The Terwilliger algebra of a Q-polynomial distance-regular graph with respect to a set of vertices

Hajime Tanaka

(joint work with Rie Tanaka and Yuta Watanabe)

Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University
November 29, 2014
Algebraic Combinatorics Workshop

Notation

- $\Gamma=(X, R)$: a finite connected simple graph
- X : the vertex set
- R : the edge set (= a set of 2 -element subsets of X)
- ∂ : the path-length distance on X

- $D:=\max \{\partial(x, y): x, y \in X\}$: the diameter of Γ
- $\Gamma_{i}(x):=\{y \in X: \partial(x, y)=i\}$: the $i^{\text {th }}$ subconstituent

Distance-regular graphs

- Γ : distance-regular

$$
\begin{aligned}
& \stackrel{\text { def }}{\Longleftrightarrow} \exists a_{i}, b_{i}, c_{i}(0 \leqslant i \leqslant D) \text { s.t. } \forall x, y \in X: \\
& \bullet\left|\Gamma_{i-1}(x) \cap \Gamma_{1}(y)\right|=c_{i} \\
& \text { - }\left|\Gamma_{i}(x) \cap \Gamma_{1}(y)\right|=a_{i} \\
& \text { - }\left|\Gamma_{i+1}(x) \cap \Gamma_{1}(y)\right|=b_{i}
\end{aligned}
$$

where $\partial(x, y)=i$.

The adjacency algebra

- $\operatorname{Mat}_{X}(\mathbb{C})$: the set of square matrices over \mathbb{C} index by X
- The $i^{\text {th }}$ distance matrix $A_{i} \in \operatorname{Mat}_{X}(\mathbb{C})$ is

$$
\left(A_{i}\right)_{x, y}= \begin{cases}1 & \text { if } \partial(x, y)=i \\ 0 & \text { otherwise }\end{cases}
$$

[Note: $A_{0}=I$]

- $A_{0}, A_{1}, \ldots, A_{D}$ satisfy the three-term recurrence

$$
A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(0 \leqslant i \leqslant D)
$$

where $A_{-1}=A_{D+1}=0$.

The adjacency algebra

- Recall the three-term recurrence

$$
A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(0 \leqslant i \leqslant D)
$$

where $A_{-1}=A_{D+1}=0$.

- $\boldsymbol{M}:=\mathbb{C}\left[A_{1}\right] \subseteq \operatorname{Mat}_{X}(\mathbb{C})$: the adjacency algebra of Γ
- $\exists v_{i} \in \mathbb{Q}[t]$ s.t. $\operatorname{deg} v_{i}=i$ and $A_{i}=v_{i}\left(A_{1}\right) \quad(0 \leqslant i \leqslant D)$
- $\boldsymbol{M}=\left\langle A_{0}, A_{1}, \ldots, A_{D}\right\rangle$
- A_{1} has $D+1$ distinct eigenvalues $\theta_{0}, \theta_{1}, \ldots, \theta_{D} \in \mathbb{R}$.

The Q-polynomial property

- Recall
- $\theta_{0}, \theta_{1}, \ldots, \theta_{D} \in \mathbb{R}$: the distinct eigenvalues of A_{1}
- Γ : regular with valency $k_{1}:=\left|\Gamma_{1}(x)\right|\left(=b_{0}\right)$
- Always set $\theta_{0}=k_{1}$.
- $E_{\ell} \in \operatorname{Mat}_{X}(\mathbb{C})$: the orthogonal projection onto the eigenspace of $\theta_{\ell} \quad$ [Note: $E_{0}=\frac{1}{|X|} J$ (J : the all-ones matrix)]
- $\boldsymbol{M}=\mathbb{C}\left[A_{1}\right]=\left\langle A_{0}, A_{1}, \ldots, A_{D}\right\rangle=\left\langle E_{0}, E_{1}, \ldots, E_{D}\right\rangle$
- $E_{0}, E_{1}, \ldots, E_{D}$: the primitive idempotents of \boldsymbol{M}

