A semidefinite programming approach to a cross-intersection problem with measures

Hajime Tanaka
(joint work with Sho Suda and Norihide Tokushige)
Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University

August 13, 2015 Systems of Lines

Basic problem

- Ω : a finite set
- G : a (simple) graph with $V(G)=\Omega$
- $\alpha(G)$: the independence number of G

$$
:=\max \{|U|: U \subset \Omega: \text { independent (i.e., no edge inside) }\}
$$

Problem

- Find a good upper bound on $\alpha(G)$.

An SDP relaxation

- $\mathbb{R}^{\Omega \times \Omega}=\{$ real matrices indexed by $\Omega\}$
- $\mathbb{R}^{\Omega}=\{$ real column vectors indexed by $\Omega\}$
- $S \mathbb{R}^{\Omega \times \Omega}=\left\{\right.$ symmetric matrices in $\left.\mathbb{R}^{\Omega \times \Omega}\right\}$
- $X \succcurlyeq 0 \stackrel{\text { def }}{\Longleftrightarrow} X$: positive semidefinite
- $Y \bullet Z:=\operatorname{trace}\left(Y^{\top} Z\right)$
- $I \in \mathbb{R}^{\Omega \times \Omega}$: the identity matrix
- $J \in \mathbb{R}^{\Omega \times \Omega}$: the all ones matrix
- $A \in \mathbb{R}^{\Omega \times \Omega}$: the adjacency matrix of G :

$$
A_{x, y}= \begin{cases}1 & \text { if } x \sim y \\ 0 & \text { otherwise }\end{cases}
$$

An SDP relaxation

- $U \subset \Omega$: independent
- $\varphi \in \mathbb{R}^{\Omega}$: the characteristic vector of U :

$$
\varphi_{x}= \begin{cases}1 & \text { if } x \in U \\ 0 & \text { otherwise }\end{cases}
$$

- $X:=\frac{1}{|U|} \varphi \varphi^{\top} \in S \mathbb{R}^{\Omega \times \Omega}$
- $X \succcurlyeq 0, \quad X \geqslant 0$ (non-negative)
- $I \bullet X=\frac{1}{|U|} \boldsymbol{\varphi}^{\top} \boldsymbol{\varphi}=1, \quad A \bullet X=\frac{1}{|U|} \boldsymbol{\varphi}^{\top} A \boldsymbol{\varphi}=0$
- $J \bullet X=\frac{1}{|U|} \boldsymbol{\varphi}^{\top} J \boldsymbol{\varphi}=|U|$

An SDP relaxation

- Consider the following SDP problem in primal standard form:

$$
\begin{array}{rl}
(\mathrm{P}): \quad \vartheta^{\prime}=\max _{X} & J \bullet X, \quad X \in S \mathbb{R}^{\Omega \times \Omega} \\
& I \bullet X=1, \quad A \bullet X=0 \\
& X \succcurlyeq 0, \quad X \geqslant 0
\end{array}
$$

- Then $|U| \leqslant \vartheta^{\prime}$.

Remark

- $\vartheta^{\prime}=$ the strengthening of Lovász's ϑ-function bound due to Schrijver (1979)

$I \bullet X=1, A \bullet X=0, X \succcurlyeq 0, X \geqslant 0$

- A feasible solution to the dual problem provides an upper bound on $|U|$:

$$
\begin{aligned}
\text { (D): } \vartheta^{\prime}=\min _{\alpha, \gamma, S, Z} & \alpha, \quad \alpha, \gamma \in \mathbb{R}, S, Z \in S \mathbb{R}^{\Omega \times \Omega}, \\
& \alpha I-J=S+Z+\gamma A, \\
& S \succcurlyeq 0, Z \geqslant 0 .
\end{aligned}
$$

Proof (of weak duality).

$$
\begin{aligned}
\alpha-J \bullet X & =\alpha I \bullet X-J \bullet X \\
& =S \bullet X+Z \bullet X+\gamma A \bullet X \\
& =S \bullet X+Z \bullet X \\
& \geqslant 0
\end{aligned}
$$

Delsarte's LP bound $(1972,1973)$

- If $I, J, A \in \exists$ Bose-Mesner algebra, then (P), (D) reduce to LP [Schrijver (1979)] !!

Example (Delsarte (1972))

- Bounds on codes in $\mathbb{F}_{q}^{n} \longrightarrow$ Hamming scheme $H(n, q)$

Delsarte's LP bound $(1972,1973)$

Example (Erdős-Ko-Rado (1961); Wilson (1984))

- $[n]:=\{1,2, \ldots, n\}$
- some conditions on n, k, t
- $U \subseteq\binom{[n]}{k}: t$-intersecting, i.e., $|x \cap y| \geqslant t \quad(\forall x, y \in U)$
- Then $|U| \leqslant\binom{ n-t}{k-t}$.
- $|U|=\binom{n-t}{k-t} \Longleftrightarrow \exists z \in\binom{[n]}{t}$ s.t.

$$
U=\left\{x \in\binom{[n]}{k}: z \subset x\right\}
$$

\longrightarrow Johnson scheme $J(n, k)$

My motivation

- Bose-Mesner algebra : commutative $[$ SDP \longrightarrow LP]
- Consider cases where the underlying algebras are non-commutative!!

