Vertex subsets with minimal width and dual width in *Q*-polynomial distance-regular graphs

Hajime Tanaka

Tohoku University

Geometric and Algebraic Combinatoris 5 August 17, 2011

Every face of a hypercube is a hypercube...

Study this situation and generalize it to *Q*-polynomial distance-regular graphs.

Q-polynomial distance-regular graphs

- Γ = (X, R) : a connected simple graph with diameter *d* and valency k
- a : the path-length distance function
- Define $A_0, A_1, \ldots, A_d \in \mathbb{R}^{X imes X}$ by

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x, y) = i \\ 0 & \text{otherwise} \end{cases}$$

• Γ is distance-regular if there are integers a_i, b_i, c_i such that

$$A_{1}A_{i} = b_{i-1}A_{i-1} + a_{i}A_{i} + c_{i+1}A_{i+1} \ (0 \le i \le d)$$

where $A_{-1} = A_{d+1} = 0$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Q-polynomial distance-regular graphs

- $\Gamma = (X, R)$: a distance-regular graph with diameter d
- We set $A := A_1$ (the adjacency matrix of Γ).
- $\theta_0 := k, \theta_1, \dots, \theta_d$: the distinct eigenvalues of *A*
- *E_i*: the orthogonal projection onto the eigenspace of *A* with eigenvalue θ_i
- $\mathbb{R}[A] = \langle A_0, \dots, A_d \rangle = \langle E_0, \dots, E_d \rangle$: the Bose–Mesner algebra of Γ
- Γ is *Q*-polynomial with respect to $\{E_i\}_{i=0}^d$ if there are scalars $a_i^*, b_i^*, c_i^* \ (0 \le i \le d)$ such that $b_{i-1}^* c_i^* \ne 0 \ (1 \le i \le d)$ and

$$|X|E_1 \circ E_i = b_{i-1}^* E_{i-1} + a_i^* E_i + c_{i+1}^* E_{i+1} \ (0 \le i \le d)$$

where $E_{-1} = E_{d+1} = 0$ and \circ is the Hadamard product.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Example: hypercubes

•
$$X = \{0, 1\}^d$$

• $x \sim_R y \iff |\{i : x_i \neq y_i\}| = 1$
• $\Gamma = Q_d = (X, R)$: the hypercube
• Q_3 :

• \mathcal{P} : the set of faces of Q_d

•
$$u \preccurlyeq v \Longleftrightarrow u \supseteq v \quad (u, v \in \mathcal{P})$$

- $H(d, 2) = (\mathcal{P}, \preccurlyeq)$: the binary Hamming matroid
- $X = \{0, 1\}^d = top(\mathcal{P})$: the top fiber of H(d, 2)

★ 프 ▶ - 프

Five classical families of *Q*-polynomial DRGs

... are associated with nice semilattice structures:

$(\mathcal{P},\preccurlyeq)$	$top(\mathcal{P})$
truncated Boolean algebra	Johnson graph
Hamming matroid	Hamming graph
truncated projective geometry	Grassmann graph
attenuated space	bilinear forms graph
classical polar space	dual polar graph

프 > - 프 > · ·

э

Width and dual width (Brouwer et al., 2003)

- $\Gamma = (X, R)$: a distance-regular graph with diameter *d*
- A_0, A_1, \ldots, A_d : the distance matrices
- E_0, E_1, \ldots, E_d : the primitive idempotents of $\mathbb{R}[A]$
- Suppose Γ is *Q*-polynomial with respect to $\{E_i\}_{i=0}^d$.
- $Y \subseteq X$: a nonempty subset of X
- $\chi \in \mathbb{R}^X$: the characteristic vector of *Y*
- $w = \max\{i : \chi^{\mathsf{T}}A_i\chi \neq 0\}$: the width of Y
- $w^* = \max\{i : \chi^T E_i \chi \neq 0\}$: the dual width of Y

 $w = \max\{i : \chi^{\mathsf{T}} A_i \chi \neq 0\}, w^* = \max\{i : \chi^{\mathsf{T}} E_i \chi \neq 0\}$

Theorem (Brouwer–Godsil–Koolen–Martin, 2003)

We have $w + w^* \ge d$. If equality holds then *Y* is completely regular, and the induced subgraph Γ_Y on *Y* is a *Q*-polynomial distance-regular graph with diameter *w* provided it is connected.

Definition

We call *Y* a descendent of Γ if $w + w^* = d$.

Theorem (T.)

Let *Y* be a descendent of Γ and suppose Γ_Y is connected. Then a nonempty subset of *Y* is a descendent of Γ_Y if and only if it is a descendent of Γ .

ヘロア 人間 アメヨア 人口 ア

Examples of descendents, i.e., $w + w^* = d$

- w = 0: $Y = \{x\} (x \in X)$
- w = d: Y = X
- w = 1: Delsarte cliques ($\Rightarrow \theta_d = \theta_{\min}$)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Examples of descendents, i.e., $w + w^* = d$

- Γ : a Johnson, Hamming, Grassmann, bilinear forms, or a dual polar graph
- $(\mathcal{P}, \preccurlyeq)$: the associated semilattice
- $u \in \mathcal{P}$: rank i

•
$$Y_u := \{x \in X : u \preccurlyeq x\}$$

 $Y_u \cdots \operatorname{rank} d$

Theorem (Brouwer et al., 2003; T., 2006)

Every descendent of Γ is isomorphic to some Y_u under the full automorphism group of Γ .