The Q-polynomial property

- Recall the three-term recurrence

$$
A_{1} A_{i}=b_{i-1} A_{i-1}+a_{i} A_{i}+c_{i+1} A_{i+1} \quad(0 \leqslant i \leqslant D)
$$

- $\Gamma: Q$-polynomial w.r.t. $\left\{E_{\ell}\right\}_{\ell=0}^{D}$
$\stackrel{\text { def }}{\Longleftrightarrow} \exists a_{\ell}^{*}, b_{\ell}^{*}, c_{\ell}^{*} \quad(0 \leqslant \ell \leqslant D)$ s.t. $b_{\ell-1}^{*} c_{\ell}^{*} \neq 0(1 \leqslant \ell \leqslant D)$ and

$$
|X| E_{1} \circ E_{\ell}=b_{\ell-1}^{*} E_{\ell-1}+a_{\ell}^{*} E_{\ell}+c_{\ell+1}^{*} E_{\ell+1} \quad(0 \leqslant \ell \leqslant D)
$$

where $E_{-1}=E_{D+1}=0$ and \circ is the entrywise product.

Width and dual width (Brouwer et al., 2003)

- We shall assume Γ is a Q-polynomial DRG.
- $Y \subseteq X$: a nonempty subset of X
- $\chi \in \mathbb{C}^{X}$: the characteristic vector of Y
- $w=\max \left\{i: \chi^{\top} A_{i} \chi \neq 0\right\}$: the width of Y
- $w^{*}=\max \left\{\ell: \chi^{\top} E_{\ell} \chi \neq 0\right\}$: the dual width of Y

Width and dual width (Brouwer et al., 2003)

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

- We have

$$
w+w^{*} \geqslant D
$$

- If $w+w^{*}=D$ then Y is completely regular, and the induced subgraph Γ_{Y} on Y is a Q-polynomial DRG with diameter w provided it is connected.
- Y : a descendent of $\Gamma \stackrel{\text { def }}{\Longleftrightarrow} w+w^{*}=D$
- Descendents play a role in the Assmus-Mattson theorem (T., 2009) and also in the Erdős-Ko-Rado theorem (T., 2006, 2012).

Some descendents

- $w=0: Y=\{x\} \quad(x \in X)$
- $w=D: Y=X$
- $w=1$: Delsarte cliques $\left(\Longrightarrow \theta_{D}=\theta_{\min }\right)$ i.e., $|Y|=1-\frac{k_{1}}{\theta_{D}}$

A chain of descendents

A poset

Theorem (T., 2011)

- Let Y be a descendent of Γ and suppose Γ_{Y} is connected. Then a nonempty subset of Y is a descendent of Γ_{Y} if and only if it is a descendent of Γ.
- \mathscr{L} : the set of isomorphism classes of Q-polynomial DRGs
- $[\Delta] \preccurlyeq[\Gamma] \stackrel{\text { def }}{\Longleftrightarrow} \exists Y$: a descendent of Γ s.t. $[\Delta]=\left[\Gamma_{Y}\right]$
- $(\mathscr{L}, \preccurlyeq)$: a poset

The structure of $(\mathscr{L}, \preccurlyeq)$

- The classification of descendents is complete for the 15 known infinite families of DRGs with unbounded diameter and with classical parameters (BGKM, 2003; T., 2006, 2011).
- The ideal $\mathscr{I}_{[\Gamma]}=\{[\Delta] \in \mathscr{L}:[\Delta] \preccurlyeq[\Gamma]\}$ is known if Γ belongs to one of the above families.

The structure of $(\mathscr{L}, \preccurlyeq)$

Problem

- Determine the filter $\mathscr{F}_{[\Gamma]}=\{[\Delta] \in \mathscr{L}:[\Gamma] \preccurlyeq[\Delta]\}$
- This has been solved at the parameteric level.
- The generic case is described in terms of 5 scalars (besides D) $q, r_{1}, r_{2}, s, s^{*}$ where $r_{1} r_{2}=s s^{*} q^{D+1}$ (Leonard, 1982).