Example (Schrijver (2005); Gijswijt-Schrijver-T. (2006))

- SDP bounds on codes in \mathbb{F}_{q}^{n} based on the Terwilliger algebra of $H(n, q) \quad$ [Key idea: $X=X^{\prime}+X^{\prime \prime}$ (matrix-cut)]

Example (Bachoc-Vallentin (2008))

- new proof of $k(4)=24$ using Schrijver's method (originally due to Musin (2008)).
kissing number in \mathbb{R}^{4}

A two-step generalization of the problem

- Ω_{1}, Ω_{2} : non-empty finite sets
- $\widehat{\Omega}:=\Omega_{1} \sqcup \Omega_{2}$
- G : a bipartite graph with bipartition $V(G)=\widehat{\Omega}=\Omega_{1} \sqcup \Omega_{2}$
- $U_{1} \subset \Omega_{1}, U_{2} \subset \Omega_{2}$: cross-independent in G $\stackrel{\text { def }}{\Longleftrightarrow} U_{1} \sqcup U_{2}$: independent in G
- μ_{i} : a probability measure on $\Omega_{i}(i=1,2)$

Problem

- Find a good upper bound on $\mu_{1}\left(U_{1}\right) \mu_{2}\left(U_{2}\right)$ for cross-independent $U_{1} \subset \Omega_{1}, U_{2} \subset \Omega_{2}$.

A two-step generalization of the problem

Example (Pyber (1986); Matsumoto-Tokushige (1989))

- $[n]:=\{1,2, \ldots, n\}$
- some conditions on n, k, ℓ
- $U_{1} \in\binom{[n]}{k}, U_{2} \in\binom{[n]}{\ell}$: cross-intersecting, i.e., $x \cap y \neq \emptyset$ $\left(\forall x \in U_{1}, \forall y \in U_{2}\right)$
- Then $\left|U_{1}\right|\left|U_{2}\right| \leqslant\binom{ n-1}{k-1}\binom{n-1}{\ell-1}$.
- $\left|U_{1}\right|\left|U_{2}\right|=\binom{n-1}{k-1}\binom{n-1}{\ell-1}$
$\Longleftrightarrow \exists r \in[n]$ s.t. $U_{1}=\left\{x \in\binom{[n]}{k}: r \in x\right\}, U_{2}=\left\{y \in\binom{[n]}{\ell}: r \in y\right\}$

Remark

- \exists SDP-based proof: $\lim _{q \rightarrow 1}$ [Suda-T. (2014)]
- Here, we consider a coherent algebra with two fibers.

A generalization of Schrijver's ϑ^{\prime}

- $\mathbb{R}^{\widehat{\Omega} \times \widehat{\Omega}}=\{$ real matrices indexed by $\widehat{\Omega}\}$
- $\mathbb{R}^{\widehat{\Omega}}=\{$ real column vectors indexed by $\widehat{\Omega}\}$
- $S \mathbb{R}^{\widehat{\Omega} \times \widehat{\Omega}}=\left\{\right.$ symmetric matrices in $\left.\mathbb{R}^{\widehat{\Omega} \times \widehat{\Omega}}\right\}$
- $\mathbb{R}^{\Omega_{i} \times \Omega_{j}} \subset \mathbb{R}^{\hat{\Omega} \times \widehat{\Omega}}, \mathbb{R}^{\Omega_{i}} \subset \mathbb{R}^{\hat{\Omega}}$: defined in the same manner
- $\Delta_{i} \in \mathbb{R}^{\Omega_{i} \times \Omega_{i}}$: the diagonal matrix with

$$
\left(\Delta_{i}\right)_{x, x}=\mu_{i}(\{x\})
$$

- $J_{i, j} \in \mathbb{R}^{\Omega_{i} \times \Omega_{j}}$: the all ones matrix
- $A=\left[\begin{array}{cc}0 & A_{1,2} \\ A_{2,1} & 0\end{array}\right] \in \mathbb{R}^{\Omega \times \Omega}$: the adjacency matrix of G

