\rangle$.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is $\rho \ (0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

• We call ρ the endpoint of $\langle\!\langle,\rangle\!\rangle$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (i)

• There is $\rho \ (0 \le \rho \le d - d')$ such that $\langle\!\langle E_i^* V, E_j^{*\prime} V' \rangle\!\rangle = 0$ if $i - \rho \ne j$:

We call ρ the endpoint of ((,)).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E_j' V' \rangle\!\rangle = 0$$
 if $i < j$ or $i > j + d - d'$:

$$E_0 V \quad E_1 V \quad \cdots \quad E_{d'} V \quad \cdots \quad E_d V$$

 $E'_0 V' \quad E'_1 V' \quad \cdots \quad E'_{d'} V'$

Hajime Tanaka A bilinear form relating two Leonard pairs

ヘロト 人間 とくほとくほとう

Ξ.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E'_j V' \rangle\!\rangle = 0$$
 if $i < j$ or $i > j + d - d'$:

Hajime Tanaka A bilinear form relating two Leonard pairs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E_j' V' \rangle\!\rangle = 0$$
 if $i < j$ or $i > j + d - d'$:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E'_j V' \rangle\!\rangle = 0$$
 if $i < j$ or $i > j + d - d'$:

Hajime Tanaka A bilinear form relating two Leonard pairs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E_j' V' \rangle\!\rangle = 0$$
 if $i < j$ or $i > j + d - d'$:

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E_j' V' \rangle\!\rangle = 0$$
 if $i < j$ or $i > j + d - d'$:

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E_j' V' \rangle\!\rangle = 0$$
 if $i < j$ or $i > j + d - d'$:

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E_j' V' \rangle\!\rangle = 0$$
 if $i < j$ or $i > j + d - d'$:

Hajime Tanaka A bilinear form relating two Leonard pairs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E_j' V' \rangle\!\rangle = 0$$
 if $i < j$ or $i > j + d - d'$:

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Condition (ii)

•
$$\langle\!\langle E_i V, E_j' V'
angle\!
angle = 0$$
 if $i < j$ or $i > j + d - d'$:

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$

Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d

- C : a proper subset of X
- Brouwer et al. introduced the width w, dual width w* of C.

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

 $w + w^* \ge d.$

イロト 不得 とくほ とくほ とう

э.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$

- Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d
- C : a proper subset of X
- Brouwer et al. introduced the width w, dual width w* of C.

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

 $w + w^* \ge d.$

イロン 不得 とくほ とくほ とうほ

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$

- Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d
- C : a proper subset of X
- Brouwer et al. introduced the width w, dual width w* of C.

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

 $w + w^* \ge d.$

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$

- Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d
- C : a proper subset of X
- Brouwer et al. introduced the width *w*, dual width *w*^{*} of *C*.

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

 $w + w^* \ge d.$

イロト 不得 とくほと くほとう

э.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w + w^* = d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

• J(v,d) : the Johnson graph

 $J(v,d) \supseteq J(v-1,d-1) \supseteq J(v-2,d-2) \supseteq \cdots$

ヘロト 人間 とくほとくほとう

ъ

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w + w^* = d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

• J(v, d) : the Johnson graph

 $J(v,d) \supseteq J(v-1,d-1) \supseteq J(v-2,d-2) \supseteq \cdots$

イロト 不得 とくほと くほとう

ъ

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w + w^* = d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

• J(v, d) : the Johnson graph

$$J(v,d) \supseteq J(v-1,d-1) \supseteq J(v-2,d-2) \supseteq \cdots$$

ヘロト 人間 ト ヘヨト ヘヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w + w^* = d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

• H(d,q): the Hamming graph

 $H(d,q) \supseteq H(d-1,q) \supseteq H(d-2,q) \supseteq \cdots$

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

Suppose $w + w^* = d$. Then:

- C is completely-regular.
- If moreover C is connected then C induces a Q-polynomial distance-regular graph.

Example

• H(d,q): the Hamming graph

$$H(d,q) \supseteq H(d-1,q) \supseteq H(d-2,q) \supseteq \cdots$$

ヘロト 人間 ト ヘヨト ヘヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

Remark

Subsets with $w + w^* = d$ have been applied to:

- Erdős–Ko–Rado Theorem (extremal set theory; 2006)
- Assmus–Mattson Theorem (coding theory; to appear)

ヘロト ヘアト ヘビト ヘビト

æ

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

- C : connected, $w + w^* = d$
- Fix $x \in C$.
- T: the Terwilliger algebra of Γ with respect to x
- T': the Terwilliger algebra of $\Gamma|_C$ with respect to x

The standard inner product on \mathbb{C}^X is balanced with respect to the primary modules for *T* and *T'* (with $\mathbb{K} = \mathbb{C}$, d' = w, $\rho = 0$).

