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The Erdős–Ko–Rado theorem (1961)

Ω : a finite set with |Ω| = v > 2d

X = {x ⊆ Ω : |x| = d}

Theorem (Erdős–Ko–Rado, 1961)

Let v > (t + 1)(d − t + 1) and let Y ⊆ X be a t-intersecting family,
i.e., |x ∩ y| > t for all x, y ∈ Y. Then

|Y | 6
(v−t

d−t

)
.

If v > (t + 1)(d − t + 1) and if |Y | =
(v−t

d−t

)
then

Y = {x ∈ X : u ⊆ x}

for some u ⊆ Ω with |u| = t.
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Distance-regular graphs

Γ = (X, R) : a finite connected simple graph with diameter d

∂ : the path-length distance function
Define A0, A1, . . . , Ad ∈ RX×X by

(Ai)xy =

{
1 if ∂(x, y) = i
0 otherwise

Γ is distance-regular if there are integers ai, bi, ci such that

A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1 (i = 0, 1, . . . , d)

where A−1 = Ad+1 = 0.
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A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1 (i = 0, 1, . . . , d)

For x ∈ X, set Γi(x) = {y ∈ X : ∂(x, y) = i}.
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Johnson graphs

Ω : a finite set with |Ω| = v > 2d

X = {x ⊆ Ω : |x| = d}

x ∼R y ⇔ |x ∩ y| = d − 1 (x, y ∈ X)

Γ = J(v, d) = (X, R) : the Johnson graph

The complement of J(5, 2) with Ω = {1, 2, 3, 4, 5}:
{3,4}	

{1,2}	

{2,5}	{1,5}	
{2,3}	 {1,4}	

{3,5}	 {4,5}	

{1,3}	{2,4}	
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A1Ai = bi−1Ai−1 + aiAi + ci+1Ai+1 (i = 0, 1, . . . , d)

Γ = (X, R) : a distance-regular graph with diameter d

A0, A1, . . . , Ad : the distance matrices of Γ

θ0, θ1, . . . , θd : the distinct eigenvalues of A1

Ei : the orthogonal projection onto the eigenspace of A1
with eigenvalue θi

R[A1] = 〈A0, . . . , Ad〉 = 〈E0, . . . , Ed〉 : the Bose–Mesner
algebra of Γ

For the rest of this talk, we suppose θ0, θ1, . . . , θd is a
Q-polynomial ordering.

Remark
For our examples of graphs, we have θ0 > θ1 > · · · > θd.
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Width and dual width (Brouwer et al., 2003)

Y ⊆ X : a nonempty subset of X

χ ∈ RX : the (column) characteristic vector of Y

w = max{i : χTAiχ 6= 0} : the width of Y

w∗ = max{i : χTEiχ 6= 0} : the dual width of Y

Y	

w	

Theorem (Brouwer–Godsil–Koolen–Martin, 2003)
w + w∗ > d.

Definition
We call Y a descendent of Γ if w + w∗ = d.
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The descendents of the Johnson graphs

Ω : a finite set with |Ω| = v > 2d

X = {x ⊆ Ω : |x| = d}

u ⊆ Ω : |u| = i

Yu := {x ∈ X : u ⊆ x} satisfies w = d − i and w∗ = i:

u	

Theorem (Brouwer et al., 2003)

Every descendent of Γ = J(v, d) is isomorphic to some Yu under
the full automorphism group Aut(Γ) of Γ .
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The Erdős–Ko–Rado theorem (1961)

Ω : a finite set with |Ω| = v > 2d

X = {x ⊆ Ω : |x| = d}

Theorem (Erdős–Ko–Rado, 1961)

Let v > (t + 1)(d − t + 1) and let Y ⊆ X be a t-intersecting family,
i.e., |x ∩ y| > t for all x, y ∈ Y. Then

|Y | 6
(v−t

d−t

)
.

If v > (t + 1)(d − t + 1) and if |Y | =
(v−t

d−t

)
then

Y = {x ∈ X : u ⊆ x}

for some u ⊆ Ω with |u| = t.
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A “modern” treatment of the EKR theorem

This is in fact a result about the Johnson graph J(v, d).

Theorem (Erdős–Ko–Rado, 1961)

Let v > (t + 1)(d − t + 1) and let Y ⊆ X be a t-intersecting family,
i.e., w 6 d − t. Then

|Y | 6
(v−t

d−t

)
.

