Extending the Erdős-Ko-Rado theorem

Hajime Tanaka

Graduate School of Information Sciences, Tohoku University

IWONT 2012

Institut Teknologi Bandung
Bandung, Indonesia
July 27, 2012

The Erdős-Ko-Rado theorem (1961)

- Ω : a finite set with $|\Omega|=v \geqslant 2 d$
- $X=\{x \subseteq \Omega:|x|=d\}$

Theorem (Erdős-Ko-Rado, 1961)

Let $v \geqslant(t+1)(d-t+1)$ and let $Y \subseteq X$ be a t-intersecting family, i.e., $|x \cap y| \geqslant t$ for all $x, y \in Y$. Then

$$
|Y| \leqslant\binom{ v-t}{d-t} .
$$

If $v>(t+1)(d-t+1)$ and if $|Y|=\binom{v-t}{d-t}$ then

$$
Y=\{x \in X: u \subseteq x\}
$$

for some $u \subseteq \Omega$ with $|u|=t$.

Distance-regular graphs

- $\Gamma=(X, R)$: a finite connected simple graph with diameter d
- ∂ : the path-length distance function
- Define $A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{R}^{X \times X}$ by

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if } \partial(x, y)=i \\ 0 & \text { otherwise }\end{cases}
$$

- Γ is distance-regular if there are integers a_{i}, b_{i}, c_{i} such that

$$
A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1}(i=0,1, \ldots, d)
$$

where $A_{-1}=A_{d+1}=0$.

$A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(i=0,1, \ldots, d)$

- For $x \in X$, set $\Gamma_{i}(x)=\{y \in X: \partial(x, y)=i\}$.

Johnson graphs

- Ω : a finite set with $|\Omega|=v \geqslant 2 d$
- $X=\{x \subseteq \Omega:|x|=d\}$
- $x \sim_{R} y \Leftrightarrow|x \cap y|=d-1 \quad(x, y \in X)$
- $\Gamma=J(v, d)=(X, R)$: the Johnson graph
- The complement of $J(5,2)$ with $\Omega=\{1,2,3,4,5\}$:

$A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(i=0,1, \ldots, d)$

- $\Gamma=(X, R)$: a distance-regular graph with diameter d
- $A_{0}, A_{1}, \ldots, A_{d}$: the distance matrices of Γ
- $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$: the distinct eigenvalues of A_{1}
- E_{i} : the orthogonal projection onto the eigenspace of A_{1} with eigenvalue θ_{i}
- $\mathbb{R}\left[A_{1}\right]=\left\langle A_{0}, \ldots, A_{d}\right\rangle=\left\langle E_{0}, \ldots, E_{d}\right\rangle$: the Bose-Mesner algebra of Γ
- For the rest of this talk, we suppose $\theta_{0}, \theta_{1}, \ldots, \theta_{d}$ is a Q-polynomial ordering.

Remark

For our examples of graphs, we have $\theta_{0}>\theta_{1}>\cdots>\theta_{d}$.

Width and dual width (Brouwer et al., 2003)

- $Y \subseteq X$: a nonempty subset of X
- $\chi \in \mathbb{R}^{X}$: the (column) characteristic vector of Y
- $w=\max \left\{i: \chi^{\top} A_{i} \chi \neq 0\right\}$: the width of Y
- $w^{*}=\max \left\{i: \chi^{\top} E_{i} \chi \neq 0\right\}$: the dual width of Y

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

$$
w+w^{*} \geqslant d
$$

Definition

We call Y a descendent of Γ if $w+w^{*}=d$.

The descendents of the Johnson graphs

- Ω : a finite set with $|\Omega|=v \geqslant 2 d$
- $X=\{x \subseteq \Omega:|x|=d\}$
- $u \subseteq \Omega:|u|=i$
- $Y_{u}:=\{x \in X: u \subseteq x\}$ satisfies $w=d-i$ and $w^{*}=i$:

Theorem (Brouwer et al., 2003)

Every descendent of $\Gamma=J(v, d)$ is isomorphic to some Y_{u} under the full automorphism group $\operatorname{Aut}(\Gamma)$ of Γ.