Theorem (T., 2009, 2011)

- Suppose $[\Gamma] \preccurlyeq[\Delta]$ and Δ has diameter $C \geqslant D$. If $D \geqslant 3$ then the scalars corresponding to Δ are

$$
q, r_{1}, r_{2}, s q^{D-C}, s^{*}
$$

$$
r_{1} r_{2}=\left(s q^{D-C}\right) s^{*} q^{C+1}
$$

When Γ_{Y} is connected

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

- We have

$$
w+w^{*} \geqslant D
$$

- If $w+w^{*}=D$ then Y is completely regular, and the induced subgraph Γ_{Y} on Y is a Q-polynomial DRG with diameter w provided it is connected.

Theorem (T., 2011)

- Let Y be a descendent of Γ. Then Γ_{Y} is connected if and only if $q \neq-1$, or $q=-1$ and w^{*} is even.

The Terwilliger algebra

- $Y \subseteq X$: a nonempty subset of X
- $Y_{i}=\{z \in X: \partial(z, Y)=i\}$
- $\tau=\max \left\{i: Y_{i} \neq \emptyset\right\}$: the covering radius of Y

the distance partition of X

The Terwilliger algebra

- $\chi_{i} \in \mathbb{C}^{\text {th }}$ "dual idempotent" the characteristic vector of $Y_{i}(0 \leqslant i \leqslant \tau)$
- $E_{i}^{*}=\operatorname{Diag}\left(\chi_{i}\right) \in \operatorname{Mat}_{X}(\mathbb{C})(0 \leqslant i \leqslant \tau)$,

$$
\left(E_{i}^{*}\right)_{z z}=\left\{\begin{array}{ll}
1 & \text { if } z \in Y_{i}, \\
0 & \text { otherwise },
\end{array} \quad(z \in X)\right.
$$

- $\boldsymbol{T}=\boldsymbol{T}(Y)=\mathbb{C}\left[A_{1}, E_{0}^{*}, \ldots, E_{\tau}^{*}\right]$: the Terwilliger algebra with respect to Y (Martin-Taylor, 1997; Suzuki, 2005)
- $Y=\{x\} \Longrightarrow \boldsymbol{T}=\boldsymbol{T}(x)$: the Terwilliger algebra with respect to x (Terwilliger, 1992)

The case when Y is a descendent

- We shall assume Y is a descendent of Γ.

- We have $\tau=\left|\left\{\ell \neq 0: \chi^{\top} E_{\ell} \chi \neq 0\right\}\right|=w^{*}$.

Delsarte (1973)
BGKM (2003)

- $\boldsymbol{T}=\mathbb{C}\left[A_{1}, E_{0}^{*}, \ldots, E_{w^{*}}^{*}\right]$

The dual adjacency matrix

- $E_{i}^{*} A_{1} E_{j}^{*}=0$ if $|i-j|>1$

- $A_{1}^{*}=\frac{|X|}{|C|} \operatorname{Diag}\left(E_{1} \chi\right) \in \operatorname{Mat}_{X}(\mathbb{C})$: the dual adjacency matrix
- Y : completely regular $\Longrightarrow A_{1}^{*} \in M^{*}:=\left\langle E_{0}^{*}, E_{1}^{*}, \ldots, E_{w^{*}}^{*}\right\rangle$
"dual Bose-Mesner algebra"

Lemma (cf. Cameron-Goethals-Seidel, 1978)

- $E_{i} A_{1}^{*} E_{j}=0$ if $|i-j|>1$

Tridiagonal pairs

- W : a finite-dimensional complex vector space
- $\mathfrak{a}, \mathfrak{a}^{*} \in \operatorname{End}(W)$: diagonalizable
- $\left(\mathfrak{a}, \mathfrak{a}^{*}\right)$: a tridiagonal pair (Ito-Tanabe-Terwilliger, 2001)
$\stackrel{\text { def }}{\Longleftrightarrow} \bullet \exists W_{0}, W_{1}, \ldots, W_{d}:$ an ordering of the eigenspaces of A s.t.

$$
\mathfrak{a}^{*} W_{i} \subset W_{i-1}+W_{i}+W_{i-1} \quad(0 \leqslant i \leqslant d)
$$

- $\exists W_{0}^{*}, W_{1}^{*}, \ldots, W_{d^{*}}^{*}$: an ordering of the eigenspaces of A^{*} s.t.

$$
\mathfrak{a} W_{i}^{*} \subset W_{i-1}^{*}+W_{i}^{*}+W_{i-1}^{*} \quad\left(0 \leqslant i \leqslant d^{*}\right) ;
$$

- W : irreducible as a $\mathbb{C}\left[\mathfrak{a}, \mathfrak{a}^{*}\right]$-module.

