A cross-intersection theorem for vector spaces based on semidefinite programming

Hajime Tanaka

(joint work with Sho Suda)

Research Center for Pure and Applied Mathematics Graduate School of Information Sciences Tohoku University

8th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications June 7, 2013

・ 回 ト ・ ヨ ト ・ ヨ ト

The q-Erdős–Ko–Rado theorem

• V: a vector space/ \mathbb{F}_q with dim V = n

•
$$\begin{bmatrix} V \\ k \end{bmatrix} := \{x \leqslant V : \dim x = k\}$$

• $\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$: *t*-intersecting $\stackrel{\text{def}}{\iff} \dim x \cap y \ge t \ (\forall x, y \in \mathcal{F})$

Theorem (Hsieh, 1975; T., 2006)

•
$$\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$$
: *t*-intersecting, where $n \ge 2k$

Then

$$|\mathfrak{F}| \leqslant {n-t \brack k-t}.$$
 (#)

ヘロト ヘアト ヘビト ヘビト

■ Equality holds in (#) ⇔ One of the following holds:

1
$$\exists z \in \begin{bmatrix} V \\ t \end{bmatrix}$$
 s.t. $\mathfrak{F} = \{x \in \begin{bmatrix} V \\ k \end{bmatrix} : z \subseteq x\},$
2 $n = 2k$, and $\exists z \in \begin{bmatrix} V \\ 2k-t \end{bmatrix}$ s.t. $\mathfrak{F} = \{x \in \begin{bmatrix} V \\ k \end{bmatrix} : x \subseteq z\}.$

Remark

- The bound (#) (for all n, k, q, t) is due to Frankl and Wilson (1986).
- For *t* = 1, the *q*-EKR theorem was proved independently by Godsil and Newman (2006).

く 同 と く ヨ と く ヨ と

æ

Our goal

•
$$\mathfrak{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}, \mathfrak{G} \subseteq \begin{bmatrix} V \\ \ell \end{bmatrix}$$
: cross-(1-)intersecting
 $\stackrel{\text{def}}{\longleftrightarrow} x \cap y \neq 0 \quad (\forall x \in \mathfrak{F}, \forall y \in \mathfrak{G})$

Theorem (Suda-T., 2013)

• $\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$, $\mathcal{G} \subseteq \begin{bmatrix} V \\ \ell \end{bmatrix}$: cross-intersecting, where $n \ge 2k, 2\ell$

$$|\mathcal{F}| |\mathcal{G}| \leqslant {n-1 \choose k-1} {n-1 \choose \ell-1}. \tag{(b)}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• Equality holds in $(\flat) \iff$ One of the following holds:

$$\exists z \in \begin{bmatrix} V \\ 1 \end{bmatrix}$$
 s.t. $\mathfrak{F} = \{ x \in \begin{bmatrix} V \\ k \end{bmatrix} : z \subseteq x \}, \ \mathfrak{G} = \{ x \in \begin{bmatrix} V \\ \ell \end{bmatrix} : z \subseteq x \},$

2
$$n = 2k = 2\ell$$
, and $\exists z \in \begin{bmatrix} v \\ 2k-1 \end{bmatrix}$ s.t. $\mathcal{F} = \mathcal{G} = \{x \in \begin{bmatrix} v \\ k \end{bmatrix} : x \subseteq z\}.$

- This is a *q*-analogue of a result of Pyber (1986) and Matsumoto and Tokushige (1989), the proof of which uses the Kruskal–Katona theorem.
- Our proof is algebraic in nature and uses the duality of semidefinite programming.

個人・モン・モン

How to prove the *q*-EKR theorem (Part I)

For simplicity, we assume t = 1.

