# Vertex subsets with minimal width and dual width in *Q*-polynomial distance-regular graphs

#### Hajime Tanaka

University of Wisconsin & Tohoku University

February 2, 2011

Hajime Tanaka Vertex subsets with minimal width and dual width

Image: A matrix

## Every face (or facet) of a hypercube is a hypercube...



⇒ < ⇒ >

3

- Generalize this situation to *Q*-polynomial distance-regular graphs.
- Discuss its applications.

(個) (目) (日) (日)

- $\Gamma = (X, R)$ : a finite connected simple graph with diameter *d*
- $\partial$  : the path-length distance function
- Define  $A_0, A_1, \ldots, A_d \in \mathbb{R}^{X imes X}$  by

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \vartheta(x, y) = i \\ 0 & \text{otherwise} \end{cases}$$

- For  $x \in X$ , set  $\Gamma_i(x) = \{y \in X : \partial(x, y) = i\}$ .
- $\Gamma$  is distance-regular if there are integers  $a_i, b_i, c_i$  such that

$$A_{1}A_{i} = b_{i-1}A_{i-1} + a_{i}A_{i} + c_{i+1}A_{i+1} \ (0 \le i \le d)$$

where  $A_{-1} = A_{d+1} = 0$ .

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ●

## $A_{1}A_{i} = b_{i-1}A_{i-1} + a_{i}A_{i} + c_{i+1}A_{i+1} \quad (0 \le i \le d)$



 $\overset{x}{\circ}$ 

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

#### Example: hypercubes



•  $Q_d$  = the binary Hamming graph

(人) 医子子 医子子 医

#### Example: Johnson graphs

•  $\Omega$  : a finite set with  $|\Omega| = v \ge 2d$ 

• 
$$X = \{x \subseteq \Omega : |x| = d\}$$

- $x \sim_R y \iff |x \cap y| = d 1 \ (x, y \in \Omega)$
- $\Gamma = J(v, d) = (X, R)$ : the Johnson graph
- The complement of J(5,2) with  $\Omega = \{1, 2, 3, 4, 5\}$ :



## $A_{1}A_{i} = b_{i-1}A_{i-1} + a_{i}A_{i} + c_{i+1}A_{i+1} \quad (0 \le i \le d)$

- $\Gamma = (X, R)$ : a distance-regular graph with diameter d
- $A_0, A_1, \ldots, A_d$ : the distance matrices of  $\Gamma$
- We set  $A := A_1$  (the adjacency matrix of  $\Gamma$ ).
- $\theta_0, \theta_1, \ldots, \theta_d$ : the distinct eigenvalues of *A*
- *E<sub>i</sub>*: the orthogonal projection onto the eigenspace of *A* with eigenvalue θ<sub>i</sub>
- $\mathbb{R}[A] = \langle A_0, \dots, A_d \rangle = \langle E_0, \dots, E_d \rangle$ : the Bose–Mesner algebra of  $\Gamma$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇



- $\Gamma$  is regular with valency  $k := b_0$ :
- We always set  $\theta_0 = k = b_0$ .
- $E_0 \mathbb{R}^X = \langle \mathbf{1} \rangle$  where  $\mathbf{1}$  : the all-ones vector
- $E_0 = \frac{1}{|X|}J$  where J: the all-ones matrix in  $\mathbb{R}^{X \times X}$

御下 ( 臣下 ( 臣下 ) 臣

- Recall  $A_1A_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1} \ (0 \le i \le d).$
- $\Gamma$  is *Q*-polynomial with respect to  $\{E_i\}_{i=0}^d$  if there are scalars  $a_i^*, b_i^*, c_i^* \ (0 \le i \le d)$  such that  $b_{i-1}^* c_i^* \ne 0 \ (1 \le i \le d)$  and

$$|X| E_1 \circ E_i = b_{i-1}^* E_{i-1} + a_i^* E_i + c_{i+1}^* E_{i+1} \ (0 \le i \le d)$$

where *E*<sub>-1</sub> = *E*<sub>d+1</sub> = 0 and ∘ is the Hadamard product.
The ordering {*E*<sub>i</sub>}<sup>d</sup><sub>i=0</sub> is uniquely determined by *E*<sub>1</sub>.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

## Hypercubes and binary Hamming matroids

•  $\{0, 1, \infty\}$ : the "claw semilattice" of order 3 :



