Vertex subsets with minimal width and dual width in Q-polynomial distance-regular graphs

Hajime Tanaka

University of Wisconsin \& Tohoku University
February 2, 2011

Every face (or facet) of a hypercube is a hypercube...

Goal

- Generalize this situation to Q-polynomial distance-regular graphs.
- Discuss its applications.

Distance-regular graphs

- $\Gamma=(X, R)$: a finite connected simple graph with diameter d
- ∂ : the path-length distance function
- Define $A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{R}^{X \times X}$ by

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if } \partial(x, y)=i \\ 0 & \text { otherwise }\end{cases}
$$

- For $x \in X$, set $\Gamma_{i}(x)=\{y \in X: \partial(x, y)=i\}$.
- Γ is distance-regular if there are integers a_{i}, b_{i}, c_{i} such that

$$
A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1}(0 \leqslant i \leqslant d)
$$

where $A_{-1}=A_{d+1}=0$.

$A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(0 \leqslant i \leqslant d)$

Example: hypercubes

- $X=\{0,1\}^{d}$
- $x \sim_{R} y \Longleftrightarrow\left|\left\{i: x_{i} \neq y_{i}\right\}\right|=1$
- $\Gamma=Q_{d}=(X, R)$: the hypercube
- Q_{3} :

- $Q_{d}=$ the binary Hamming graph

Example: Johnson graphs

- Ω : a finite set with $|\Omega|=v \geqslant 2 d$
- $X=\{x \subseteq \Omega:|x|=d\}$
- $x \sim_{R} y \Longleftrightarrow|x \cap y|=d-1 \quad(x, y \in \Omega)$
- $\Gamma=J(v, d)=(X, R)$: the Johnson graph
- The complement of $J(5,2)$ with $\Omega=\{1,2,3,4,5\}$:

$A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(0 \leqslant i \leqslant d)$

- $\Gamma=(X, R)$: a distance-regular graph with diameter d
- $A_{0}, A_{1}, \ldots, A_{d}$: the distance matrices of Γ
- We set $A:=A_{1}$ (the adjacency matrix of Γ).
- $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$: the distinct eigenvalues of A
- E_{i} : the orthogonal projection onto the eigenspace of A with eigenvalue θ_{i}
- $\mathbb{R}[A]=\left\langle A_{0}, \ldots, A_{d}\right\rangle=\left\langle E_{0}, \ldots, E_{d}\right\rangle$: the Bose-Mesner algebra of Γ
- Γ is regular with valency $k:=b_{0}$:
- We always set $\theta_{0}=k=b_{0}$.

- $E_{0} \mathbb{R}^{X}=\langle\mathbf{1}\rangle$ where $\mathbf{1}$: the all-ones vector
- $E_{0}=\frac{1}{|X|} J$ where J : the all-ones matrix in $\mathbb{R}^{X \times X}$

θ_{0},

- Recall $A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(0 \leqslant i \leqslant d)$.
- Γ is Q-polynomial with respect to $\left\{E_{i}\right\}_{i=0}^{d}$ if there are scalars $a_{i}^{*}, b_{i}^{*}, c_{i}^{*}(0 \leqslant i \leqslant d)$ such that $b_{i-1}^{*} c_{i}^{*} \neq 0(1 \leqslant i \leqslant d)$ and

$$
|X| E_{1} \circ E_{i}=b_{i-1}^{*} E_{i-1}+a_{i}^{*} E_{i}+c_{i+1}^{*} E_{i+1}(0 \leqslant i \leqslant d)
$$

where $E_{-1}=E_{d+1}=0$ and \circ is the Hadamard product.

- The ordering $\left\{E_{i}\right\}_{i=0}^{d}$ is uniquely determined by E_{1}.