The Erdős-Ko-Rado theorem (1961)

- Ω : a finite set with $|\Omega|=v \geqslant 2 d$
- $X=\{x \subseteq \Omega:|x|=d\}$

Theorem (Erdős-Ko-Rado, 1961)

Let $v \geqslant(t+1)(d-t+1)$ and let $Y \subseteq X$ be a t-intersecting family, i.e., $|x \cap y| \geqslant t$ for all $x, y \in Y$. Then

$$
|Y| \leqslant\binom{ v-t}{d-t} .
$$

If $v>(t+1)(d-t+1)$ and if $|Y|=\binom{v-t}{d-t}$ then

$$
Y=\{x \in X: u \subseteq x\}
$$

for some $u \subseteq \Omega$ with $|u|=t$.

A "modern" treatment of the EKR theorem

- This is in fact a result about the Johnson graph $J(v, d)$.

Theorem (Erdős-Ko-Rado, 1961)

Let $v \geqslant(t+1)(d-t+1)$ and let $Y \subseteq X$ be a t-intersecting family, i.e., $w \leqslant d-t$. Then

$$
|Y| \leqslant\binom{ v-t}{d-t} .
$$

If $v>(t+1)(d-t+1)$ and if $|Y|=\binom{v-t}{d-t}$ then

$$
Y=Y_{u}
$$

for some $u \subseteq \Omega$ with $|u|=t$.

The LP bound (Delsarte, 1973)

- $\Gamma=(X, R)$: a distance-regular graph with diameter d
- $Y \subseteq X: w \leqslant d-t$ (i.e., " t-intersecting")
- $\chi \in \mathbb{R}^{X}$: the (column) characteristic vector of Y
- $M:=\frac{1}{|Y|} \chi \chi^{\top} \in \mathbb{R}^{X \times X}$: nonnegative \& positive semidefinite
- $\langle M, I\rangle=1,\langle M, J\rangle=|Y|$ (where J is the all 1's matrix)
- $\left\langle M, A_{i}\right\rangle=\frac{1}{|Y|} X^{\top} A_{i} X=0$ for $i=w+1, \ldots, d$

The LP bound (Delsarte, 1973), continued

- Consider the following SDP problem:

$$
\ell_{\mathrm{LP}}=\max \langle M, J\rangle
$$

subject to
(1) $\langle M, I\rangle=1$,
(2) $\left\langle M, A_{i}\right\rangle=0(i=w+1, \ldots, d)$,
(3) M : nonnegative \& positive semidefinite.

- Then $|Y| \leqslant \ell$ Lp.

Remark

$\ell_{L P}$ is the strengthening of Lovász's ϑ-number due to Schrijver (1979).

- By projecting M to $\mathbb{R}\left[A_{1}\right]=\left\langle A_{0}, \ldots, A_{d}\right\rangle=\left\langle E_{0}, \ldots, E_{d}\right\rangle, \ell_{\mathrm{LP}}$ turns to an LP:

$$
(|Y| \leqslant) \ell_{\mathrm{LP}}=\max \langle M, J\rangle
$$

subject to
(1) $\langle M, I\rangle=1$,
(2) $\left\langle M, A_{i}\right\rangle=0(i=w+1, \ldots, d)$,
(3) $\sum_{i=0}^{d} \frac{\left\langle M, A_{i}\right\rangle}{\left\langle A_{i}, A_{i}\right\rangle} A_{i}=\sum_{i=0}^{d} \frac{\left\langle M, E_{i}\right\rangle}{\left\langle E_{i}, E_{i}\right\rangle} E_{i} \geqslant 0 \& \succcurlyeq 0$, i.e.,

$$
\left\langle M, A_{i}\right\rangle \geqslant 0(i=1, \ldots, w),\left\langle M, E_{i}\right\rangle \geqslant 0(i=1, \ldots, d) .
$$

- A vector f (unique, if any) satisfying the following conditions gives a feasible solution to the dual problem:
(D1)

$$
\begin{gathered}
f_{0}=1, f_{1}=\cdots=f_{t}=0 \\
f_{t+1}>0, \ldots, f_{d}>0 \\
\left(\boldsymbol{f} Q^{\top}\right)_{1}=\cdots=\left(\boldsymbol{f} Q^{\top}\right)_{d-t}=0
\end{gathered}
$$

(D2)
(D3)
where $|X|\left(E_{0}, E_{1}, \ldots, E_{d}\right)=\left(A_{0}, A_{1}, \ldots, A_{d}\right) Q$.

