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The q-Erdős–Ko–Rado theorem

V : a vector space/Fq with dim V = n[V
k

]
:=

{
x 6 V : dim x = k

}
F ⊆

[V
k

]
: t-intersecting def⇐⇒ dim x ∩ y > t (∀x, y ∈ F)

Theorem (Hsieh, 1975; T., 2006)

F ⊆
[V

k

]
: t-intersecting, where n > 2k

Then
|F| 6

[n−t
k−t

]
. (#)

Equality holds in (#) ⇐⇒ One of the following holds:
1 ∃z ∈

[V
t

]
s.t. F =

{
x ∈

[V
k

]
: z ⊆ x

}
,

2 n = 2k, and ∃z ∈
[ V

2k−t

]
s.t. F =

{
x ∈

[V
k

]
: x ⊆ z

}
.
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The q-Erdős–Ko–Rado theorem

Remark
The bound (#) (for all n, k, q, t) is due to Frankl and Wilson
(1986).
For t = 1, the q-EKR theorem was proved independently by
Godsil and Newman (2006).
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Our goal

F ⊆
[V

k

]
, G ⊆

[V
`

]
: cross-(1-)intersecting

def⇐⇒ x ∩ y 6= 0 (∀x ∈ F, ∀y ∈ G)

Theorem (Suda–T., 2013)

F ⊆
[V

k

]
, G ⊆

[V
`

]
: cross-intersecting, where n > 2k, 2`

Then
|F| |G| 6

[n−1
k−1

][n−1
`−1

]
. ([)

Equality holds in ([) ⇐⇒ One of the following holds:
1 ∃z ∈

[V
1

]
s.t. F =

{
x ∈

[V
k

]
: z ⊆ x

}
, G =

{
x ∈

[V
`

]
: z ⊆ x

}
,

2 n = 2k = 2`, and ∃z ∈
[ V

2k−1

]
s.t. F = G =

{
x ∈

[V
k

]
: x ⊆ z

}
.
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Our goal

This is a q-analogue of a result of Pyber (1986) and
Matsumoto and Tokushige (1989), the proof of which uses
the Kruskal–Katona theorem.
Our proof is algebraic in nature and uses the duality of
semidefinite programming.
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How to prove the q-EKR theorem (Part I)

For simplicity, we assume t = 1.

Γk = qKn : k : the q-Kneser graph
V(Γk) =

[V
k

]
E(Γk) =

{
(x, y) : x, y ∈

[V
k

]
, x ∩ y = 0

}
Ak ∈ R[V

k]×[V
k] : the adjacency matrix of Γk:

(Ak)xy :=

{
1 if x ∼ y
0 otherwise

(x, y ∈
[V

k

]
)

Ik ∈ R[V
k]×[V

k] : the identity matrix

Jk ∈ R[V
k]×[V

k] : the all 1’s matrix

Y • Z := trace(YTZ) (∀Y,Z ∈ R[V
k]×[V

k])
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How to prove the q-EKR theorem (Part I)

F ⊆
[V

k

]
: a (1-)intersecting family⇐⇒ an independent set of Γk

ϕ ∈ R[V
k] : the (column) characteristic vector of F:

ϕx =

{
1 if x ∈ F

0 otherwise
(x ∈

[V
k

]
)

X := 1
||ϕ||2

ϕϕT∈R[V
k]×[V

k] : nonnegative & positive semidefinite

X • Ik = 1, X • Jk = |F|

X • Ak = 1
||ϕ||2

ϕTAkϕ = 0
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How to prove the q-EKR theorem (Part I)

Consider the following SDP problem:

ϑk = max
X

X • Jk

subject to

1 X • Ik = 1,
2 X • Ak = 0,
3 X : nonnegative & positive semidefinite.

Then |F| 6 ϑk.

Remark
ϑk = the strengthening of Lovász’s ϑ-function bound due to
Schrijver (1979).
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How to prove our theorem (Part I)

(Caution: If k = ` then we view
[V

k

]
and

[V
`

]
as distinct copies.)

Γk,` : a bipartite graph
V(Γk,`) =

[V
k

]
∪
[V

`

]
E(Γk,`) =

{
(x, y), (y, x) : x ∈

[V
k

]
, y ∈

[V
`

]
, x ∩ y = 0

}
Ak,` ∈ R

(
[V

k]∪[
V
`]
)
×
(
[V

k]∪[
V
`]
)

: the adjacency matrix of Γk,`:

Ak,` =

(
0k ∗
∗ 0`

)

Jk,` ∈ R
(
[V

k]∪[
V
`]
)
×
(
[V

k]∪[
V
`]
)

: the adjacency matrix of the
complete bipartite graph with bipartition

[V
k

]
∪
[V
`

]
:

Jk,` =

(
0k J
J 0`

)
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How to prove our theorem (Part I)