Proposition (Ito-Tanabe-Terwilliger, 2001)

- $d=d^{*}$.

Do irreducible T-modules afford tridiagonal pairs?

- $E_{i}^{*} A_{1} E_{j}^{*}=0$ if $|i-j|>1$
- $E_{i} A_{1}^{*} E_{j}=0$ if $|i-j|>1$
- W : an irreducible \boldsymbol{T}-module
- $A_{1} E_{i}^{*} W \subset E_{i-1}^{*} W+E_{i}^{*} W+E_{i+1}^{*} W$
- $A_{1}^{*} E_{i} W \subset E_{i-1} W+E_{i} W+E_{i+1} W$
- If $M^{*}=\mathbb{C}\left[A_{1}^{*}\right]$ then W is irreducible as a $\mathbb{C}\left[A_{1}, A_{1}^{*}\right]$-module.
$\boldsymbol{T}=\mathbb{C}\left[A_{1}, A_{1}^{*}\right]$

Theorem

- Every irreducible T-module affords a tridiagonal pair if and only if $q \neq-1$, or $q=-1$ and w is even.

Some general results

- We shall assume $q \neq-1$.
- W : an irreducible \boldsymbol{T}-module
- $\rho=\min \left\{i: E_{i}^{*} W \neq 0\right\}$: the endpoint of W
- $\rho^{*}=\min \left\{\ell: E_{\ell} W \neq 0\right\}$: the dual endpoint of W
- $d=\left|\left\{i: E_{i}^{*} W \neq 0\right\}\right|=\left|\left\{\ell: E_{\ell} W \neq 0\right\}\right|$: the diameter of W
- $\left\{i: E_{i}^{*} W \neq 0\right\}=\{\rho, \ldots, \rho+d\} \subset\left\{0,1, \ldots, w^{*}\right\}$
- $\left\{\ell: E_{\ell} W \neq 0\right\}=\left\{\rho^{*}, \ldots, \rho^{*}+d\right\} \subset\{0,1, \ldots, D\}$

Proposition (cf. Caughman, 1999)

- $2 \rho+d \geqslant w^{*}$
- $2 \rho^{*}+d \geqslant w^{*}$

Some general results

- $\rho+d \leqslant w^{*}$
- $\rho^{*}+d \leqslant D$
- $2 \rho+d \geqslant w^{*}$
- $2 \rho^{*}+d \geqslant w^{*}$
- $\eta:=\rho+\underline{\rho^{*}+d}-w^{*}:$ the displacement of W

- $0 \leqslant \eta \leqslant D$
- We may generalize the displacement and split decompositions of \mathbb{C}^{X} due to Terwilliger (2005).
- In particular, it is likely that $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right) \rightarrow \boxtimes_{q} \xrightarrow{\exists} \boldsymbol{T}$ when Γ is a forms graph (cf. Ito-Terwilliger, 2009).

Some general results

- W : thin $\stackrel{\text { def }}{\Longleftrightarrow} \operatorname{dim} E_{i}^{*} W \leqslant 1(0 \leqslant i \leqslant D)$
\Longleftrightarrow the associated tridiagonal pair is a Leonard pair

Theorem (Hosoya-Suzuki, 2007)

- There are precisely $w+1$ inequivalent irreducible \boldsymbol{T}-modules in \mathbb{C}^{X} with $\rho=0$.
- Each of such modules is thin and is generated by an eigenvector of Γ_{Y} in $\mathbb{C}^{Y}=E_{0}^{*} \mathbb{C}^{X}$.