イロト 不得 とくほ とくほ とう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

- *C* : connected, $w + w^* = d$
- Fix $x \in C$.
- T: the Terwilliger algebra of Γ with respect to x
- T': the Terwilliger algebra of $\Gamma|_C$ with respect to x

The standard inner product on \mathbb{C}^X is balanced with respect to the primary modules for *T* and *T'* (with $\mathbb{K} = \mathbb{C}$, d' = w, $\rho = 0$).

イロン 不同 とくほう イヨン

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

- C : connected, $w + w^* = d$
- Fix $x \in C$.
- T: the Terwilliger algebra of Γ with respect to x
- T': the Terwilliger algebra of $\Gamma|_C$ with respect to x

The standard inner product on \mathbb{C}^X is balanced with respect to the primary modules for *T* and *T'* (with $\mathbb{K} = \mathbb{C}$, d' = w, $\rho = 0$).

イロト 不得 とくほ とくほ とう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

- *C* : connected, $w + w^* = d$
- Fix $x \in C$.
- T: the Terwilliger algebra of Γ with respect to x
- T': the Terwilliger algebra of $\Gamma|_C$ with respect to x

The standard inner product on \mathbb{C}^X is balanced with respect to the primary modules for T and T' (with $\mathbb{K} = \mathbb{C}$, d' = w, $\rho = 0$).

イロト 不得 とくほ とくほ とう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 1: Subsets with $w + w^* = d$ (continued)

- *C* : connected, $w + w^* = d$
- Fix $x \in C$.
- T: the Terwilliger algebra of Γ with respect to x
- T': the Terwilliger algebra of $\Gamma|_C$ with respect to x

The standard inner product on \mathbb{C}^X is balanced with respect to the primary modules for *T* and *T'* (with $\mathbb{K} = \mathbb{C}$, d' = w, $\rho = 0$).

イロト イポト イヨト イヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma

- $\Gamma = (X, R)$: a *Q*-polynomial distance-regular graph
- Fix $x, y \in X$ $(x \neq y)$.
- T : the Terwilliger algebra with respect to x
- T': the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for *T* and *T'* are related.

Project

Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

ヘロト ヘワト ヘビト ヘビト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma

• $\Gamma = (X, R)$: a *Q*-polynomial distance-regular graph

• Fix $x, y \in X$ $(x \neq y)$.

- T : the Terwilliger algebra with respect to x
- T': the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for *T* and *T'* are related.

Project

Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

イロト イポト イヨト イヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma

- $\Gamma = (X, R)$: a *Q*-polynomial distance-regular graph
- Fix $x, y \in X$ ($x \neq y$).
- T : the Terwilliger algebra with respect to x
- T': the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for *T* and *T'* are related.

Project

Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

ヘロン 人間 とくほど くほとう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma

- $\Gamma = (X, R)$: a *Q*-polynomial distance-regular graph
- Fix $x, y \in X$ ($x \neq y$).
- T : the Terwilliger algebra with respect to x
- T': the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for *T* and *T'* are related.

Project

Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

ヘロン 人間 とくほど くほとう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma

- $\Gamma = (X, R)$: a *Q*-polynomial distance-regular graph
- Fix $x, y \in X$ ($x \neq y$).
- T : the Terwilliger algebra with respect to x
- T': the Terwilliger algebra with respect to y
- Terwilliger (1993) studied how thin irreducible modules for *T* and *T'* are related.

Project

Reformulate and extend the "base-point change lemma" in terms of the (new) theory of Leonard systems.

イロト イポト イヨト イヨト
Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma (continued)

• W' : an irreducible T'-module

 Terwilliger introduced the endpoint ν, dual endpoint ν*, diameter d' of W'.

Lemma (Terwilliger, 1993; Caughman, 1999)

$$2\nu + d' \ge d, \quad 2\nu^* + d' \ge d.$$

イロト 不得 とくほ とくほう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma (continued)

- W' : an irreducible T'-module
- Terwilliger introduced the endpoint ν, dual endpoint ν*, diameter d' of W'.

Lemma (Terwilliger, 1993; Caughman, 1999)

$$2\nu + d' \ge d, \quad 2\nu^* + d' \ge d.$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma (continued)

- W' : an irreducible T'-module
- Terwilliger introduced the endpoint ν, dual endpoint ν*, diameter d' of W'.