F ⊆
[V

k

]
, G ⊆

[V
`

]
: cross-intersecting families⇐⇒ F ∪ G : an independent set of Γk,`

ϕ ∈ R[V
k] : the characteristic vector of F

ψ ∈ R[V
`] : the characteristic vector of G

X :=

(
1

||ϕ||2
ϕϕT 1

||ϕ|| ||ψ||ϕψ
T

1
||ϕ|| ||ψ||ψϕ

T 1
||ψ||2

ψψT

)
∈ R

(
[V

k]∪[
V
`]
)
×
(
[V

k]∪[
V
`]
)

:

nonnegative & positive semidefinite
X • Ik = X • I` = 1, 1

2 X • Jk,` =
√

|F| |G|

X • Ak,` = 0
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How to prove our theorem (Part I)

Consider the following SDP problem:

ϑk,` = 1
2 max

X
X • Jk,`

subject to

1 X • Ik = X • I` = 1,
2 X • Ak,` = 0,
3 X : nonnegative & positive semidefinite.

Then |F| |G| 6 (ϑk,`)
2.

ϑk,` is a “bipartite variant” of Lovász’s ϑ-function bound !!
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How to prove the q-EKR theorem (Part II)

We prove the EKR bound |F| 6
[n−1

k−1

]
by constructing an

optimal feasible solution to the dual program of ϑk.
To this end, we notice that

Ik, Jk,Ak ∈ A

where A = the Bose–Mesner algebra of the Grassmann
graph Jq(n, k) (= the commutant of GL(V) acting on

[V
k

]
)

By projecting the variable X to A, we may assume

X ∈ A.

Since A is a commutative matrix ∗-algebra, it is
simultaneously diagonalized.⇒ ϑk turns to an LP !!
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How to prove the q-EKR theorem (Part II)

The dual program is given by

ϑk = min
α,γ, Z

α

subject to

1 αIk − γAk − Jk − Z : positive semidefinite,
2 Z : nonnegative.

After the reduction, it can be shown that there is a unique
optimal feasible solution to the dual program:

α =
[n−1

k−1

]
, γ = −q−k2+k ·

[n−1
k−1

][n−k−1
k−1

] , Z = 0.

(More on this later.)
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How to prove our theorem (Part II)

We prove the bound |F| |G| 6
[n−1

k−1

][n−1
`−1

]
by constructing an

optimal feasible solution to the dual program of ϑk,`.
To this end, we notice that

Ik, I`, Jk,`,Ak,` ∈ C

where C = the coherent algebra of the commutant of
GL(V) acting on

[V
k

]
∪
[V
`

]
By projecting the variable X to C, we may assume

X ∈ C.

C is a matrix ∗-algebra, and it is simultaneously
block-diagonalized into (at most) 2 × 2 matrices.⇒ ϑk,` turns to a drastically smaller SDP !!
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How to prove our theorem (Part II)

The dual program is given by

ϑk,` = min
α,β,γ, Z

α+ β

subject to

1 αIk + βI` − γAk,` − 1
2 Jk,` − Z : positive semidefinite,

2 Z : nonnegative.

After the reduction, it can be shown that there is a unique
one-parameter family of optimal feasible solutions to the
dual program:

α = β = 1
2

[n−1
k−1

] 1
2
[n−1
`−1

] 1
2 , γ = b(λ), Z = a(λ)Ak + λA`,

where we are assuming k > `, and . . . (!)

Hajime Tanaka A cross-intersection theorem for vector spaces



How to prove our theorem (Part II)

. . . the functions a(λ) and b(λ) are given by

qk2
(qk − 1)

[n−k
k

]
· a(λ) = 1

2 q`(qk−` − 1)
[n−1

k−1

] 1
2
[n−1
`−1

] 1
2

+ q`
2
(q` − 1)

[n−`
`

]
λ,

qk`[n−k
`

]
· b(λ) = − 1

2 q`
[n−1
`

]
− q`

2[n−`
`

][n−1
`−1

] 1
2
[n−1

k−1

]− 1
2λ

for sufficiently small λ > 0.

Compare this with the unique solution of ϑk !!
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End of the proofs

In both of the theorems, the optimal feasible solutions to
the dual programs, together with the duality of LP / SDP,
provide enough information about the characteristic
vectors of optimal (cross-)intersecting families.
By “enough information” I do NOT mean that the
characterization of optimal families is easy.

[Recall that the q-EKR theorem was proved in full generality only
in 2006.]

Indeed, the discussions in this part are very typical in
Delsarte theory.
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Delsarte theory (1973)

studies in a unified manner various combinatorial objects
(e.g., codes, designs) whose underlying spaces have
“strong” symmetry / regularity.
bounds the value of a numerical parameter (e.g., size,
index) of such objects.
shows that optimal (or nearly optimal) objects satisfy
certain additional regularity.
then in some cases classifies the optimal (or nearly
optimal) objects.