× /



•  $H(d, 2) = (\mathcal{P}, \preccurlyeq)$ : the binary Hamming matroid

• rank
$$(u) = |\{i : u_i \neq \infty\}| \ (u \in \mathcal{P})$$

•  $X = \{0, 1\}^d = top(\mathcal{P})$ : the top fiber of H(d, 2)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ●

## Hypercubes and binary Hamming matroids

- $u \in \mathcal{P}$  : rank *i*
- $\chi_u \in \mathbb{R}^X$ : the characteristic vector of  $Y_u := \{x \in X : u \preccurlyeq x\}$



#### Remark

• There is an ordering  $E_0, E_1, \ldots, E_d$  such that

$$\sum_{h=0}^{i} E_{i} \mathbb{R}^{X} = \langle \chi_{u} : u \in \mathcal{P}, \operatorname{rank}(u) = i \rangle \quad (0 \leq i \leq d).$$

Moreover, Q<sub>d</sub> is Q-polynomial with respect to {E<sub>i</sub>}<sup>d</sup><sub>i=0</sub>.

(本語) (本語) (二語)

#### $Y_u = \{x \in X : u \preccurlyeq x\}$ is a facet of $Q_d$





- Every facet of  $Q_d$  is of this form.
- The induced subgraph on  $Y_u$  is  $Q_{d-\operatorname{rank}(u)}$ .

< ∃⇒

## Johnson graphs and truncated Boolean algebras

• Recall  $\Omega$  : a finite set with  $|\Omega| = v \ge 2d$ 

• 
$$\mathcal{P} = \{ u \subseteq \Omega : |u| \leq d \}$$

- $u \preccurlyeq v \Longleftrightarrow u \subseteq v$
- $B(d, v) = (\mathcal{P}, \preccurlyeq)$ : the truncated Boolean algebra
- $\operatorname{rank}(u) = |u| \ (u \in \mathcal{P})$
- $X = \{x \subseteq \Omega : |x| = d\} = top(\mathcal{P})$ : the top fiber of B(d, v)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

## Johnson graphs and truncated Boolean algebras

- $u \in \mathcal{P}$  : rank *i*
- $\chi_u \in \mathbb{R}^X$ : the characteristic vector of  $Y_u := \{x \in X : u \preccurlyeq x\}$



#### Remark

• There is an ordering  $E_0, E_1, \ldots, E_d$  such that

$$\sum_{h=0}^{i} E_{i} \mathbb{R}^{X} = \langle \chi_{u} : u \in \mathcal{P}, \operatorname{rank}(u) = i \rangle \quad (0 \leq i \leq d).$$

• Moreover, J(v, d) is Q-polynomial with respect to  $\{E_i\}_{i=0}^d$ .

▲ 臣 ▶ ▲ 臣 ▶ 二 臣

$$Y_u = \{x \in X : u \preccurlyeq x\}$$
 induces  $J(v - \operatorname{rank}(u), d - \operatorname{rank}(u))$ 



#### Remark

• *H*(*d*, 2) and *B*(*d*, *v*) are examples of regular quantum matroids (Terwilliger, 1996).

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

## Width and dual width (Brouwer et al., 2003)

- $\Gamma = (X, R)$ : a distance-regular graph with diameter *d*
- $A_0, A_1, \ldots, A_d$ : the distance matrices
- $E_0, E_1, \ldots, E_d$ : the primitive idempotents of  $\mathbb{R}[A]$
- Suppose  $\Gamma$  is *Q*-polynomial with respect to  $\{E_i\}_{i=0}^d$ .
- $Y \subseteq X$ : a nonempty subset of X
- $\chi \in \mathbb{R}^X$  : the characteristic vector of *Y*
- $w = \max\{i : \chi^{\mathsf{T}}A_i\chi \neq 0\}$ : the width of Y
- $w^* = \max\{i : \chi^T E_i \chi \neq 0\}$ : the dual width of Y



 $w = \max\{i : \chi^{\mathsf{T}} A_i \chi \neq 0\}, w^* = \max\{i : \chi^{\mathsf{T}} E_i \chi \neq 0\}$ 

#### Theorem (Brouwer–Godsil–Koolen–Martin, 2003)

We have  $w + w^* \ge d$ . If equality holds then the induced subgraph  $\Gamma_Y$  on *Y* is a *Q*-polynomial distance-regular graph with diameter *w* provided that it is connected.

#### Definition

We call *Y* a descendent of  $\Gamma$  if  $w + w^* = d$ .

