Applications of semidefinite programming in Algebraic Combinatorics

Hajime Tanaka

Tohoku University

The 23rd RAMP Symposium
October 24, 2011
(1) Bound the value of a numerical parameter of certain combinatorial configurations.

- parameter $=$ size, index, \ldots
- configurations $=$ codes, designs, spreads, ovoids, \cdots
(2) Show that optimal (or nearly optimal) configurations have certain additional "regularity".
(3) Classify the optimal (or nearly optimal) configurations.

A chart ("AS" stands for "association schemes")

Codes

- $\mathcal{Q}=\{0,1, \ldots, q-1\}$: an alphabet of size $q \geqslant 2$
- $C \subseteq \mathcal{Q}^{n}$: an (unrestricted) code of length n
- $\partial_{H}(\cdot, \cdot)$: the Hamming distance on \mathcal{Q}^{n} :

$$
\partial_{H}(x, y):=\left|\left\{i=1, \ldots, n: x_{i} \neq y_{i}\right\}\right|
$$

for $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{Q}^{n}$.

- $d(C):=\min \left\{\partial_{H}(x, y): x, y \in C, x \neq y\right\}:$ the minimum distance of C

A classical problem

Remark

Set $e:=\left\lfloor\frac{d(C)-1}{2}\right\rfloor$. Then

In other words, C is e-error-correcting.

- $A_{q}(n, d):=\max \{|C|: d(C) \geqslant d\}$

Problem

Determine $A_{q}(n, d)$. (Hard in general)

More modest problem

Problem*

Find a good upper bound on $A_{q}(n, d)$.

Example

- $B_{e}(x):=\left\{y \in \mathcal{Q}^{n}: \partial_{H}(x, y) \leqslant e\right\}$: the ball with radius e and center x, where $e:=\left\lfloor\frac{d-1}{2}\right\rfloor$:

- $A_{q}(n, d) \cdot\left|B_{e}(x)\right|=A_{q}(n, d) \cdot \sum_{i=0}^{e}\binom{n}{i}(q-1)^{i} \leqslant q^{n}$
- A code attaining equality in this sphere-packing bound is called a perfect code.

Association schemes

- X : a finite set
- \mathbb{C}^{X} : the $|X|$-dimensional column vector space over \mathbb{C}
- $\mathbb{C}^{X \times X}$: the set of $|X| \times|X|$ matrices over \mathbb{C}
- $\mathcal{R}=\left\{R_{0}, \ldots, R_{n}\right\}$: a set of non-empty subsets of $X \times X$
- $A_{0}, \ldots, A_{n} \in \mathbb{C}^{X \times X}$: the adjacency matrices :

$$
\left(A_{i}\right)_{x y}:= \begin{cases}1, & \text { if }(x, y) \in R_{i} \\ 0, & \text { if }(x, y) \notin R_{i} .\end{cases}
$$

$\mathcal{R}=\left\{R_{0}, \ldots, R_{n}\right\}:$ a set of non-empty subsets of $X \times X$

Definition

The pair (X, \mathcal{R}) is a (symmetric) association scheme if (AS1) $A_{0}=I$ (the identity matrix),
(AS2) $A_{0}+\cdots+A_{n}=J$ (the all 1's matrix),
(AS3) $A_{i}^{\top}=A_{i}(i=0, \ldots, n)$,
(AS4) $A_{i} A_{j} \in \boldsymbol{A}:=\operatorname{span}\left\{A_{0}, \ldots, A_{n}\right\} \quad(i, j=0, \ldots, n)$.

(AS4) $A_{i} A_{j}=\sum_{h=0}^{n} p_{i j}^{h} A_{h} \in A:=\operatorname{span}\left\{A_{0}, \ldots, A_{n}\right\}$

Remark

- A is a commutative matrix $*$-algebra, so has a basis of primitive idempotents, i.e., $E_{i} E_{j}=\delta_{i j} E_{i}, E_{0}+\cdots+E_{n}=I$.
- \boldsymbol{A} : the Bose-Mesner algebra of (X, \mathcal{R})

The Bose-Mesner algebra A of (X, \mathcal{R}) is commutative and has

- a basis of 0-1 (so nonnegative) matrices A_{0}, \ldots, A_{n},
- a basis of idempotent (so positive semidefinite) matrices E_{0}, \ldots, E_{n}.
- Each of the bases is an orthogonal basis with respect to $\langle M, N\rangle=\operatorname{trace}\left(M^{*} N\right)\left(M, N \in \mathbb{C}^{X \times X}\right)$.