Example

Objects : intersecting families F

Underlying space :
[V

k

]
x GL(V)
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“Classical” Delsarte theory

Commutative matrix ∗-algebras (Bose–Mesner algebras)
Linear programming

Example
LP bound on the size of a code (Delsarte, 1972)

sphere-packing bound
Singleton bound
Plotkin bound
McEliece–Rodemich–Rumsey–Welch bound

Lloyd’s theorem (Delsarte, 1973)
Erdős–Ko–Rado theorem (Wilson, 1984)
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“Quantum” Delsarte theory (still in its infancy)

Noncommutative matrix ∗-algebras (e.g., coherent
algebras, Terwilliger algebras)
Semidefinite programming

Example
SDP bound on the size of a code (Schrijver, 2005;
Gijswijt–Schrijver–T., 2006)
Today’s theorem
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EKR theorems for distance-regular graphs

Jq(n, k) : the Grassmann graph:
V(Jq(n, k)) =

[V
k

]
E(Jq(n, k)) =

{
(x, y) : x, y ∈

[V
k

]
, dim x ∩ y = k − 1

}
It follows that

x, y : at distance i ⇐⇒ dim x ∩ y = k − i

Hence Γk = qKn : k : the distance-k graph of Jq(n, k)

Jq(n, k) is an example of a Q-polynomial distance-regular graph:
“very strong regularity” + “very nice structure of the eigenspaces”
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EKR theorems for distance-regular graphs

Every Q-polynomial DRG Γ (with diameter k) is associated
with the parameter array:(

{θi}
k
i=0; {θ∗i }

k
i=0; {ϕi}

k
i=1; {φi}

k
i=1
)
.

[The θi are the distinct eigenvalues of Γ .]

Example

For Jq(n, k), the parameter array is of the dual q-Hahn type:
θi = θ0 + h(1 − qi)(1 − sqi+1)q−i (0 6 i 6 k)

θ∗i = θ∗0 + h∗(1 − qi)q−i (0 6 i 6 k)

ϕi = hh∗q1−2i(1 − qi)(1 − qi−k−1)(1 − rqi) (1 6 i 6 k)

φi = hh∗qk+2−2i(1 − qi)(1 − qi−k−1)(s − rqi−k−1) (1 6 i 6 k)

Hajime Tanaka A cross-intersection theorem for vector spaces



EKR theorems for distance-regular graphs

The SDP problem ϑk can be defined for t-intersecting
families (t > 2) as well, and for any Q-polynomial DRGs.
After the reduction to LP:

“X : positive semidefinite”→ k + 1 nonnegativity constraints
(indexed 0, 1, . . . , k)

fj = the j th component of the unique optimal feasible
solution to the dual LP (0 6 j 6 k)
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EKR theorems for distance-regular graphs

Theorem (T., 2012)
f0 = 1, f1 = · · · = ft = 0, and

fj =
ηk−t(θ0)

ηk(θ0)η
∗
t (θ

∗
0)

φk−j+1 . . . φk

ϕ2 . . . ϕj(θj − θ0)

( j∑
`=t+1

τ`(θj)η
∗
`−1(θ

∗
0)ϑ`

φk−`+1 . . . φk−t

)
for t + 1 6 j 6 k, where
τi(z) = (z − θ0) . . . (z − θi−1), ηi(z) = (z − θd) . . . (z − θd−i+1),

τ∗i (z) = (z − θ∗0) . . . (z − θ∗i−1), η∗i (z) = (z − θ∗d) . . . (z − θ∗d−i+1),

ϑi =

i−1∑
h=0

θh − θd−h

θ0 − θd
.
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EKR theorems for distance-regular graphs

Remark
The fj (t + 1 6 j 6 k) are expressed as 4φ3 basic
hypergeometric series (including their special / limiting
cases).
Using this result, the EKR theorem can be proved in a
unified manner for several families of Q-polynomial DRGs
(T., 2012), e.g.,

Johnson graphs (Wilson, 1984) ↔ original EKR
Grassmann graphs (Hsieh, 1975; T., 2006) ↔ q-EKR
Hamming graphs (Moon, 1982) ↔ integer sequences
bilinear forms graphs (Huang, 1987; T., 2006)
twisted Grassmann graphs (T., 2012)
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Summary & future work

EKR (t = 1) cross-intersection

constraints
only 1 × 1 matrices

(i.e., LP)
involve 2 × 2 matrices

optimal solutions
to dual program

unique 1-parameter family

Hajime Tanaka A cross-intersection theorem for vector spaces



Summary & future work

EKR (t > 2) cross t-intersection

constraints
only 1 × 1 matrices

(i.e., LP)
involve 2 × 2 matrices

optimal solutions
to dual program

unique t-parameter family

The description of the above t-parameter family involves 3 pa-
rameter arrays, and it is too complicated to be stated here.
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