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

## Examples: $\Gamma = Q_d$ or J(v, d)

- $u \in \mathcal{P}$  : rank i
- $Y_u := \{x \in X : u \preccurlyeq x\}$  satisfies w = d i and  $w^* = i$ .



#### Theorem (Brouwer et al., 2003; T., 2006)

If  $\Gamma$  is associated with a regular quantum matroid, then every descendent of  $\Gamma$  is isomorphic to some  $Y_u$  under the full automorphism group of  $\Gamma$ .

< 回 > < 回 > < 回 > -

## Observation



#### $Y_u$ is convex (geodetically closed).

▶ ★ 臣 ▶

3

## $AA_{i} = b_{i-1}A_{i-1} + a_{i}A_{i} + c_{i+1}A_{i+1} \quad (0 \le i \le d)$

• We say  $\Gamma$  has classical parameters  $(d, q, \alpha, \beta)$  if

$$b_i = \left( \begin{bmatrix} d \\ 1 \end{bmatrix}_q - \begin{bmatrix} i \\ 1 \end{bmatrix}_q \right) \left( \beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix}_q \right), \quad c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}_q \left( 1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix}_q \right)$$

for  $0 \leq i \leq d$ , where  $\begin{bmatrix} i \\ j \end{bmatrix}_q$  is the *q*-binomial coefficient.

#### Example

If  $\Gamma = Q_d$  then  $b_i = d - i$  and  $c_i = i$ , so  $\Gamma$  has classical parameters (d, 1, 0, 1).

Currently, there are 15 known infinite families of distance-regular graphs with classical parameters and with unbounded diameter.

ヘロン 人間 とくほ とくほ とう

## The families related to Hamming graphs



Hajime Tanaka Vertex subsets with minimal width and dual width

#### The families related to Johnson graphs



Hajime Tanaka Vertex subsets with minimal width and dual width

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

# $b_i = \left( \begin{bmatrix} d \\ 1 \end{bmatrix}_q - \begin{bmatrix} i \\ 1 \end{bmatrix}_q \right) \left( \beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix}_q \right), \ c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}_q \left( 1 + \alpha \begin{bmatrix} i-1 \\ 1 \end{bmatrix}_q \right)$

- $Y \subseteq X$ : a descendent of  $\Gamma$ , i.e.,  $w + w^* = d$
- $\Gamma_Y$ : the induced subgraph on Y

#### Theorem (T.)

Suppose 1 < w < d. Then *Y* is convex precisely when  $\Gamma$  has classical parameters.

#### Theorem (T.)

If  $\Gamma$  has classical parameters  $(d, q, \alpha, \beta)$  then  $\Gamma_Y$  has classical parameters  $(w, q, \alpha, \beta)$ . The converse also holds, provided  $w \ge 3$ .

Classification of descendents is complete for all 15 families (T.).

イロト イポト イヨト イヨト

## The Erdős–Ko–Rado theorem (1961)

• 
$$\Omega$$
 : a finite set with  $|\Omega| = v \ge 2d$ 

• 
$$X = \{x \subseteq \Omega : |x| = d\}$$

#### Theorem (Erdős–Ko–Rado, 1961)

Let  $v \ge (t+1)(d-t+1)$  and let  $Y \subseteq X$  be a *t*-intersecting family, *i.e.*,  $|x \cap y| \ge t$  for all  $x, y \in Y$ . Then

$$|Y| \leqslant \binom{v-t}{d-t}$$

If v > (t+1)(d-t+1) and if  $|Y| = {v-t \choose d-t}$  then

$$Y = \{x \in X : u \subseteq x\}$$

for some  $u \subseteq \Omega$  with |u| = t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

## A "modern" treatment of the E–K–R theorem

 This is in fact a result about the Johnson graph *J*(*v*, *d*) and the truncated Boolean algebra *B*(*d*, *v*) = (*P*, ≼).

#### Theorem (Erdős–Ko–Rado, 1961)

Let  $v \ge (t+1)(d-t+1)$  and let  $Y \subseteq X$  be a *t*-intersecting family, *i.e.*,  $w(Y) \le d-t$ . Then

$$|Y| \leqslant \binom{v-t}{d-t}.$$

If v > (t+1)(d-t+1) and if  $|Y| = {v-t \choose d-t}$  then

$$Y = Y_u$$

for some  $u \in \mathcal{P}$  with rank(u) = t.