Γ_k = qK_{n:k}: the q-Kneser graph
V(Γ_k) = [^V_k]
E(Γ_k) = {(x, y) : x, y ∈ [^V_k], x ∩ y = 0}
A_k ∈ ℝ^{[V]_k|×[^V_k]}: the adjacency matrix of Γ_k:

$$(A_k)_{xy} := \begin{cases} 1 & \text{if } x \sim y \\ 0 & \text{otherwise} \end{cases} \quad (x, y \in {V \brack k})$$

• $I_k \in \mathbb{R}^{[V] \times [V]}$: the identity matrix • $J_k \in \mathbb{R}^{[V] \times [V]}$: the all 1's matrix • $Y \bullet Z := \operatorname{trace}(Y^{\mathsf{T}}Z) \quad (\forall Y, Z \in \mathbb{R}^{[V] \times [V]})$

How to prove the *q*-EKR theorem (Part I)

- $\mathcal{F} \subseteq {V \brack k}$: a (1-)intersecting family \iff an independent set of Γ_k
- $\varphi \in \mathbb{R}^{\binom{V}{k}}$: the (column) characteristic vector of \mathcal{F} :

$$\varphi_x = \begin{cases} 1 & \text{if } x \in \mathcal{F} \\ 0 & \text{otherwise} \end{cases} \quad (x \in {V \brack k})$$

X := ¹/_{||φ||²} φφ^T∈ ℝ^[V]/_k : nonnegative & positive semidefinite
X • I_k = 1, X • J_k = |𝔅|
X • A_k = ¹/_{||φ||²} φ^TA_kφ = 0

向 ト イヨ ト イヨ ト

How to prove the *q*-EKR theorem (Part I)

• Consider the following SDP problem:

$$\vartheta_k = \max_X X \bullet J_k$$

subject to

$$1 X \bullet I_k = 1,$$

$$2 X \bullet A_k = 0,$$

3 X : nonnegative & positive semidefinite.

• Then
$$|\mathfrak{F}| \leq \vartheta_k$$
.

Remark

 ϑ_k = the strengthening of Lovász's ϑ -function bound due to Schrijver (1979).

・ 同 ト ・ ヨ ト ・ ヨ ト …

How to prove our theorem (Part I)

(Caution: If $k = \ell$ then we view $\begin{bmatrix} V \\ k \end{bmatrix}$ and $\begin{bmatrix} V \\ \ell \end{bmatrix}$ as distinct copies.) • $\Gamma_{k,\ell}$: a bipartite graph • $V(\Gamma_{k,\ell}) = \begin{bmatrix} V \\ k \end{bmatrix} \cup \begin{bmatrix} V \\ \ell \end{bmatrix}$ • $E(\Gamma_{k,\ell}) = \{(x,y), (y,x) : x \in \begin{bmatrix} V \\ k \end{bmatrix}, y \in \begin{bmatrix} V \\ \ell \end{bmatrix}, x \cap y = 0\}$ • $A_{k,\ell} \in \mathbb{R}^{\left(\begin{bmatrix} V \\ k \end{bmatrix} \cup \begin{bmatrix} V \\ \ell \end{bmatrix}\right) \times \left(\begin{bmatrix} V \\ k \end{bmatrix} \cup \begin{bmatrix} V \\ \ell \end{bmatrix}\right)}$: the adjacency matrix of $\Gamma_{k,\ell}$:

$$A_{k,\ell} = \begin{pmatrix} 0_k & * \\ * & 0_\ell \end{pmatrix}$$

• $J_{k,\ell} \in \mathbb{R}^{\binom{V}{k} \cup \binom{V}{\ell} \times \binom{V}{\ell}}$: the adjacency matrix of the complete bipartite graph with bipartition $\binom{V}{k} \cup \binom{V}{\ell}$:

$$J_{k,\ell} = egin{pmatrix} 0_k & J \ J & 0_\ell \end{pmatrix}$$

通 とくほ とくほ とう

How to prove our theorem (Part I)

•
$$\mathcal{F} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}$$
, $\mathcal{G} \subseteq \begin{bmatrix} V \\ \ell \end{bmatrix}$: cross-intersecting families
 $\iff \mathcal{F} \cup \mathcal{G}$: an independent set of $\Gamma_{k,\ell}$
• $\varphi \in \mathbb{R}^{\binom{V}{k}}$: the characteristic vector of \mathcal{F}
• $\psi \in \mathbb{R}^{\binom{V}{\ell}}$: the characteristic vector of \mathcal{G}
• $X := \begin{pmatrix} \frac{1}{||\varphi||^2} \varphi \varphi^{\mathsf{T}} & \frac{1}{||\varphi|| ||\psi||} \varphi \psi^{\mathsf{T}} \\ \frac{1}{||\varphi|| ||\psi||} \psi \varphi^{\mathsf{T}} & \frac{1}{||\psi||^2} \psi \psi^{\mathsf{T}} \end{pmatrix} \in \mathbb{R}^{\binom{V}{k} \cup \binom{V}{\ell} \times \binom{V}{k} \cup \binom{V}{\ell}}$:

nonnegative & positive semidefinite

•
$$X \bullet I_k = X \bullet I_\ell = 1, \quad \frac{1}{2}X \bullet J_{k,\ell} = \sqrt{|\mathcal{F}||\mathcal{G}|}$$