Hamming graphs

- $[q]=\{0,1, \ldots, q-1\} \quad(q \geqslant 2)$
- $X=[q]^{D}$
- $y \sim z \stackrel{\text { def }}{\Longleftrightarrow}\left|\left\{i: y_{i} \neq z_{i}\right\}\right|=1$
- $\Gamma=H(D, q):$ the Hamming graph
- The structure of $\boldsymbol{T}(x)$ has been well studied.
- $H(D, 2)=\mathcal{Q}_{D} \Longrightarrow U\left(\mathfrak{s l}_{2}\right) \xrightarrow{\exists} \boldsymbol{T}(x)$ (Go, 2002)
- $H(D, q)(q \geqslant 3) \Longrightarrow$ The method for the Doob graphs (Tanabe, 1997) works as well.

Hamming graphs

- $n \in\{0,1, \ldots, D\}$
- $Y=\left\{z \in X: z_{1}=\cdots=z_{n}=0\right\}$: a descendent with $w=D-n$, $w^{*}=n$

$$
z=(\underbrace{0, \ldots, 0}_{n} \mid \underbrace{*, \ldots, *}_{D-n})
$$

- $\Gamma_{Y} \cong H(D-n, q)$

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

- Every descendent of $\Gamma=H(D, q)$ with $w^{*}=n$ is isomorphic (under Aut Γ) to Y above.

Hamming graphs

- $z=(\underbrace{0,0,0, \ldots, 0}_{n} \mid \underbrace{*, \ldots, *}_{D-n}) \in Y=Y_{0}$
- $z=(\underbrace{1,0,0, \ldots, 0}_{n} \mid \underbrace{*, \ldots, *}_{D-n}) \in Y_{1}$
- $z=(\underbrace{1,1,0, \ldots, 0}_{n} \mid \underbrace{*, \ldots, *}_{D-n}) \in Y_{2}$
- $Y_{i}=\Gamma_{i}^{\prime}(\mathbf{0}) \times[q]^{D-n}(0 \leqslant i \leqslant n)$
where $\Gamma^{\prime}=H(n, q)$ and $\mathbf{0}=(\underbrace{0, \ldots, 0}_{n})$

Hamming graphs

- $\Gamma^{\prime}=H(n, q), \quad \Gamma^{\prime \prime}=H(D-n, q)$
- Use ' (resp. ") to denote objects associated with Γ^{\prime} (resp. $\Gamma^{\prime \prime}$).
- $Y_{i}=\Gamma_{i}^{\prime}(\mathbf{0}) \times[q]^{D-n}(0 \leqslant i \leqslant n)$
- $E_{i}^{*}=E_{i}^{* \prime} \otimes I^{\prime \prime} \in \boldsymbol{T}^{\prime}(\mathbf{0}) \otimes \boldsymbol{M}^{\prime \prime}(0 \leqslant i \leqslant n)$
- $A_{1}=A_{1}^{\prime} \otimes I^{\prime \prime}+I^{\prime} \otimes A_{1}^{\prime \prime} \in \boldsymbol{T}^{\prime}(\mathbf{0}) \otimes \boldsymbol{M}^{\prime \prime}$
- $\boldsymbol{T} \subset \boldsymbol{T}^{\prime}(\mathbf{0}) \otimes \boldsymbol{M}^{\prime \prime}$

Theorem

- Every irreducible $\left(\boldsymbol{T}^{\prime}(\mathbf{0}) \otimes \boldsymbol{M}^{\prime \prime}\right)$-module is a thin irreducible T-module.

Johnson graphs

- Use ${ }^{\sim}$ to denote objects associated with $\mathcal{Q}_{v}=H(v, 2) \quad(v \geqslant 2 D)$.
- $X=\widetilde{\Gamma}_{D}(\mathbf{0})=\left\{z \in[2]^{v}: \partial(\mathbf{0}, z)=D\right\}$ where $\mathbf{0}=(0, \ldots, 0)$ $\checkmark_{i n}$ bijection with $\binom{[v]}{D}$
- $y \sim z \stackrel{\text { def }}{\Longleftrightarrow} \partial(y, z)=2$
- $\Gamma=J(v, D)$: the Johnson graph