Hypercubes and binary Hamming matroids

- $\{0,1, \infty\}$: the "claw semilattice" of order 3 :

- ($\mathcal{P}, \preccurlyeq)$: the direct product of d claw semilattices:
- $\mathcal{P}=\{0,1, \infty\}^{d}$
- $u \preccurlyeq v \Longleftrightarrow u_{i}=\infty$ or $u_{i}=v_{i}(1 \leqslant i \leqslant d)$

- $H(d, 2)=(\mathcal{P}, \preccurlyeq)$: the binary Hamming matroid
- $\operatorname{rank}(u)=\left|\left\{i: u_{i} \neq \infty\right\}\right| \quad(u \in \mathcal{P})$
- $X=\{0,1\}^{d}=\operatorname{top}(\mathcal{P})$: the top fiber of $H(d, 2)$

Hypercubes and binary Hamming matroids

- $u \in \mathcal{P}$: rank i
- $\chi_{u} \in \mathbb{R}^{X}$: the characteristic vector of $Y_{u}:=\{x \in X: u \preccurlyeq x\}$

Remark

- There is an ordering $E_{0}, E_{1}, \ldots, E_{d}$ such that

$$
\sum_{h=0}^{i} E_{i} \mathbb{R}^{X}=\left\langle\chi_{u}: u \in \mathcal{P}, \operatorname{rank}(u)=i\right\rangle \quad(0 \leqslant i \leqslant d)
$$

- Moreover, Q_{d} is Q-polynomial with respect to $\left\{E_{i}\right\}_{i=0}^{d}$.

$Y_{u}=\{x \in X: u \preccurlyeq x\}$ is a facet of Q_{d}

- If $d=3$ and $u=(\infty, 0, \infty)$ then:

- Every facet of Q_{d} is of this form.
- The induced subgraph on Y_{u} is $Q_{d-\operatorname{rank}(u)}$.

Johnson graphs and truncated Boolean algebras

- Recall Ω : a finite set with $|\Omega|=v \geqslant 2 d$
- $\mathcal{P}=\{u \subseteq \Omega:|u| \leqslant d\}$
- $u \preccurlyeq v \Longleftrightarrow u \subseteq v$
- $B(d, v)=(\mathcal{P}, \preccurlyeq)$: the truncated Boolean algebra
- $\operatorname{rank}(u)=|u| \quad(u \in \mathcal{P})$
- $X=\{x \subseteq \Omega:|x|=d\}=\operatorname{top}(\mathcal{P})$: the top fiber of $B(d, v)$

Johnson graphs and truncated Boolean algebras

- $u \in \mathcal{P}$: rank i
- $\chi_{u} \in \mathbb{R}^{X}$: the characteristic vector of $Y_{u}:=\{x \in X: u \preccurlyeq x\}$

Remark

- There is an ordering $E_{0}, E_{1}, \ldots, E_{d}$ such that

$$
\sum_{h=0}^{i} E_{i} \mathbb{R}^{X}=\left\langle\chi_{u}: u \in \mathcal{P}, \operatorname{rank}(u)=i\right\rangle \quad(0 \leqslant i \leqslant d)
$$

- Moreover, $J(v, d)$ is Q-polynomial with respect to $\left\{E_{i}\right\}_{i=0}^{d}$.

$Y_{u}=\{x \in X: u \preccurlyeq x\}$ induces $J(v-\operatorname{rank}(u), d-\operatorname{rank}(u))$

Remark

- $H(d, 2)$ and $B(d, v)$ are examples of regular quantum matroids (Terwilliger, 1996).

Width and dual width (Brouwer et al., 2003)

- $\Gamma=(X, R)$: a distance-regular graph with diameter d
- $A_{0}, A_{1}, \ldots, A_{d}$: the distance matrices
- $E_{0}, E_{1}, \ldots, E_{d}$: the primitive idempotents of $\mathbb{R}[A]$
- Suppose Γ is Q-polynomial with respect to $\left\{E_{i}\right\}_{i=0}^{d}$.
- $Y \subseteq X$: a nonempty subset of X
- $\chi \in \mathbb{R}^{X}$: the characteristic vector of Y
- $w=\max \left\{i: \chi^{\top} A_{i} \chi \neq 0\right\}$: the width of Y
- $w^{*}=\max \left\{i: \chi^{\top} E_{i} \chi \neq 0\right\}$: the dual width of Y

$w=\max \left\{i: \chi^{\top} A_{i} \chi \neq 0\right\}, w^{*}=\max \left\{i: \chi^{\top} E_{i} \chi \neq 0\right\}$

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

We have $w+w^{*} \geqslant d$. If equality holds then the induced subgraph Γ_{Y} on Y is a Q-polynomial distance-regular graph with diameter w provided that it is connected.

Definition

We call Y a descendent of Γ if $w+w^{*}=d$.