• $X \bullet A_{k,\ell} = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

How to prove our theorem (Part I)

• Consider the following SDP problem:

$$\vartheta_{k,\ell} = \frac{1}{2} \max_X X \bullet J_{k,\ell}$$

subject to

$$I_k = X \bullet I_\ell = 1,$$

$$2 X \bullet A_{k,\ell} = 0,$$

3 X : nonnegative & positive semidefinite.

• Then $|\mathcal{F}| |\mathcal{G}| \leq (\vartheta_{k,\ell})^2$.

$\vartheta_{k,\ell}$ is a "bipartite variant" of Lovász's ϑ -function bound !!

・ 同 ト ・ ヨ ト ・ ヨ ト …

How to prove the q-EKR theorem (Part II)

- We prove the EKR bound |𝔅| ≤ [ⁿ⁻¹_{k-1}] by constructing an optimal feasible solution to the dual program of θ_k.
- To this end, we notice that

$$I_k, J_k, A_k \in \mathcal{A}$$

where A = the Bose–Mesner algebra of the Grassmann graph $J_q(n,k)$ (= the commutant of GL(V) acting on $\begin{bmatrix} V \\ k \end{bmatrix}$)

• By projecting the variable *X* to *A*, we may assume

$$X \in \mathcal{A}.$$

• Since *A* is a commutative matrix *-algebra, it is simultaneously diagonalized.

 $\Rightarrow \vartheta_k$ turns to an LP !!

・ 同 ト ・ ヨ ト ・ ヨ ト

How to prove the q-EKR theorem (Part II)

• The dual program is given by

$$\vartheta_k = \min_{\alpha, \gamma, Z} \alpha$$

subject to

2 : nonnegative.

• After the reduction, it can be shown that there is a unique optimal feasible solution to the dual program:

$$\alpha = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, \quad \gamma = -q^{-k^2+k} \cdot \frac{\begin{bmatrix} n-1 \\ k-1 \end{bmatrix}}{\begin{bmatrix} n-k-1 \\ k-1 \end{bmatrix}}, \quad Z = 0.$$

(More on this later.)

(* E) * E)

How to prove our theorem (Part II)

- We prove the bound |𝔅| |𝔅| ≤ [ⁿ⁻¹_{k-1}] [ⁿ⁻¹_{ℓ-1}] by constructing an optimal feasible solution to the dual program of ϑ_{k,ℓ}.
- To this end, we notice that

$$I_k, I_\ell, J_{k,\ell}, A_{k,\ell} \in \mathcal{C}$$

where C = the coherent algebra of the commutant of GL(V) acting on ${V \brack k} \cup {V \brack \ell}$

• By projecting the variable X to C, we may assume

$$X \in \mathcal{C}$$
.

 C is a matrix *-algebra, and it is simultaneously block-diagonalized into (at most) 2 × 2 matrices.
 ⇒ ϑ_{k,ℓ} turns to a drastically smaller SDP !!

伺 とく ヨ とく ヨ と

How to prove our theorem (Part II)

• The dual program is given by

$$\vartheta_{k,\ell} = \min_{\alpha,\beta,\gamma,Z} \alpha + \beta$$

subject to

• $\alpha I_k + \beta I_\ell - \gamma A_{k,\ell} - \frac{1}{2}J_{k,\ell} - Z$: positive semidefinite,

 $\bigcirc Z$: nonnegative.

 After the reduction, it can be shown that there is a unique one-parameter family of optimal feasible solutions to the dual program:

$$\alpha = \beta = \frac{1}{2} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}^{\frac{1}{2}} \begin{bmatrix} n-1 \\ \ell-1 \end{bmatrix}^{\frac{1}{2}}, \quad \gamma = b(\lambda), \quad Z = a(\lambda)A_k + \lambda A_\ell,$$

where we are assuming $k \ge \ell$, and ... (!)