## Delsarte's linear programming method

• Define  $Q = (Q_{ij})_{0 \leqslant i,j \leqslant d}$  by

$$E_j = \frac{1}{|X|} \sum_{i=0}^d Q_{ij} A_i \quad (0 \leq j \leq d),$$

or equivalently

$$(E_0, E_1, \dots, E_d) = \frac{1}{|X|} (A_0, A_1, \dots, A_d) Q.$$

• Since 
$$E_0 = \frac{1}{|X|}J = \frac{1}{|X|}(A_0 + A_1 + \dots + A_d)$$
 we find  
 $Q_{00} = Q_{10} = \dots = Q_{d0} = 1.$ 

御下 ( 臣下 ( 臣下 ) 臣

# $E_j = rac{1}{|X|} \sum_{i=0}^d Q_{ij} A_i, \quad Q_{00} = Q_{10} = \dots = Q_{d0} = 1$

• 
$$Y \subseteq X$$
 :  $w(Y) \leq d - t$ 

• 
$$\chi \in \mathbb{R}^X$$
 : the characteristic vector of  $Y$ 

•  $e = (e_0, e_1, \dots, e_d)$ : the inner distribution of *Y*:

$$e_i = \frac{1}{|Y|} \chi^{\mathsf{T}} A_i \chi \quad (0 \leqslant i \leqslant d)$$

#### Then

(P0) 
$$(eQ)_0 = e_0 + e_1 + \dots + e_d = \frac{1}{|Y|} \chi^{\mathsf{T}} J \chi = |Y|,$$

(P1) 
$$e_0 = 1$$
,

$$(\mathsf{P2}) \qquad \qquad e_{d-t+1} = \cdots = e_d = 0,$$

(P3) 
$$(eQ)_j = \sum_{i=0}^d e_i Q_{ij} = \frac{|X|}{|Y|} \chi^\mathsf{T} E_j \chi \ge 0 \ (1 \le j \le d).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで

$$(oldsymbol{e} Q)_0 = |Y|,\, e_0 = 1,\, e_{d-t+1} = \cdots = e_d = 0,\, (oldsymbol{e} Q)_j \geqslant 0\; (orall j)$$

 A vector f (unique, if any) satisfying the following conditions gives a feasible solution to the dual problem:

(D1) 
$$f_0 = 1$$
,

$$(\mathsf{D2}) \qquad \qquad f_1 = \cdots = f_t = 0,$$

(D3) 
$$f_{t+1} > 0, \dots, f_d > 0,$$

(D4) 
$$(fQ^{\mathsf{T}})_1 = \cdots = (fQ^{\mathsf{T}})_{d-t} = 0.$$

• By the duality of linear programming, we have

 $|Y| \leqslant (fQ^{\mathsf{T}})_0$ 

and equality holds if and only if

$$(eQ)_j f_j = 0 \ (1 \le j \le d) \ \Leftrightarrow (eQ)_{t+1} = \dots = (eQ)_d = 0$$
  
 $\Leftrightarrow w^*(Y) \le t.$ 

## $|Y| \leqslant (fQ^{\mathsf{T}})_0 ; \quad |Y| = (fQ^{\mathsf{T}})_0 \Leftrightarrow w^*(Y) \leqslant t$

- Since  $w(Y) \leq d t$  and  $w(Y) + w^*(Y) \geq d$ , we find  $|Y| = (fQ^{\mathsf{T}})_0$  if and only if *Y* is a descendent of J(v, d).
- Under certain conditions, the vector satisfying (D1)–(D4) was constructed in each of the following cases:

| Г                            | f                               | $(fQ^{T})_0$                                  |
|------------------------------|---------------------------------|-----------------------------------------------|
| Johnson $J(v, d)$            | Wilson (1984)                   | $\binom{v-t}{d-t}$                            |
| Hamming $H(d,q)$             | MDS weight enumerators          | $q^{d-t}$                                     |
| Grassmann $J_q(v, d)$        | Frankl–Wilson (1986)            | $\begin{bmatrix} v-t\\ d-t \end{bmatrix}_{q}$ |
| bilinear forms $Bil_q(d, e)$ | (d, e, t, q)-Singleton systems, | $q^{(d-t)e}$                                  |
|                              | Delsarte (1978)                 |                                               |

• Since  $J_q(2d+1,d)$  and the twisted Grassmann graph  $\tilde{J}_q(2d+1,d)$  have the same Q, we now also get the Erdős–Ko–Rado theorem for  $\tilde{J}_q(2d+1,d)$ .