- By the duality of linear programming, we have

$$
|Y| \leqslant\left(\boldsymbol{f} Q^{\top}\right)_{0}
$$

and equality holds if and only if Y is a descendent of Γ.

Remark

- There is a universal description of the vector f (T.).

Grassmann graphs

- V : a vector space over \mathbb{F}_{q} with $\operatorname{dim} V=v \geqslant 2 d$
- $X=\{x \leqslant V: \operatorname{dim} x=d\}$
- $x \sim_{R} y \Leftrightarrow \operatorname{dim} x \cap y=d-1 \quad(x, y \in X)$
- $\Gamma=J_{q}(v, d)=(X, R)$: the Grassmann graph
- $u \leqslant V: \operatorname{dim} u=i$
- $Y_{u}:=\{x \in X: u \leqslant x\}$ satisfies $w=d-i$ and $w^{*}=i$:

Theorem (T., 2006)

Every descendent of $\Gamma=J_{q}(v, d)$ is isomorphic to some Y_{u} under the full automorphism group Aut($Г$) of Γ.

The EKR theorem for Grassmann graphs

Theorem (T., 2006)

Let Y be a nonempty subset of $J_{q}(v, d)$ with width $w \leqslant d-t$, where $0<t<d$. Then $|Y| \leqslant\left[\begin{array}{c}\nu-t \\ d-t\end{array}\right]_{q}$, and equality holds if and only if Y is a descendent with $w=d-t$.

Remark

Partial results were previously obtained by Hsieh (1975), Frankl-Wilson (1986), Fu (1999).

Twisted Grassmann graphs

- V : a vector space over \mathbb{F}_{q} with $\operatorname{dim} V=2 d+1$
- H : a hyperplane of V
- $X_{1}:=\{x \leqslant V: \operatorname{dim} x=d+1, x \nless H\}$
- $X_{2}:=\{x \leqslant H: \operatorname{dim} x=d-1\}$
- $X:=X_{1} \cup X_{2}$
- $x \sim_{R} y \Longleftrightarrow 2 \operatorname{dim} x \cap y=\operatorname{dim} x+\operatorname{dim} y-2(x, y \in X)$
- $\Gamma=\tilde{J}_{q}(2 d+1, d)=(X, R)$: the twisted Grassmann graph

Remark

- $\tilde{J}_{q}(2 d+1, d)$ was constructed by Van Dam and Koolen (2005).
- $\tilde{J}_{q}(2 d+1, d)$ has the same parameters as $J_{q}(2 d+1, d)$.
- X_{1}, X_{2} are the orbits of $\operatorname{Aut}\left(\tilde{J}_{q}(2 d+1, d)\right)$ on X.
- The induced subgraph on X_{2} is $J_{q}(2 d, d-1)$.

$X_{1}=\{x \leqslant V: \operatorname{dim} x=d+1, x \nless H\}, X_{2}=\{x \leqslant H: \operatorname{dim} x=d-1\}$

- $u \leqslant H: \operatorname{dim} u=i-1$
- $Y_{u}:=\left\{x \in X_{2}: u \leqslant x\right\}$ satisfies $w=d-i$ and $w^{*}=i$.

Theorem (T., 2011)

Every descendent of $\Gamma=\tilde{J}_{q}(2 d+1, d)$ with $0<w<d$ is of the form Y_{u}.

Using the same vector f for $J_{q}(2 d+1, d)$, we get:

Theorem (T.)

Let Y be a nonempty subset of $\tilde{J}_{q}(2 d+1, d)$ with width $w \leqslant d-t$, where $0<t<d$. Then $|Y| \leqslant\left[\begin{array}{c}2 d+1-t \\ d-t\end{array}\right]_{q}$, and equality holds if and only if $Y=Y_{u}$ for some $u \leqslant H$ with $\operatorname{dim} u=t-1$.