Examples: $\Gamma=Q_{d}$ or $J(v, d)$

- $u \in \mathcal{P}$: rank i
- $Y_{u}:=\{x \in X: u \preccurlyeq x\}$ satisfies $w=d-i$ and $w^{*}=i$.

Theorem (Brouwer et al., 2003; T., 2006)

If Γ is associated with a regular quantum matroid, then every descendent of Γ is isomorphic to some Y_{u} under the full automorphism group of Γ.

Observation

Y_{u} is convex (geodetically closed).

$A A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(0 \leqslant i \leqslant d)$

- We say Γ has classical parameters (d, q, α, β) if

$$
b_{i}=\left(\left[\begin{array}{l}
d \\
1
\end{array}\right]_{q}-\left[\begin{array}{l}
i \\
1
\end{array}\right]_{q}\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]_{q}\right), \quad c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]_{q}\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]_{q}\right)
$$

for $0 \leqslant i \leqslant d$, where $\left[\begin{array}{c}i \\ i\end{array}\right]_{q}$ is the q-binomial coefficient.

Example

If $\Gamma=Q_{d}$ then $b_{i}=d-i$ and $c_{i}=i$, so Γ has classical parameters $(d, 1,0,1)$.

Currently, there are 15 known infinite families of distance-regular graphs with classical parameters and with unbounded diameter.

The families related to Hamming graphs

The families related to Johnson graphs

$b_{i}=\left(\left[\begin{array}{c}d \\ 1\end{array}\right]_{q}-\left[\begin{array}{l}i \\ 1\end{array}\right]_{q}\right)\left(\beta-\alpha\left[\begin{array}{l}i \\ 1\end{array}\right]_{q}\right), c_{i}=\left[\begin{array}{c}i \\ 1\end{array}\right]_{q}\left(1+\alpha\left[\begin{array}{c}i-1 \\ 1\end{array}\right]_{q}\right)$

- $Y \subseteq X$: a descendent of Γ, i.e., $w+w^{*}=d$
- Γ_{Y} : the induced subgraph on Y

Theorem (T.)

Suppose $1<w<d$. Then Y is convex precisely when Γ has classical parameters.

Theorem (T.)

If Γ has classical parameters (d, q, α, β) then Γ_{Y} has classical parameters (w, q, α, β). The converse also holds, provided $w \geqslant 3$.

Classification of descendents is complete for all 15 families (T.).

The Erdős-Ko-Rado theorem (1961)

- Ω : a finite set with $|\Omega|=v \geqslant 2 d$
- $X=\{x \subseteq \Omega:|x|=d\}$

Theorem (Erdős-Ko-Rado, 1961)

Let $v \geqslant(t+1)(d-t+1)$ and let $Y \subseteq X$ be a t-intersecting family, i.e., $|x \cap y| \geqslant t$ for all $x, y \in Y$. Then

$$
|Y| \leqslant\binom{ v-t}{d-t}
$$

If $v>(t+1)(d-t+1)$ and if $|Y|=\binom{v-t}{d-t}$ then

$$
Y=\{x \in X: u \subseteq x\}
$$

for some $u \subseteq \Omega$ with $|u|=t$.

A "modern" treatment of the E-K-R theorem

- This is in fact a result about the Johnson graph $J(v, d)$ and the truncated Boolean algebra $B(d, v)=(\mathcal{P}, \preccurlyeq)$.

Theorem (Erdős-Ko-Rado, 1961)

Let $v \geqslant(t+1)(d-t+1)$ and let $Y \subseteq X$ be a t-intersecting family, i.e., $w(Y) \leqslant d-t$. Then

$$
|Y| \leqslant\binom{ v-t}{d-t}
$$

If $v>(t+1)(d-t+1)$ and if $|Y|=\binom{v-t}{d-t}$ then

$$
Y=Y_{u}
$$

for some $u \in \mathcal{P}$ with $\operatorname{rank}(u)=t$.