Johnson graphs

- $n \in\{0,1, \ldots, D\}$
- $u \in \widetilde{\Gamma}_{n}(\mathbf{0}) \longleftrightarrow\binom{[v]}{n}$
- $Y=\{z \in X: \partial(u, z)=D-n\}$: a descendent with $w=D-n$, $w^{*}=n$

$$
\begin{aligned}
& u=(\overbrace{1, \ldots, 1}^{n} \mid \overbrace{0, \ldots, 0,0, \ldots, 0}^{v-n}) \\
& z=(1, \ldots, 1 \mid \underbrace{1, \ldots, 1}_{D-n}, 0, \ldots, 0)
\end{aligned}
$$

- $\Gamma_{Y} \cong J(v-n, D-n)$

Theorem (Brouwer-Godsil-Koolen-Martin, 2003)

- Every descendent of $\Gamma=J(v, D)$ with $w^{*}=n$ is isomorphic (under Aut Γ) to Y above.

Johnson graphs

- $u=(\underbrace{1, \ldots, 1,1,1}_{n} \mid \underbrace{0, \ldots, 0,0,0,0, \ldots, 0}_{v-n})$
- $z=(\underbrace{1, \ldots, 1,1,1}_{n} \mid \underbrace{1, \ldots, 1}_{D-n}, 0,0,0, \ldots, 0) \in Y=Y_{0}$
- $z=(\underbrace{1, \ldots, 1,1}_{n-1}, 0 \mid \underbrace{1, \ldots, 1,1}_{D-n+1}, 0,0, \ldots, 0) \in Y_{1}$
- $z=(\underbrace{1, \ldots, 1}_{n-2}, 0,0 \mid \underbrace{1, \ldots, 1,1,1}_{D-n+2}, 0, \ldots, 0) \in Y_{2}$
- $Y_{i}=\Gamma_{n-i}^{\prime}(\mathbf{0}) \times \Gamma_{D-n+i}^{\prime \prime}(\mathbf{0})(0 \leqslant i \leqslant n)$
where $\Gamma^{\prime}=\mathcal{Q}_{n}$ and $\Gamma^{\prime \prime}=\mathcal{Q}_{v-n}$

Johnson graphs

- $\Gamma^{\prime}=\mathcal{Q}_{n}, \quad \Gamma^{\prime \prime}=\mathcal{Q}_{v-n}$
- Use ' (resp. ") to denote objects associated with Γ^{\prime} (resp. $\Gamma^{\prime \prime}$).
- $Y_{i}=\Gamma_{n-i}^{\prime}(\mathbf{0}) \times \Gamma_{D-n+i}^{\prime \prime}(\mathbf{0})(0 \leqslant i \leqslant n)$
- $E_{i}^{*}=E_{n-i}^{* \prime} \otimes E_{D-n+i}^{* \prime \prime} \in \widetilde{E}_{D}^{*}\left({\left.\underset{K}{\top} \otimes \boldsymbol{T}^{\prime \prime}\right) \widetilde{E}_{D}^{*}}^{\text {both w.r.t. } 0}\right.$
- $A_{1}=\widetilde{E}_{D}^{*} \widetilde{A}_{2} \widetilde{E}_{D}^{*} \in \widetilde{E}_{D}^{*}\left(\boldsymbol{T}^{\prime} \otimes \boldsymbol{T}^{\prime \prime}\right) \widetilde{E}_{D}^{*}$

$$
A_{2}^{\prime} \otimes I^{\prime \prime}+A_{1}^{\prime} \otimes A_{1}^{\prime \prime}+I^{\prime} \otimes A_{2}^{\prime \prime}
$$

- $\boldsymbol{T} \subset \widetilde{E}_{D}^{*}\left(\boldsymbol{T}^{\prime} \otimes \boldsymbol{T}^{\prime \prime}\right) \widetilde{E}_{D}^{*}$

Theorem

- Every irreducible $\left(\widetilde{E}_{D}^{*}\left(\boldsymbol{T}^{\prime} \otimes \boldsymbol{T}^{\prime \prime}\right) \widetilde{E}_{D}^{*}\right)$-module is a thin irreducible T-module.