くロト (過) (目) (日)

Classical parameters

• We say Γ has classical parameters (d, q, α, β) if

$$b_i = \left(\begin{bmatrix} d \\ 1 \end{bmatrix}_q - \begin{bmatrix} i \\ 1 \end{bmatrix}_q \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix}_q \right), \quad c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}_q \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix}_q \right)$$

for $0 \leq i \leq d$, where $\begin{bmatrix} i \\ j \end{bmatrix}_q$ is the *q*-binomial coefficient.

Currently, there are 15 known infinite families of distance-regular graphs with classical parameters and with unbounded diameter.

・ 回 ト ・ ヨ ト ・ ヨ ト

The families related to Hamming graphs

The families related to Johnson graphs

ヘロン ヘアン ヘビン ヘビン

3

 $b_i = \left(\begin{bmatrix} d \\ 1 \end{bmatrix}_q - \begin{bmatrix} i \\ 1 \end{bmatrix}_q \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix}_q \right), \ c_i = \begin{bmatrix} i \\ 1 \end{bmatrix}_q \left(1 + \alpha \begin{bmatrix} i-1 \\ 1 \end{bmatrix}_q \right)$

- $Y \subseteq X$: a descendent of Γ , i.e., $w + w^* = d$
- Γ_Y : the induced subgraph on Y

Theorem (T.)

Suppose 1 < w < d. Then *Y* is convex (i.e., geodetically closed) precisely when Γ has classical parameters.

Theorem (T.)

If Γ has classical parameters (d, q, α, β) then Γ_Y has classical parameters (w, q, α, β) . The converse also holds, provided $w \ge 3$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

A characterization of the five classical families

- Γ : a *Q*-polynomial distance-regular graph with $d \ge 3$
- *P* : a set of descendents of Γ
- We say \mathcal{P} satisfies $(UD)_i$ if any two $x, y \in X$ with $\partial(x, y) = i$ are contained in a unique $Y \in \mathcal{P}$ with width *i*.

Theorem (T.)

Suppose the following hold:

- Γ has classical parameters.
- 2 \mathcal{P} satisfies $(UD)_i$ for $0 \leq i \leq d$.
- ◎ $Y_1 \cap Y_2 \in \mathcal{P}$ for all $Y_1, Y_2 \in \mathcal{P}$ such that $Y_1 \cap Y_2 \neq \emptyset$.

Then \mathcal{P} , together with the partial order defined by reverse inclusion, forms a regular quantum matroid in the sense of Terwilliger.

ヘロト 人間 ト ヘヨト ヘヨト

A characterization of the five classical families

$(\mathcal{P},\preccurlyeq)$	$top(\mathcal{P})$
truncated Boolean algebra	Johnson graph
Hamming matroid	Hamming graph
truncated projective geometry	Grassmann graph
attenuated space	bilinear forms graph
classical polar space	dual polar graph

Theorem (Terwilliger, 1996)

A regular quantum matroid of rank at least four is isomorphic to one of the above five examples.

A characterization of the five classical families

Corollary (T.)

Suppose the following hold:

- Γ has classical parameters.
- 2 \mathcal{P} satisfies $(UD)_i$ for $0 \leq i \leq d$.
- $Y_1 \cap Y_2 \in \mathcal{P}$ for all $Y_1, Y_2 \in \mathcal{P}$ such that $Y_1 \cap Y_2 \neq \emptyset$.

If $d \ge 4$ then Γ is either a Johnson, Hamming, Grassmann, bilinear forms or dual polar graph.

Remark

If \mathcal{P} is the set of descendents of Γ , then (1), (2) imply (3).

Conjecture

If \mathcal{P} is the set of descendents of Γ , then (2) imply (1).

・ 同 ト ・ ヨ ト ・ ヨ ト

- \cdots is now complete for all 15 families (T.).
 - \mathcal{P} : the set of descendents of Γ

•
$$w(\mathcal{P}) = \{w(Y) : Y \in \mathcal{P}\}$$

Г	$w(\mathcal{P})ackslash\{0,d\}$
Johnson	$\{1, 2, \ldots, d-1\}$
Hamming	$\{1, 2, \ldots, d-1\}$
Grassmann	$\{1, 2, \ldots, d-1\}$
bilinear forms	$\{1, 2, \ldots, d-1\}$
dual polar	$\{1, 2, \ldots, d-1\}$
Doob	$\{1, 2, \ldots, d-1\}$
Hemmeter	$\{1, 2, \ldots, d-1\}$
twisted Grassmann	$\{1, 2, \ldots, d-1\}$
halved cube	$\{1, d-1\}$ or \emptyset
Hermitean forms	Ø
alternating forms	$\{1, d-1\}$ or \emptyset
quadratic forms	$\{1, d-1\}$ or \emptyset
dual polar with $2nd Q$ -poly.	Ø
half dual polar	$\{1, d-1\}$ or \emptyset
Ustimenko	$\{1,d-1\}$ or \emptyset

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ● ●