Delsarte's linear programming method

- Define $Q=\left(Q_{i j}\right)_{0 \leqslant i, j \leqslant d}$ by

$$
E_{j}=\frac{1}{|X|} \sum_{i=0}^{d} Q_{i j} A_{i} \quad(0 \leqslant j \leqslant d)
$$

or equivalently

$$
\left(E_{0}, E_{1}, \ldots, E_{d}\right)=\frac{1}{|X|}\left(A_{0}, A_{1}, \ldots, A_{d}\right) Q
$$

- Since $E_{0}=\frac{1}{|X|} J=\frac{1}{|X|}\left(A_{0}+A_{1}+\cdots+A_{d}\right)$ we find

$$
Q_{00}=Q_{10}=\cdots=Q_{d 0}=1
$$

$E_{j}=\frac{1}{X \mid} \sum_{i=0}^{d} Q_{i j} A_{i}, \quad Q_{00}=Q_{10}=\cdots=Q_{d 0}=1$

- $Y \subseteq X: w(Y) \leqslant d-t$
- $\chi \in \mathbb{R}^{X}$: the characteristic vector of Y
- $\boldsymbol{e}=\left(e_{0}, e_{1}, \ldots, e_{d}\right)$: the inner distribution of Y :

$$
e_{i}=\frac{1}{|Y|} \chi^{\top} A_{i} \chi \quad(0 \leqslant i \leqslant d)
$$

- Then
(P0) $\quad(e Q)_{0}=e_{0}+e_{1}+\cdots+e_{d}=\frac{1}{|Y|} \chi^{\top} J \chi=|Y|$,
(P1)

$$
e_{0}=1
$$

(P2)

$$
e_{d-t+1}=\cdots=e_{d}=0
$$

(P3)

$$
(e Q)_{j}=\sum_{i=0}^{d} e_{i} Q_{i j}=\frac{|X|}{|Y|} \chi^{\top} E_{j} \chi \geqslant 0(1 \leqslant j \leqslant d)
$$

$(e Q)_{0}=|Y|, e_{0}=1, e_{d-t+1}=\cdots=e_{d}=0,(e Q)_{j} \geqslant 0(\forall j)$

- A vector f (unique, if any) satisfying the following conditions gives a feasible solution to the dual problem:
(D1)

$$
\begin{gathered}
f_{0}=1 \\
f_{1}=\cdots=f_{t}=0 \\
f_{t+1}>0, \ldots, f_{d}>0 \\
\left(\boldsymbol{f} Q^{\top}\right)_{1}=\cdots=\left(\boldsymbol{f} Q^{\top}\right)_{d-t}=0
\end{gathered}
$$

(D2)
(D3)
(D4)

- By the duality of linear programming, we have

$$
|Y| \leqslant\left(\boldsymbol{f} Q^{\top}\right)_{0}
$$

and equality holds if and only if

$$
\begin{aligned}
(\boldsymbol{e} Q)_{j} f_{j}=0(1 \leqslant j \leqslant d) & \Leftrightarrow(\boldsymbol{e} Q)_{t+1}=\cdots=(\boldsymbol{e} Q)_{d}=0 \\
& \Leftrightarrow w^{*}(Y) \leqslant t .
\end{aligned}
$$

$|Y| \leqslant\left(f Q^{\top}\right)_{0} ; \quad|Y|=\left(f Q^{\top}\right)_{0} \Leftrightarrow w^{*}(Y) \leqslant t$

- Since $w(Y) \leqslant d-t$ and $w(Y)+w^{*}(Y) \geqslant d$, we find $|Y|=\left(\boldsymbol{f} Q^{\top}\right)_{0}$ if and only if Y is a descendent of $J(v, d)$.
- Under certain conditions, the vector satisfying (D1)-(D4) was constructed in each of the following cases:

Γ	\boldsymbol{f}	$\left(\boldsymbol{f Q} Q^{\top}\right)_{0}$
Johnson $J(v, d)$	Wilson (1984)	$\binom{v-t}{d-t}$
Hamming $H(d, q)$	MDS weight enumerators	q^{d-t}
Grassmann $J_{q}(v, d)$	Frankl-Wilson (1986)	$\left[\begin{array}{l}v-t \\ d-t\end{array}\right]_{q}$
bilinear forms $\operatorname{Bil}_{q}(d, e)$	(d, e, t, q)-Singleton systems,	$q^{(d-t) e}$
	Delsarte (1978)	

- Since $J_{q}(2 d+1, d)$ and the twisted Grassmann graph $\tilde{J}_{q}(2 d+1, d)$ have the same Q, we now also get the Erdős-Ko-Rado theorem for $\widetilde{J}_{q}(2 d+1, d)$.