Lemma (Terwilliger, 1993; Caughman, 1999)

 $2\nu+d'\geqslant d,\quad 2\nu^*+d'\geqslant d.$

イロト 不得 とくほと くほとう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma (continued)

Theorem (Suzuki, 2005)

If $2\nu + d' = d$ then W' is thin.

- Suppose $2\nu + d' = d$ and $\partial_{\Gamma}(x, y) = \nu$.
- W: the primary module for T

If W, W' are not orthogonal then the standard inner product on \mathbb{C}^X is balanced with respect to W, W' (with $\mathbb{K} = \mathbb{C}, \rho = \nu^*$).

イロト 不得 とくほと くほとう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma (continued)

Theorem (Suzuki, 2005)

If $2\nu + d' = d$ then W' is thin.

• Suppose $2\nu + d' = d$ and $\partial_{\Gamma}(x, y) = \nu$.

• W : the primary module for T

If W, W' are not orthogonal then the standard inner product on \mathbb{C}^X is balanced with respect to W, W' (with $\mathbb{K} = \mathbb{C}, \rho = \nu^*$).

イロト 不得 とくほ とくほう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma (continued)

Theorem (Suzuki, 2005)

If $2\nu + d' = d$ then W' is thin.

- Suppose $2\nu + d' = d$ and $\partial_{\Gamma}(x, y) = \nu$.
- W : the primary module for T

If W, W' are not orthogonal then the standard inner product on \mathbb{C}^X is balanced with respect to W, W' (with $\mathbb{K} = \mathbb{C}, \rho = \nu^*$).

イロト 不得 とくほと くほとう

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Motivation 2: Base-point change lemma (continued)

Theorem (Suzuki, 2005)

If $2\nu + d' = d$ then W' is thin.

- Suppose $2\nu + d' = d$ and $\partial_{\Gamma}(x, y) = \nu$.
- W : the primary module for T

If W, W' are not orthogonal then the standard inner product on \mathbb{C}^X is balanced with respect to W, W' (with $\mathbb{K} = \mathbb{C}, \rho = \nu^*$).

イロン イ理 とく ヨン イヨン

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

What is the parameter array?

The parameter array of Φ is a sequence of the form

$$p(\Phi) = \left(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d; \{\varphi_i\}_{i=1}^d; \{\phi_i\}_{i=1}^d\right).$$

- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of A
- $\{\theta_i^*\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of A^*
- $\varphi_i, \phi_i \in \mathbb{K}^{\times} \ (1 \leq i \leq d)$

イロン イ理 とく ヨン イヨン

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

What is the parameter array?

The parameter array of Φ is a sequence of the form

$$p(\Phi) = \left(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d; \{\varphi_i\}_{i=1}^d; \{\phi_i\}_{i=1}^d\right).$$

- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of A
- $\{\theta_i^*\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of A^*
- $\varphi_i, \phi_i \in \mathbb{K}^{\times} \ (1 \leq i \leq d)$

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

What is the parameter array?

The parameter array of Φ is a sequence of the form

$$p(\Phi) = \left(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d; \{\varphi_i\}_{i=1}^d; \{\phi_i\}_{i=1}^d\right).$$

- $\{\theta_i\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of A
- $\{\theta_i^*\}_{i=0}^d \subseteq \mathbb{K}$: the eigenvalues of A^*

•
$$\varphi_i, \phi_i \in \mathbb{K}^{\times} \ (1 \leq i \leq d)$$

• • • • • • • • • • • •

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Comments on the parameter array

Theorem (Terwilliger, 2001)

Two Leonard systems are isomorphic if and only if they have the same parameter array.

Remark

Terwilliger (2001, 2005) classified all possible parameter arrays. ("Leonard's theorem")

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Comments on the parameter array

Theorem (Terwilliger, 2001)

Two Leonard systems are isomorphic if and only if they have the same parameter array.

Remark

Terwilliger (2001, 2005) classified all possible parameter arrays. ("Leonard's theorem")

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Comments on the parameter array

Theorem (Terwilliger, 2001)

Two Leonard systems are isomorphic if and only if they have the same parameter array.

Remark

Terwilliger (2001, 2005) classified all possible parameter arrays. ("Leonard's theorem")

Balanced bilinear form Motivations Parameter array of a Leonard system **Results** Remarks

Main result

Theorem

There is $\langle\!\langle,\rangle\!\rangle: V \times V' \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ' and with endpoint ρ if and only if (i), (ii) hold below:

(i) There are $\xi^*, \zeta^* \in \mathbb{K}$ such that

$$\theta_i^{*\prime} = \xi^* \theta_{\rho+i}^* + \zeta^* \quad (0 \leqslant i \leqslant d').$$

(ii)
$$\frac{\phi_{\rho+i}}{\varphi_{\rho+i}} = \frac{\phi'_i}{\varphi'_i} \quad (1 \leqslant i \leqslant d').$$

Moreover, if (i), (ii) hold above, then $\langle\!\langle,\rangle\!\rangle$ is unique up to scalar multiplication.