Grassmann graphs

- $\mathcal{V}=\mathbb{F}_{q}^{v}(v \geqslant 2 D)$
- $X=\left[\begin{array}{l}\mathcal{V} \\ D\end{array}\right]_{q} \longleftarrow$ the set of D-dimensional subspaces of \mathcal{V}
- $y \sim z \stackrel{\text { def }}{\Longleftrightarrow} \operatorname{dim}(y \cap z)=D-1$
- $\Gamma=J_{q}(v, D)$: the Grassmann graph

Grassmann graphs

- $n \in\{0,1, \ldots, D\}$
- $u \in\left[\begin{array}{l}\mathcal{V} \\ n\end{array}\right]_{q}$
- $Y=\{z \in X: u \leqslant z\}$: a descendent with $w=D-n, w^{*}=n$
- $\Gamma_{Y} \cong J_{q}(v-n, D-n)$

Theorem (T., 2006)

- Every descendent of $\Gamma=J_{q}(v, D)$ with $w^{*}=n$ is isomorphic (under Aut Γ) to Y above.
- $Y_{i}=\{z \in X: \operatorname{dim}(u \cap z)=n-i\}(0 \leqslant i \leqslant n)$

Grassmann graphs

- $P(\mathcal{V})=\coprod_{i=0}^{v}\left[\begin{array}{c}\mathcal{V} \\ i\end{array}\right]_{q}$: the set of subspaces of \mathcal{V}
- $G=\mathrm{GL}(\mathcal{V}) \curvearrowright P(\mathcal{V})$
- $K=G_{u}=\{g \in G: g u=u\}$
- $\mathscr{H}=\left\{B \in \operatorname{End}\left(\mathbb{C}^{P(\mathcal{V})}\right): g B=B g\right.$ for $\left.\forall g \in K\right\}$
- Dunkl (1978) decomposed $\mathbb{C}^{P(\mathcal{V})}$ into irreducible K-modules, and computed all the spherical functions, i.e., the structure of \mathscr{H} is (essentially) known.

Grassmann graphs

- $\mathscr{H}=\left\{B \in \operatorname{End}\left(\mathbb{C}^{P(\mathcal{V})}\right): g B=B g\right.$ for $\left.\forall g \in K\right\} \longleftarrow$ known
- $K \curvearrowright X=\left[\begin{array}{l}\nu \\ D\end{array}\right]$
- $\mathscr{H}_{X}=\left\{B \in \operatorname{End}\left(\mathbb{C}^{X}\right): g B=B g\right.$ for $\left.\forall g \in K\right\} \longleftarrow$ known
- $Y_{i}=\{z \in X: \operatorname{dim}(u \cap z)=n-i\}(0 \leqslant i \leqslant n)$
- $K \cdot Y_{i}=Y_{i} \Longrightarrow E_{i}^{*} \in \mathscr{H}_{X}$
- $\boldsymbol{T} \subset \mathscr{H}_{X}$

Theorem

- Every irreducible \mathscr{H}_{X}-module is a thin irreducible T-module.

Semilattice-type DRGs

- Γ : a Johnson, Hamming, Grassmann, bilinear forms, or a dual polar graph
- $(\mathscr{P}, \preccurlyeq)$: the associated semilattice
- $u \in \mathscr{P}:$ rank n
- $Y=\{z \in X: u \preccurlyeq z\}$: a descendent with $w=D-n, w^{*}=n$

Theorem (BGKM, 2003; T., 2006)

- Every descendent of Γ with $w^{*}=n$ is isomorphic (under Aut Γ) to Y above.

The bipartite Q-polynomial DRGs

- Suppose Γ is bipartite.

Theorem (Caughman, 1999)

- The structure of $\boldsymbol{T}(x)$ depends only on the parameters of Γ.
- The dual polar graphs $\left[D_{D}(q)\right]$ and the Hemmeter graphs $\operatorname{Hem}_{D}(q)$ have the same parameters.
- Y : an edge of Γ; a descendent with $w=1, w^{*}=D-1$
a Delsarte clique

Problem

- Study $\boldsymbol{T}(Y)$.