The Hamming schemes

- $\mathcal{Q}=\{0,1, \ldots, q-1\}$
- $X=\mathcal{Q}^{n}$
- $(x, y) \in R_{i} \stackrel{\text { def }}{\Longleftrightarrow} \partial_{H}(x, y)=i \quad(i=0, \ldots, n)$
- $\mathcal{R}=\left\{R_{0}, \ldots, R_{n}\right\}$
- $H(n, q)=(X, \mathcal{R})$: the Hamming scheme

Remark

- $H(n, q)$ admits $G:=\mathfrak{S}_{q}$ $2 \mathfrak{S}_{n}$ as the group of automorphisms.
- \boldsymbol{A} coincides with the commutant of G in $\mathbb{C}^{X \times X}$

The LP bound (Delsarte, 1973)

- For $x \in X$, set $\hat{x}=(0, \ldots, 0,1,0, \ldots, 0)^{\top} \in \mathbb{C}^{X}$ (a 1 in position x)
- $C \subseteq X$: a code with minimum distance $d(C) \geqslant d$
- $\chi_{C}=\sum_{x \in C} \hat{x}$: the characteristic vector of C
- $M:=\frac{1}{|C|} \chi_{C} \chi_{C}^{\top} \in \mathbb{C}^{X \times X}$: nonnegative \& positive semidefinite
- $\langle M, I\rangle=1,\langle M, J\rangle=|C|$
- $\left\langle M, A_{i}\right\rangle=0$ for $i=1, \ldots, d-1$

The LP bound (Delsarte, 1973), continued

- Consider the following SDP problem:

$$
\ell_{\mathrm{LP}}=\ell_{\mathrm{LP}}(n, q, d)=\max \langle M, J\rangle
$$

subject to
(1) $\langle M, I\rangle=1$,
(2) $\left\langle M, A_{i}\right\rangle=0(i=1, \ldots, d-1)$,
(3) M : nonnegative \& positive semidefinite.

- Then $A_{q}(n, d) \leqslant \ell_{\mathrm{LP}}$.

Remark

ℓ_{LP} is the strengthening of Lovász's ϑ-number due to Schrijver (1979).

- By projecting M to A, ℓ_{LP} turns to an LP:

$$
\left(A_{q}(n, d) \leqslant\right) \ell_{\mathrm{LP}}=\ell_{\mathrm{LP}}(n, q, d)=\max \langle M, J\rangle
$$

subject to
(1) $\langle M, I\rangle=1$,
(2) $\left\langle M, A_{i}\right\rangle=0(i=1, \ldots, d-1)$,
(3) $\sum_{i=0}^{n} \frac{\left\langle M, A_{i}\right\rangle}{\left\langle A_{i}, A_{i}\right\rangle} A_{i}=\sum_{i=0}^{n} \frac{\left\langle M, E_{i}\right\rangle}{\left\langle E_{i}, E_{i}\right\rangle} E_{i} \geqslant 0 \& \succcurlyeq 0$, i.e., $\left\langle M, A_{i}\right\rangle \geqslant 0(i=d, \ldots, n),\left\langle M, E_{i}\right\rangle \geqslant 0(i=1, \ldots, n)$.

Example

- $\ell_{\mathrm{LP}}(16,2,6)=256$. In fact:
- $A_{2}(16,6)=256$ (attained by the Nordstrom-Robinson code).

Delsarte exploited duality of LP ...

Remark

Many of the known universal bounds on $A_{q}(n, d)$, including the sphere packing bound, are obtained by constructing nice feasible solutions to the dual problem of $\ell_{\text {LP }}$.

- $e:=\left\lfloor\frac{d-1}{2}\right\rfloor$
- $\Psi_{e}(z):=\sum_{i=0}^{e}(-1)^{i}\binom{z-1}{i}\binom{n-z}{e-i}(q-1)^{e-i}$: Lloyd polynomial

Theorem (Lloyd)

If a perfect e-error-correcting code exists, then $\Psi_{e}(z)$ has e distinct zeros among the integers $1,2, \ldots, n$.

More generally,

- In fact, this reduction to LP works for any SDP problem

$$
\begin{aligned}
& \max \left\langle M, B_{0}\right\rangle \\
& \text { subject to }
\end{aligned}
$$

(1) $\left\langle M, B_{i}\right\rangle=b_{i}(i=1, \ldots, m)$,
(2) M is positive semidefinite,
whenever $B_{0}, \ldots, B_{m} \in \boldsymbol{A}$ for an association scheme (X, \mathcal{R}).

- This was worked out in detail by Goemans and Rendl (1999) for the MAX-CUT problem.