If v > (t + 1)(d − t + 1) and if |Y | =
(v−t

d−t

)
then

Y = Yu

for some u ⊆ Ω with |u| = t.
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The LP bound (Delsarte, 1973)

Γ = (X, R) : a distance-regular graph with diameter d

Y ⊆ X : w 6 d − t (i.e., “t-intersecting”)
χ ∈ RX : the (column) characteristic vector of Y

M := 1
|Y |χχT ∈ RX×X : nonnegative & positive semidefinite

〈M, I〉 = 1, 〈M, J〉 = |Y | (where J is the all 1’s matrix)
〈M, Ai〉 = 1

|Y |χ
TAiχ = 0 for i = w + 1, . . . , d
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The LP bound (Delsarte, 1973), continued

Consider the following SDP problem:

`LP = max〈M, J〉

subject to

1 〈M, I〉 = 1,
2 〈M, Ai〉 = 0 (i = w + 1, . . . , d),
3 M : nonnegative & positive semidefinite.

Then |Y | 6 `LP.

Remark
`LP is the strengthening of Lovász’s ϑ-number due to Schrijver
(1979).
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max〈M, J〉; 〈M, I〉 = 1, 〈M, Ai〉 = 0 (i = w + 1, . . . , d), · · ·

By projecting M to R[A1] = 〈A0, . . . , Ad〉 = 〈E0, . . . , Ed〉, `LP
turns to an LP:

(|Y | 6) `LP = max〈M, J〉

subject to

1 〈M, I〉 = 1,
2 〈M, Ai〉 = 0 (i = w + 1, . . . , d),

3
∑d

i=0
〈M, Ai〉
〈Ai, Ai〉

Ai =
∑d

i=0
〈M, Ei〉
〈Ei, Ei〉

Ei > 0 & < 0, i.e.,

〈M, Ai〉 > 0 (i = 1, . . . , w), 〈M, Ei〉 > 0 (i = 1, . . . , d).
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max〈M, J〉; 〈M, I〉 = 1, 〈M, Ai〉 = 0 (i = w + 1, . . . , d), · · ·

A vector f (unique, if any) satisfying the following
conditions gives a feasible solution to the dual problem:

f0 = 1, f1 = · · · = ft = 0,(D1)
ft+1 > 0, . . . , fd > 0,(D2)

(fQT)1 = · · · = (fQT)d−t = 0,(D3)

where |X|(E0, E1, . . . , Ed) = (A0, A1, . . . , Ad)Q.
By the duality of linear programming, we have

|Y | 6 (fQT)0

and equality holds if and only if Y is a descendent of Γ .

Remark
There is a universal description of the vector f (T.).
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Grassmann graphs

V : a vector space over Fq with dim V = v > 2d

X = {x 6 V : dim x = d}

x ∼R y ⇔ dim x ∩ y = d − 1 (x, y ∈ X)

Γ = Jq(v, d) = (X, R) : the Grassmann graph

u 6 V : dim u = i

Yu := {x ∈ X : u 6 x} satisfies w = d − i and w∗ = i:

u	

Theorem (T., 2006)

Every descendent of Γ = Jq(v, d) is isomorphic to some Yu

under the full automorphism group Aut(Γ) of Γ .

Hajime Tanaka Extending the Erdős–Ko–Rado theorem



The EKR theorem for Grassmann graphs

Theorem (T., 2006)

Let Y be a nonempty subset of Jq(v, d) with width w 6 d − t,
where 0 < t < d. Then |Y | 6

[v−t
d−t

]
q
, and equality holds if and

only if Y is a descendent with w = d − t.

Remark
Partial results were previously obtained by Hsieh (1975),
Frankl–Wilson (1986), Fu (1999).
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Twisted Grassmann graphs

V : a vector space over Fq with dim V = 2d + 1

H : a hyperplane of V

X1 := {x 6 V : dim x = d + 1, x 66 H}

X2 := {x 6 H : dim x = d − 1}

X := X1 ∪ X2

x ∼R y ⇐⇒ 2 dim x ∩ y = dim x + dim y − 2 (x, y ∈ X)

Γ = J̃q(2d + 1, d) = (X, R) : the twisted Grassmann graph

Remark

J̃q(2d + 1, d) was constructed by Van Dam and Koolen (2005).

J̃q(2d + 1, d) has the same parameters as Jq(2d + 1, d).

X1, X2 are the orbits of Aut(J̃q(2d + 1, d)) on X.

The induced subgraph on X2 is Jq(2d, d − 1).
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X1 = {x 6V :dim x=d+1, x 66H}, X2 = {x 6H :dim x=d−1}

u 6 H : dim u = i − 1

Yu := {x ∈ X2 : u 6 x} satisfies w = d − i and w∗ = i.

Theorem (T., 2011)

Every descendent of Γ = J̃q(2d + 1, d) with 0 < w < d is of the
form Yu.

Using the same vector f for Jq(2d + 1, d), we get:

Theorem (T.)

Let Y be a nonempty subset of J̃q(2d + 1, d) with width
w 6 d − t, where 0 < t < d. Then |Y | 6

[2d+1−t
d−t

]
q
, and equality

holds if and only if Y = Yu for some u 6 H with dim u = t − 1.
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