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Basic problem

Ω : a finite set
G : a (simple) graph with V (G) = Ω

α(G) : the independence number of G
:= max

{
|U | : U ⊂ Ω : independent (i.e., no edge inside)

}
Problem

Find a good upper bound on α(G).
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An SDP relaxation

RΩ×Ω =
{

real matrices indexed by Ω
}

RΩ =
{

real column vectors indexed by Ω
}

SRΩ×Ω =
{

symmetric matrices in RΩ×Ω
}

X ≽ 0
def⇐⇒ X : positive semidefinite

Y • Z := trace(Y TZ)

I ∈ RΩ×Ω : the identity matrix
J ∈ RΩ×Ω : the all ones matrix
A ∈ RΩ×Ω : the adjacency matrix of G:

Ax,y =

{
1 if x ∼ y

0 otherwise
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An SDP relaxation

U ⊂ Ω : independent
φ ∈ RΩ : the characteristic vector of U :

φx =

{
1 if x ∈ U

0 otherwise

X :=
1

|U |
φφT ∈ SRΩ×Ω

X ≽ 0, X ⩾ 0 (non-negative)

I •X =
1

|U |
φTφ = 1, A •X =

1

|U |
φTAφ = 0

J •X =
1

|U |
φTJφ = |U |
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An SDP relaxation

Consider the following SDP problem in primal standard form:

(P): ϑ′ = max
X

J •X, X ∈ SRΩ×Ω,

I •X = 1, A •X = 0,
X ≽ 0, X ⩾ 0.

Then |U | ⩽ ϑ′.

Remark
ϑ′ = the strengthening of Lovász’s ϑ-function bound due to

Schrijver (1979)
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I •X = 1, A •X = 0, X ≽ 0, X ⩾ 0

A feasible solution to the dual problem provides an upper bound
on |U |:

(D): ϑ′ = min
α, γ, S, Z

α, α, γ ∈ R, S, Z ∈ SRΩ×Ω,

αI − J = S + Z + γA,
S ≽ 0, Z ⩾ 0.

Proof (of weak duality).

α− J •X = αI •X − J •X
= S •X + Z •X + γA •X
= S •X + Z •X
⩾ 0
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Delsarte’s LP bound (1972, 1973)

If I, J,A ∈ ∃ Bose–Mesner algebra, then (P), (D) reduce to LP
[Schrijver (1979)] !!

Example (Delsarte (1972))
Bounds on codes in Fn

q −→ Hamming scheme H(n, q)
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Delsarte’s LP bound (1972, 1973)

Example (Erdős–Ko–Rado (1961); Wilson (1984))
[n] := {1, 2, . . . , n}
some conditions on n, k, t

U ⊆
([n]
k

)
: t-intersecting, i.e., |x ∩ y| ⩾ t (∀x, y ∈ U)

Then |U | ⩽
(
n−t
k−t

)
.

|U | =
(
n−t
k−t

)
⇐⇒ ∃z ∈

(
[n]
t

)
s.t.

U =
{
x ∈

([n]
k

)
: z ⊂ x

}
−→ Johnson scheme J(n, k)
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My motivation

Bose–Mesner algebra : commutative [SDP −→ LP]
Consider cases where the underlying algebras are
non-commutative!!

Example (Schrijver (2005); Gijswijt–Schrijver–T. (2006))
SDP bounds on codes in Fn

q based on the Terwilliger algebra of
H(n, q) [ Key idea: X = X′ +X′′ (matrix-cut) ]

Example (Bachoc–Vallentin (2008))
new proof of k(4) = 24 using Schrijver’s method (originally due to
Musin (2008)).

kissing number in R4
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A two-step generalization of the problem

Ω1,Ω2 : non-empty finite sets
Ω̂ := Ω1 ⊔ Ω2

G : a bipartite graph with bipartition V (G) = Ω̂ = Ω1 ⊔ Ω2

U1 ⊂ Ω1, U2 ⊂ Ω2 : cross-independent in G
def⇐⇒ U1 ⊔ U2 : independent in G

µi : a probability measure on Ωi (i = 1, 2)

Problem
Find a good upper bound on µ1(U1)µ2(U2) for cross-independent
U1 ⊂ Ω1, U2 ⊂ Ω2.
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A two-step generalization of the problem

Example (Pyber (1986); Matsumoto–Tokushige (1989))
[n] := {1, 2, . . . , n}
some conditions on n, k, ℓ

U1 ∈
([n]
k

)
, U2 ∈

([n]
ℓ

)
: cross-intersecting, i.e., x ∩ y ̸= ∅

(∀x ∈ U1, ∀y ∈ U2)

Then |U1||U2| ⩽
(
n−1
k−1

)(
n−1
ℓ−1

)
.

|U1||U2| =
(
n−1
k−1

)(
n−1
ℓ−1

)
⇐⇒ ∃r ∈ [n] s.t. U1=

{
x ∈

([n]
k

)
: r ∈ x

}
, U2=

{
y ∈

([n]
ℓ

)
: r ∈ y

}
Remark

∃SDP-based proof: lim
q→1

[Suda–T. (2014)]