Yet one more application

- Wilson (1984) used Delsarte's method to show the following Erdős-Ko-Rado theorem:

Theorem (Erdős-Ko-Rado, 1961)

Let $v>(t+1)(n-t+1)$ and let C be a collection of n-element subsets of $\Omega:=\{1, \ldots, v\}$ with the property $|x \cap y| \geqslant t$ for all $x, y \in C$. Then

$$
|C| \leqslant\binom{ v-t}{n-t},
$$

with equality if and only if

$$
C=\{x \subseteq \Omega:|x|=n, w \subseteq x\}
$$

for some t-element subset $w \subseteq \Omega$.

- This theorem has been extended to many other association schemes; cf. T. $(2006,2010)$.

The SDP bound (Schrijver, 2005)

- For simplicity, we only consider binary codes, i.e., codes in $H(n, 2)$.
- $\mathcal{Q}=\{0,1\}, X=\mathcal{Q}^{n}$
- $A_{0}, A_{1}, \ldots, A_{n}$: the adjacency matrices

Remark

- The Bose-Mesner algebra $\boldsymbol{A}=\operatorname{span}\left\{A_{0}, \ldots, A_{n}\right\}$ coincides with the commutant of $G:=\mathfrak{S}_{2} \succ \mathfrak{S}_{n}$ in $\mathbb{C}^{X \times X}$.
- Below we shall consider the commutant of \mathfrak{S}_{n} in $\mathbb{C}^{X \times X}$.

The Terwilliger algebra of $H(n, 2)$

- $\mathbf{0}:=(0, \ldots, 0) \in X$
- $E_{0}^{\vee}, \ldots, E_{n}^{\vee} \in \mathbb{C}^{X \times X}$: the dual idempotents :

$$
\left(E_{i}^{\vee}\right)_{x y}:= \begin{cases}1, & \text { if } x=y,(\mathbf{0}, x) \in R_{i} \\ 0, & \text { otherwise }\end{cases}
$$

- $\boldsymbol{T}:=\mathbb{C}\left[A_{0}, \ldots, A_{n}, E_{0}^{\vee}, \ldots, E_{n}^{\vee}\right]$: the Terwilliger algebra
- $\boldsymbol{T}=\operatorname{span}\left\{E_{i}^{\vee} A_{j} E_{h}^{\vee}: i, j, h=0, \ldots, n\right\}$

$T=\operatorname{span}\left\{E_{i}^{\vee} A_{j} E_{h}^{\vee}: i, j, h=0, \ldots, n\right\}$

Remark

- $\left(E_{i}^{\vee} A_{j} E_{h}^{\vee}\right)_{x y}= \begin{cases}1, & \text { if }(\mathbf{0}, x) \in R_{i},(x, y) \in R_{j},(\mathbf{0}, y) \in R_{h}, \\ 0, & \text { otherwise. }\end{cases}$

- $E_{i}^{\vee} A_{j} E_{h}^{\vee}=0$ unless i, j, h satisfy the triangle inequality.

Two matrices from a code

- $C \subseteq X$: an (unrestricted) code

Lemma (Schrijver, 2005)

The matrices

$$
M_{S D P}^{1}=\sum_{i, j, h} \lambda_{i j h} E_{i}^{\vee} A_{j} E_{h}^{\vee}, \quad M_{S D P}^{2}=\sum_{i, j, h}\left(\lambda_{0 j j}-\lambda_{i j h}\right) E_{i}^{\vee} A_{j} E_{h}^{\vee}
$$

with

$$
\lambda_{i j h}:=\frac{|X|}{|C|} \cdot \frac{\mid\left\{(x, y, z) \in C^{3}:(x, y, z) \text { satisfies }(\triangle)\right\} \mid}{\mid\left\{(x, y, z) \in X^{3}:(x, y, z) \text { satisfies }(\triangle)\right\} \mid}
$$

are nonnegative \& positive semidefinite, where

- It follows that $\lambda_{000}=1$ and $\sum_{i=0}^{n}\binom{n}{i} \lambda_{0 i i}=|C|$.