ヘロト ヘアト ヘビト ヘビト

ъ

Balanced bilinear form Motivations Parameter array of a Leonard system **Results** Remarks

Main result

Theorem

There is $\langle\!\langle,\rangle\!\rangle: V \times V' \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ' and with endpoint ρ if and only if (i), (ii) hold below:

(i) There are $\xi^*, \zeta^* \in \mathbb{K}$ such that

$$\theta_i^{*\prime} = \xi^* \theta_{\rho+i}^* + \zeta^* \quad (0 \leqslant i \leqslant d').$$

(ii)
$$\frac{\phi_{\rho+i}}{\varphi_{\rho+i}} = \frac{\phi'_i}{\varphi'_i} \quad (1 \leqslant i \leqslant d').$$

Moreover, if (i), (ii) hold above, then $\langle\!\langle,\rangle\!\rangle$ is unique up to scalar multiplication.

ヘロト ヘアト ヘビト ヘビト

3

Balanced bilinear form Motivations Parameter array of a Leonard system **Results** Remarks

Main result

Theorem

There is $\langle\!\langle,\rangle\!\rangle: V \times V' \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ' and with endpoint ρ if and only if (i), (ii) hold below:

(i) There are $\xi^*, \zeta^* \in \mathbb{K}$ such that

$$\theta_i^{*\prime} = \xi^* \theta_{\rho+i}^* + \zeta^* \quad (0 \leqslant i \leqslant d').$$

(ii)
$$\frac{\phi_{\rho+i}}{\varphi_{\rho+i}} = \frac{\phi'_i}{\varphi'_i} \ (1 \leqslant i \leqslant d').$$

Moreover, if (i), (ii) hold above, then $\langle\!\langle,\rangle\!\rangle$ is unique up to scalar multiplication.

ヘロト ヘアト ヘビト ヘビト

3

Balanced bilinear form Motivations Parameter array of a Leonard system **Results** Remarks

Main result

Theorem

There is $\langle\!\langle,\rangle\!\rangle: V \times V' \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ' and with endpoint ρ if and only if (i), (ii) hold below:

(i) There are $\xi^*, \zeta^* \in \mathbb{K}$ such that

$$\theta_i^{*\prime} = \xi^* \theta_{\rho+i}^* + \zeta^* \quad (0 \leqslant i \leqslant d').$$

(ii)
$$\frac{\phi_{\rho+i}}{\varphi_{\rho+i}} = \frac{\phi'_i}{\varphi'_i} \ (1 \leqslant i \leqslant d').$$

Moreover, if (i), (ii) hold above, then $\langle\!\langle,\rangle\!\rangle$ is unique up to scalar multiplication.

ヘロト 人間 とくほとくほとう

ъ

Balanced bilinear form Motivations Parameter array of a Leonard system **Results** Remarks

Generic case; q-Racah

The most general form of the parameter array is as follows:

$$p(\Phi) = p(q, r_1, r_2, s, s^*, d) \text{ where } r_1 r_2 = ss^* q^{d+1} \neq 0,$$

$$\theta_i = \theta_0 + h(1 - q^i)(1 - sq^{i+1})q^{-i},$$

$$\theta_i^* = \theta_0^* + h^*(1 - q^i)(1 - s^*q^{i+1})q^{-i}$$

for $0 \leq i \leq d$,

$$\begin{split} \varphi_i &= hh^* q^{1-2i} (1-q^i) (1-q^{i-d-1}) (1-r_1 q^i) (1-r_2 q^i), \\ \phi_i &= hh^* q^{1-2i} (1-q^i) (1-q^{i-d-1}) (r_1-s^* q^i) (r_2-s^* q^i) / s^* \end{split}$$

for $1 \leq i \leq d$.

ヘロン 人間 とくほ とくほど

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Closed form of the main result (generic case; q-Racah)

Suppose

$$p(\Phi) = p(q, r_1, r_2, s, s^*, d)$$

where $r_1 r_2 = s s^* q^{d+1} \neq 0$.