通 と く ヨ と く ヨ と

How to prove our theorem (Part II)

... the functions $a(\lambda)$ and $b(\lambda)$ are given by

$$\begin{split} q^{k^{2}}(q^{k}-1) \begin{bmatrix} n-k \\ k \end{bmatrix} \cdot a(\lambda) &= \frac{1}{2}q^{\ell}(q^{k-\ell}-1) \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}^{\frac{1}{2}} \begin{bmatrix} n-1 \\ \ell-1 \end{bmatrix}^{\frac{1}{2}} \\ &+ q^{\ell^{2}}(q^{\ell}-1) \begin{bmatrix} n-\ell \\ \ell \end{bmatrix} \lambda, \\ q^{k\ell} \begin{bmatrix} n-k \\ \ell \end{bmatrix} \cdot b(\lambda) &= -\frac{1}{2}q^{\ell} \begin{bmatrix} n-1 \\ \ell \end{bmatrix} - q^{\ell^{2}} \begin{bmatrix} n-\ell \\ \ell \end{bmatrix} \begin{bmatrix} n-1 \\ \ell-1 \end{bmatrix}^{\frac{1}{2}} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}^{-\frac{1}{2}} \lambda \end{split}$$

for sufficiently small $\lambda \ge 0$.

Compare this with the unique solution of ϑ_k !!

・ 同 ト ・ ヨ ト ・ ヨ ト

End of the proofs

- In both of the theorems, the optimal feasible solutions to the dual programs, together with the duality of LP / SDP, provide enough information about the characteristic vectors of optimal (cross-)intersecting families.
- By "enough information" I do NOT mean that the characterization of optimal families is easy.

[Recall that the q-EKR theorem was proved in full generality only in 2006.]

 Indeed, the discussions in this part are very typical in Delsarte theory.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Delsarte theory (1973)

- studies in a unified manner various combinatorial objects (e.g., codes, designs) whose underlying spaces have "strong" symmetry / regularity.
- bounds the value of a numerical parameter (e.g., size, index) of such objects.
- shows that optimal (or nearly optimal) objects satisfy certain additional regularity.
- then in some cases classifies the optimal (or nearly optimal) objects.

Example

- \bullet Objects : intersecting families ${\mathfrak F}$
- Underlying space : $\begin{bmatrix} V \\ k \end{bmatrix} \curvearrowleft GL(V)$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

"Classical" Delsarte theory

- Commutative matrix *-algebras (Bose–Mesner algebras)
- Linear programming

Example

- LP bound on the size of a code (Delsarte, 1972)
 - sphere-packing bound
 - Singleton bound
 - Plotkin bound
 - McEliece–Rodemich–Rumsey–Welch bound
- Lloyd's theorem (Delsarte, 1973)
- Erdős–Ko–Rado theorem (Wilson, 1984)

ヘロト 人間 ト ヘヨト ヘヨト

"Quantum" Delsarte theory (still in its infancy)

- Noncommutative matrix *-algebras (e.g., coherent algebras, Terwilliger algebras)
- Semidefinite programming

Example

- SDP bound on the size of a code (Schrijver, 2005; Gijswijt–Schrijver–T., 2006)
- Today's theorem

・ 同 ト ・ ヨ ト ・ ヨ ト …

EKR theorems for distance-regular graphs

• $J_q(n,k)$: the Grassmann graph:

$$V(J_q(n,k)) = \begin{bmatrix} V \\ k \end{bmatrix}$$

•
$$E(J_q(n,k)) = \{(x,y) : x, y \in [{V \atop k}], \dim x \cap y = k-1\}$$

It follows that

x, y: at distance $i \iff \dim x \cap y = k - i$

• Hence $\Gamma_k = qK_{n:k}$: the distance-*k* graph of $J_q(n,k)$

 $J_q(n,k)$ is an example of a *Q*-polynomial distance-regular graph: "very strong regularity" + "very nice structure of the eigenspaces"

(雪) (ヨ) (ヨ)

EKR theorems for distance-regular graphs

 Every *Q*-polynomial DRG Γ (with diameter *k*) is associated with the parameter array:

$$\left(\{\Theta_i\}_{i=0}^k; \{\Theta_i^*\}_{i=0}^k; \{\varphi_i\}_{i=1}^k; \{\varphi_i\}_{i=1}^k\right)$$
.