$\lambda_{000}=1, \quad \sum_{i=0}^{n}\binom{n}{i} \lambda_{0 i i}=|C|$

- Consider the following SDP problem:

$$
\ell_{\mathrm{SDP}}=\ell_{\mathrm{SDP}}(n, 2, d)=\max \sum_{i=0}^{n}\binom{n}{i} \lambda_{0 i i}
$$

subject to
(1) $\lambda_{000}=1$,
(2) $\lambda_{i j h}=\lambda_{i^{\prime} j^{\prime} h^{\prime}}$ if $\left(i^{\prime}, j^{\prime}, h^{\prime}\right)$ is a permutation of (i, j, h),
(3) $\sum_{i, j, h} \lambda_{i j h} E_{i}^{\vee} A_{j} E_{h}^{\vee}$: nonnegative \& positive semidefinite,
(4) $\sum_{i, j, h}\left(\lambda_{0 j j}-\lambda_{i j h}\right) E_{i}^{\vee} A_{j} E_{h}^{\vee}$: nonnegative \& positive semidefinite,
(5) $\lambda_{i j h}=0$ if $\{i, j, h\} \cap\{1,2, \ldots, d-1\} \neq \emptyset$.

- Then $A_{2}(n, d) \leqslant \ell_{\text {SDP }}$.

Computational results (Schrijver, 2005)

Bounds on $A_{2}(n, d)$

		best lower bound known	$\ell_{\text {SDP }}$	best upper bound breviously known	$\ell_{\text {LP }}$
n	d				
19	6	1024	1280	1288	1289
23	6	8192	13766	13774	13775
25	6	16384	47998	48148	48148
19	8	128	142	144	145
20	8	256	274	279	290
25	8	4096	5477	5557	6474
27	8	8192	17768	17804	18189
28	8	16384	32151	32204	32206
22	10	64	87	88	95
25	10	192	503	549	551
26	10	384	886	989	1040

Remark

- If we omit (2, then $\ell_{\text {SDP }}$ essentially coincides with the application of "matrix cuts" (Lovász-Schrijver, 1991) to $\ell_{\text {LP }}$, followed by projecting to \boldsymbol{T}.
- Gijswijt (2005) observed that (2) makes a huge difference in the resulting bound.
- Currently, several hierarchies of SDP bounds on $A_{2}(n, d)$ of the form

$$
\ell_{\mathrm{LP}} \geqslant \ell_{\mathrm{SDP}}^{(1)} \geqslant \ell_{\mathrm{SDP}}^{(2)} \geqslant \cdots \geqslant \ell_{\mathrm{SDP}}^{(k)} \geqslant \ldots\left(\geqslant A_{2}(n, d)\right)
$$

have been proposed, and some numerical computations have also been carried out (e.g., Lasserre (2001), Laurent 2007), Gvozdenović-Laurent-Vallentin (2009), Gijswijt-Mittelmann-Schrijver (2010)).

$\ell_{\text {SDP }}$ is huge \ldots

- $E_{i}^{\vee} A_{j} E_{h}^{\vee} \in \boldsymbol{T} \subseteq \mathbb{C}^{X \times X},|X|=2^{n}$.
- We reduce the size of $\ell_{\text {SDP }}$ by describing the Wedderburn decomposition (or block-diagonalization) of the matrix *-algebra \boldsymbol{T} (in a form convenient for the computation).
- \boldsymbol{T} is the commutant of \mathfrak{S}_{n} in $\mathbb{C}^{X \times X}$, and its Wedderburn decomposition was also found by Dunkl (1976) in the study of Krawtchouk polynomials.

Structure of irreducible T-modules

- $\boldsymbol{T}=\operatorname{span}\left\{E_{i}^{\vee} A_{j} E_{h}^{\vee}: i, j, h=0, \ldots, n\right\}$
- $\sum_{i=0}^{n} E_{i}^{\vee}=I, E_{i}^{\vee} E_{j}^{\vee}=\delta_{i j} E_{i}^{\vee}$
- $W \subseteq \mathbb{C}^{X}$: an irreducible \boldsymbol{T}-module
- $r:=\min \left\{i=0, \ldots, n: E_{i}^{\vee} W \neq 0\right\}$: the endpoint of W

Theorem (Go, 2002)

We have

$$
W=E_{r}^{\vee} W \perp E_{r+1}^{\vee} W \perp \cdots \perp E_{n-r}^{\vee} W
$$

More precisely,

$$
\operatorname{dim} E_{i}^{\vee} W= \begin{cases}1, & \text { if } i=r, r+1, \ldots, n-r \\ 0, & \text { otherwise }\end{cases}
$$

The isomorphism class of W is determined by the endpoint r.