Theorem

There is $\langle\!\langle,\rangle\!\rangle: V \times V' \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ' and with endpoint ρ if and only if

$$p(\Phi') = p(q, r_1 q^{\rho}, r_2 q^{\rho}, sq^{d-d'}, s^* q^{2\rho}, d').$$

 $(Recall(r_1q^{\rho})(r_2q^{\rho}) = (sq^{d-d'})(s^*q^{2\rho})q^{d'+1}.)$

イロン イボン イヨン イヨン

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Closed form of the main result (generic case; q-Racah)

Suppose

$$p(\Phi) = p(q, r_1, r_2, s, s^*, d)$$

where $r_1 r_2 = s s^* q^{d+1} \neq 0$.

Theorem

There is $\langle\!\langle,\rangle\!\rangle: V \times V' \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ' and with endpoint ρ if and only if

$$p(\Phi') = p(q, r_1 q^{\rho}, r_2 q^{\rho}, sq^{d-d'}, s^* q^{2\rho}, d').$$

(**Recall** $(r_1q^{\rho})(r_2q^{\rho}) = (sq^{d-d'})(s^*q^{2\rho})q^{d'+1}$.)

ヘロト 人間 ト ヘヨト ヘヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Closed form of the main result (generic case; q-Racah)

Suppose

$$p(\Phi) = p(q, r_1, r_2, s, s^*, d)$$

where $r_1 r_2 = s s^* q^{d+1} \neq 0$.

Theorem

There is $\langle\!\langle,\rangle\!\rangle: V \times V' \longrightarrow \mathbb{K}$ which is balanced with respect to Φ, Φ' and with endpoint ρ if and only if

$$p(\Phi') = p(q, r_1 q^{\rho}, r_2 q^{\rho}, sq^{d-d'}, s^* q^{2\rho}, d').$$

(*Recall* $(r_1q^{\rho})(r_2q^{\rho}) = (sq^{d-d'})(s^*q^{2\rho})q^{d'+1}$.)

ヘロト ヘアト ヘビト ヘビト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Application: Subsets with $w + w^* = d$

- Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X : w + w^* = d$

The following information follow from our theory:

- When does C induce a Q-polynomial distance-regular graph?
- When is C "Q-polynomial"?
- When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq -1$; (2) $q \neq -1$; (3) Γ has classical parameters.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Application: Subsets with $w + w^* = d$

Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d

•
$$C \subseteq X : w + w^* = d$$

The following information follow from our theory:

- When does C induce a Q-polynomial distance-regular graph?
- When is C "Q-polynomial"?
- When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq -1$; (2) $q \neq -1$; (3) Γ has classical parameters.

・ロト ・ 同ト ・ ヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Application: Subsets with $w + w^* = d$

- Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X : w + w^* = d$

The following information follow from our theory:

- When does C induce a Q-polynomial distance-regular graph?
- When is *C* "*Q*-polynomial"?
- When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq -1$; (2) $q \neq -1$; (3) Γ has classical parameters.

• • • • • • • • • • •

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Application: Subsets with $w + w^* = d$

- Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X : w + w^* = d$

The following information follow from our theory:

- When does C induce a Q-polynomial distance-regular graph?
- When is *C* "*Q*-polynomial"?
- When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq -1$; (2) $q \neq -1$; (3) Γ has classical parameters.

・ロト ・ 同ト ・ ヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Application: Subsets with $w + w^* = d$

- Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X : w + w^* = d$

The following information follow from our theory:

- When does C induce a Q-polynomial distance-regular graph?
- When is C "Q-polynomial"?
 - When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq -1$; (2) $q \neq -1$; (3) Γ has classical parameters.

・ロト ・ 同ト ・ ヨト

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Application: Subsets with $w + w^* = d$

- Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d
- $C \subseteq X : w + w^* = d$

The following information follow from our theory:

- When does C induce a Q-polynomial distance-regular graph?
- When is C "Q-polynomial"?
- When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq -1$; (2) $q \neq -1$; (3) Γ has classical parameters.

A B > A
 A
 B > A
 A

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Application: Subsets with $w + w^* = d$

Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d

•
$$C \subseteq X : w + w^* = d$$

The following information follow from our theory:

- When does C induce a Q-polynomial distance-regular graph?
- When is C "Q-polynomial"?
- When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq -1$; (2) $q \neq -1$; (3) Γ has classical parameters.

Balanced bilinear form Motivations Parameter array of a Leonard system Results Remarks

Application: Subsets with $w + w^* = d$

Γ = (X, R) : a Q-polynomial distance-regular graph with diameter d

•
$$C \subseteq X : w + w^* = d$$

The following information follow from our theory:

- When does C induce a Q-polynomial distance-regular graph?
- When is C "Q-polynomial"?
- When is C convex (i.e., geodetically closed)?

Answer : (Roughly) (1) $q \neq -1$; (2) $q \neq -1$; (3) Γ has classical parameters.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The END.