[The θ_i are the distinct eigenvalues of Γ .]

Example

For $J_q(n,k)$, the parameter array is of the dual *q*-Hahn type:

•
$$\theta_i = \theta_0 + h(1 - q^i)(1 - sq^{i+1})q^{-i}$$
 $(0 \le i \le k)$

•
$$\theta_i^* = \theta_0^* + h^*(1-q^i)q^{-i}$$
 $(0 \le i \le k)$

•
$$\varphi_i = hh^*q^{1-2i}(1-q^i)(1-q^{i-k-1})(1-rq^i)$$
 $(1 \le i \le k)$

•
$$\phi_i = hh^* q^{k+2-2i} (1-q^i) (1-q^{i-k-1}) (s-rq^{i-k-1}) \quad (1 \le i \le k)$$

・ 回 ト ・ ヨ ト ・ ヨ ト

EKR theorems for distance-regular graphs

- The SDP problem ϑ_k can be defined for *t*-intersecting families (t ≥ 2) as well, and for any *Q*-polynomial DRGs.
- After the reduction to LP:

"X : positive semidefinite"

 \rightarrow k + 1 nonnegativity constraints (indexed 0, 1, ..., k)

• f_j = the j^{th} component of the unique optimal feasible solution to the dual LP ($0 \le j \le k$)

(雪) (ヨ) (ヨ)

Theorem (T., 2012)

$$f_{0} = 1, \ f_{1} = \dots = f_{t} = 0, \ \text{and}$$

$$f_{j} = \frac{\eta_{k-t}(\theta_{0})}{\eta_{k}(\theta_{0})\eta_{t}^{*}(\theta_{0}^{*})} \frac{\phi_{k-j+1}\dots\phi_{k}}{\phi_{2}\dots\phi_{j}(\theta_{j}-\theta_{0})} \left(\sum_{\ell=t+1}^{j} \frac{\tau_{\ell}(\theta_{j})\eta_{\ell-1}^{*}(\theta_{0}^{*})\vartheta_{\ell}}{\phi_{k-\ell+1}\dots\phi_{k-t}}\right)$$
for $t + 1 \leq j \leq k$, where
$$\tau_{i}(z) = (z - \theta_{0})\dots(z - \theta_{i-1}), \quad \eta_{i}(z) = (z - \theta_{d})\dots(z - \theta_{d-i+1}),$$

$$\tau_{i}^{*}(z) = (z - \theta_{0}^{*})\dots(z - \theta_{i-1}^{*}), \quad \eta_{i}^{*}(z) = (z - \theta_{d}^{*})\dots(z - \theta_{d-i+1}^{*}),$$

$$\vartheta_{i} = \sum_{h=0}^{i-1} \frac{\theta_{h} - \theta_{d-h}}{\theta_{0} - \theta_{d}}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Remark

- The f_j (t + 1 ≤ j ≤ k) are expressed as 4φ3 basic hypergeometric series (including their special / limiting cases).
- Using this result, the EKR theorem can be proved in a unified manner for several families of *Q*-polynomial DRGs (T., 2012), e.g.,
 - Johnson graphs (Wilson, 1984) \leftrightarrow original EKR
 - Grassmann graphs (Hsieh, 1975; T., 2006) $\leftrightarrow q$ -EKR
 - Hamming graphs (Moon, 1982) ↔ integer sequences
 - bilinear forms graphs (Huang, 1987; T., 2006)
 - twisted Grassmann graphs (T., 2012)

ヘロン ヘアン ヘビン ヘビン

	EKR $(t = 1)$	cross-intersection
constraints	only 1×1 matrices (i.e., LP)	involve 2×2 matrices
optimal solutions to dual program	unique	1-parameter family

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

	EKR ($t \ge 2$)	cross <i>t</i> -intersection
constraints	only 1×1 matrices (i.e., LP)	involve 2×2 matrices
optimal solutions to dual program	unique	t-parameter family

The description of the above *t*-parameter family involves 3 parameter arrays, and it is too complicated to be stated here.

通 とくほ とくほ とう