Here, we consider a coherent algebra with two fibers.
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A generalization of Schrijver’s ϑ′

RΩ̂×Ω̂ =
{

real matrices indexed by Ω̂
}

RΩ̂ =
{

real column vectors indexed by Ω̂
}

SRΩ̂×Ω̂ =
{

symmetric matrices in RΩ̂×Ω̂
}

RΩi×Ωj ⊂ RΩ̂×Ω̂, RΩi ⊂ RΩ̂ : defined in the same manner

∆i ∈ RΩi×Ωi : the diagonal matrix with

(∆i)x,x = µi({x})

Ji,j ∈ RΩi×Ωj : the all ones matrix

A =
[

0 A1,2

A2,1 0

]
∈ RΩ×Ω : the adjacency matrix of G
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A generalization of Schrijver’s ϑ′

U1 ⊂ Ω1, U2 ⊂ Ω2 : cross-independent
φi ∈ RΩi : the characteristic vector of Ui (i = 1, 2)

X :=

[
1√

µ1(U1)
φ1

1√
µ2(U2)

φ2

][
1√

µ1(U1)
φ1

1√
µ2(U2)

φ2

]T

∈ SRΩ̂×Ω̂

X ≽ 0, X ⩾ 0[
∆1 0
0 0

]
•X =

[
0 0
0 ∆2

]
•X = 1, A •X = 0[

0 1
2∆1J1,2∆2

1
2∆2J2,1∆1 0

]
•X =

√
µ1(U1)µ2(U2)
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A generalization of Schrijver’s ϑ′

Consider the following SDP problem in primal standard form:

(P): ϑ̂′ = max
X

[
0 1

2∆1J1,2∆2
1
2∆2J2,1∆1 0

]
•X, X ∈ SRΩ̂×Ω̂,[

∆1 0
0 0

]
•X =

[
0 0
0 ∆2

]
•X = 1, A •X = 0,

X ≽ 0, X ⩾ 0.

Then
√

µ1(U1)µ2(U2) ⩽ ϑ̂′.
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A generalization of Schrijver’s ϑ′

A feasible solution to the dual problem provides an upper bound
on

√
µ1(U1)µ2(U2):

(D): ϑ̂′ = min
α, β, γ, S, Z

α+ β, α, β, γ ∈ R, S, Z ∈ SRΩ×Ω,[
α∆1 − 1

2∆1J1,2∆2

− 1
2∆2J2,1∆1 β∆2

]
= S + Z + γA,

S ≽ 0, Z ⩾ 0.
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Main result; an application of ϑ̂′

2[n] : the power set of [n] := {1, 2, . . . , n}
Ω1,Ω2 : copies of 2[n]

p, q ∈ (0, 1)n

µ1 = µp : 2Ω1 → [0, 1] : a product measure on Ω1:

µ1(U) :=
∑
x∈U

∏
r∈x

pr
∏

s∈[n]\x

(
1− ps

)
(U ⊂ Ω1)

[ Note: µ1(Ω1) =
(
p1 + (1− p1)

)
· · ·

(
pn + (1− pn)

)
= 1 ]

µ2 = µq : 2Ω2 → [0, 1] : a product measure on Ω2
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Main result; an application of ϑ̂′

Theorem (Suda–T.–Tokushige (2015))
Suppose

p1 = max{pr : r ∈ [n]}, q1 = max{qr : r ∈ [n]}
pr, qr ⩽ 1

2 (∀r ⩾ 2).

U1 ⊂ Ω1, U2 ⊂ Ω2 : cross-intersecting
Then µ1(U1)µ2(U2) ⩽ p1q1.
If µ1(U1)µ2(U2) = p1q1 then ∃r ∈ w s.t.

U1 =
{
x ∈ Ω1 : r ∈ x

}
, U2 =

{
y ∈ Ω2 : r ∈ y

}
unless p1 = q1 =

1
2 and |w| ⩾ 3, where

w = wp,q :=
{
r ∈ [n] : (pr, qr) = (p1, q1)

}
.
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Main result; an application of ϑ̂′

Remark
The theorem generalizes and strengthens a result of
Fishburn–Frankl–Freed–Lagarias–Odlyzko (1986) for intersecting
families.
Partial results were obtained previously:

Tokushige (2010) : 1
2 > p1 = · · · = pn,

1
2 > q1 = · · · = qn

Borg (2012) : 1
2 ⩾ p1 ⩾ · · · ⩾ pn,

1
2 ⩾ q1 ⩾ · · · ⩾ qn (not precise)
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How the proof proceeds [see arXiv:1504.00135 for the details]

In fact, the SDP method works only when p1, q1 ⩽ 1
2 , and invokes

an idea of Friedgut (2008):

Find a “nice” feasible solution when n = 1;
Construct feasible solutions for general n by taking “tensor
products”.

When p1 >
1
2 or q1 > 1

2 , the proof is reduced to the above case by
considering

p̃ :=
(
max
r⩾2

pr, p2, . . . , pn
)
, q̃ :=

(
max
r⩾2

qr, q2, . . . , qn
)
,

which is an idea of Fishburn et al. (1986).
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