Structure of irreducible \boldsymbol{T}-modules, continued

- With respect to the decomposition

$$
W=E_{r}^{\vee} W \perp E_{r+1}^{\vee} W \perp \cdots \perp E_{n-r}^{\vee} W,
$$

the matrix representing E_{i}^{\vee} on W is

$$
\left.E_{i}^{\vee}\right|_{W}=\left[\begin{array}{ll}
& \\
& 1 \\
&
\end{array} \begin{array}{l}
r \\
\vdots \\
i \\
\vdots \\
n-r
\end{array}\right.
$$

- $\left.\left(E_{i}^{\vee} A_{j} E_{h}^{\vee}\right)\right|_{W}$ is a 'sparse' matrix. (In fact, its (i,h)-entry is written by a dual Hahn polynomial.)

Remark

$$
\ell_{\mathrm{SDP}}(n, q, d)(q \geqslant 3) \text { was studied by Gijswijt-Schrijver-T. (2006). }
$$

The quadratic assignment problem (QAP)

- X : a finite set
- $\mathfrak{S}(X)$: the symmetric group on X
- $\pi(g) \in \mathbb{R}^{X \times X}$: the permutation matrix of $g \in \mathfrak{S}(X)$:

$$
(\pi(g))_{x y}=\delta_{x, g y} \quad(x, y \in X) .
$$

- $W, A \in \mathbb{R}^{X \times X}$: the distance and flow matrices
- Consider the following QAP (without linear term):

$$
\min _{g \in \mathfrak{S}(X)} \frac{1}{2}\left\langle W, \pi(g)^{\top} A \pi(g)\right\rangle
$$

- Suppose $A=A_{1} \in \boldsymbol{A}$ for some association scheme (X, \mathcal{R}).
- Write $E_{i}=\frac{1}{|X|} \sum_{j=0}^{n} Q_{j i} A_{j}(i=0, \ldots, n)$.
- Then $\left(A_{0}, \ldots, A_{n}\right) \in\left(\mathbb{C}^{X \times X}\right)^{n+1}$ satisfies
(1) $A_{0}=I$, and A_{1}, \ldots, A_{n} are nonnegative,
(2) $A_{0}+\cdots+A_{n}=J$,
(3) $\sum_{j=0}^{n} Q_{j i} A_{j}$ is positive semidefinite $(i=0, \ldots, n)$.
- Conditions (1), (2, (3) hold for

$$
\left(\pi(g)^{\top} A_{0} \pi(g), \ldots, \pi(g)^{\top} A_{n} \pi(g)\right)
$$

for any $g \in \mathfrak{S}(X)$, as well as their convex combinations.

SDP relaxation of QAP (de Klerk et al., to appear)

- Thus, the SDP problem

$$
\min \frac{1}{2}\left\langle W, M_{1}\right\rangle
$$

subject to
(1) $M_{0}=I$, and M_{1}, \ldots, M_{n} are nonnegative,
(2) $M_{0}+\cdots+M_{n}=J$,
(3) $\sum_{j=0}^{n} Q_{j i} M_{j}$ is positive semidefinite $(i=0, \ldots, n)$,
gives a lower bound on QAP.

Minimum bisection problem

- $|X|=2 m$
- W : nonnegative
- $A=\left(\begin{array}{l|l}0_{m} & J_{m} \\ \hline J_{m} & 0_{m}\end{array}\right)$
- $A_{1}:=A, \quad A_{2}:=\left(\begin{array}{c|c}J_{m}-I_{m} & 0_{m} \\ \hline 0_{m} & J_{m}-I_{m}\end{array}\right)$
- $\boldsymbol{A}=\operatorname{span}\left\{I, A_{1}, A_{2}\right\}$

Traveling salesman problem (de Klerk et al., 2008)

- W : nonnegative
- $A=\left(\begin{array}{ccccccc}0 & 1 & & & & 1 \\ 1 & 0 & 1 & & & \\ & 1 & \ddots & \ddots & & \\ & & & \ddots & 1 & \\ & & & 1 & 0 & 1 \\ 1 & & & & 1 & 0\end{array}\right)$
- $\boldsymbol{A}=\operatorname{span}\left\{I, A, A^{2}, \ldots, A^{\lfloor X \mid / 2\rfloor}\right\}$

Recent progress

Remark

- When \boldsymbol{A} is the commutant of a finite group G in $\mathbb{C}^{X \times X}$, then this SDP relaxation of QAP can be strengthened further (de Klerk-Sotirov, to appear).
- For $H(n, 2)$ (so $G=\mathfrak{S}_{2} \succ \mathfrak{S}_{n}$), the Terwilliger algebra \boldsymbol{T} plays a role again in this case.
(1) Spherical codes and spherical designs
- LP bound
- Kissing number problem $(k(4)=24$ (Musin, 2008))
- SDP bound for spherical codes (Bachoc-Vallentin, 2008)
(2) Designs
- Dual concept to codes
- LP bound