A generalization of Schrijver's ϑ^{\prime}

- $U_{1} \subset \Omega_{1}, U_{2} \subset \Omega_{2}$: cross-independent
- $\varphi_{i} \in \mathbb{R}^{\Omega_{i}}$: the characteristic vector of $U_{i} \quad(i=1,2)$
$\bullet X:=\left[\begin{array}{l}\frac{1}{\sqrt{\mu_{1}\left(U_{1}\right)}} \boldsymbol{\varphi}_{1} \\ \frac{1}{\sqrt{\mu_{2}\left(U_{2}\right)}} \varphi_{2}\end{array}\right]\left[\begin{array}{l}\frac{1}{\sqrt{\mu_{1}\left(U_{1}\right)}} \boldsymbol{\varphi}_{1} \\ \frac{1}{\sqrt{\mu_{2}\left(U_{2}\right)}} \boldsymbol{\varphi}_{2}\end{array}\right]^{\top} \in S \mathbb{R}^{\widehat{\Omega} \times \widehat{\Omega}}$
- $X \succcurlyeq 0, \quad X \geqslant 0$
- $\left[\begin{array}{cc}\Delta_{1} & 0 \\ 0 & 0\end{array}\right] \bullet X=\left[\begin{array}{ll}0 & 0 \\ 0 & \Delta_{2}\end{array}\right] \bullet X=1, \quad A \bullet X=0$
$\bullet\left[\begin{array}{cc}0 & \frac{1}{2} \Delta_{1} J_{1,2} \Delta_{2} \\ \frac{1}{2} \Delta_{2} J_{2,1} \Delta_{1} & 0\end{array}\right] \bullet X=\sqrt{\mu_{1}\left(U_{1}\right) \mu_{2}\left(U_{2}\right)}$

A generalization of Schrijver's ϑ^{\prime}

- Consider the following SDP problem in primal standard form:

$$
\begin{aligned}
(\mathrm{P}): \widehat{\vartheta}^{\prime}=\max _{X} & {\left[\begin{array}{cc}
0 & \frac{1}{2} \Delta_{1} J_{1,2} \Delta_{2} \\
\frac{1}{2} \Delta_{2} J_{2,1} \Delta_{1} & 0
\end{array}\right] \bullet X, \quad X \in S \mathbb{R}^{\widehat{\Omega} \times \widehat{\Omega}}, } \\
& {\left[\begin{array}{cc}
\Delta_{1} & 0 \\
0 & 0
\end{array}\right] \bullet X=\left[\begin{array}{cc}
0 & 0 \\
0 & \Delta_{2}
\end{array}\right] \bullet X=1, \quad A \bullet X=0, } \\
& X \succcurlyeq 0, X \geqslant 0
\end{aligned}
$$

- Then $\sqrt{\mu_{1}\left(U_{1}\right) \mu_{2}\left(U_{2}\right)} \leqslant \widehat{\vartheta}^{\prime}$.

A generalization of Schrijver's ϑ^{\prime}

- A feasible solution to the dual problem provides an upper bound on $\sqrt{\mu_{1}\left(U_{1}\right) \mu_{2}\left(U_{2}\right)}$:

$$
\begin{aligned}
& \text { (D): } \widehat{\vartheta}^{\prime}=\min _{\alpha, \beta, \gamma, S, Z} \alpha+\beta, \quad \alpha, \beta, \gamma \in \mathbb{R}, S, Z \in S \mathbb{R}^{\Omega \times \Omega} \text {, } \\
& {\left[\begin{array}{cc}
\alpha \Delta_{1} & -\frac{1}{2} \Delta_{1} J_{1,2} \Delta_{2} \\
-\frac{1}{2} \Delta_{2} J_{2,1} \Delta_{1} & \beta \Delta_{2}
\end{array}\right]=S+Z+\gamma A,} \\
& S \succcurlyeq 0, Z \geqslant 0 \text {. }
\end{aligned}
$$

Main result; an application of $\widehat{\vartheta^{\prime}}$

- $2^{[n]}$: the power set of $[n]:=\{1,2, \ldots, n\}$
- Ω_{1}, Ω_{2} : copies of $2^{[n]}$
- $\boldsymbol{p}, \boldsymbol{q} \in(0,1)^{n}$
- $\mu_{1}=\mu_{\boldsymbol{p}}: 2^{\Omega_{1}} \rightarrow[0,1]:$ a product measure on Ω_{1} :

$$
\mu_{1}(U):=\sum_{x \in U} \prod_{r \in x} p_{r} \prod_{s \in[n] \backslash x}\left(1-p_{s}\right) \quad\left(U \subset \Omega_{1}\right)
$$

[Note: $\left.\mu_{1}\left(\Omega_{1}\right)=\left(p_{1}+\left(1-p_{1}\right)\right) \cdots\left(p_{n}+\left(1-p_{n}\right)\right)=1\right]$

- $\mu_{2}=\mu_{\boldsymbol{q}}: 2^{\Omega_{2}} \rightarrow[0,1]:$ a product measure on Ω_{2}

Main result; an application of $\widehat{\vartheta^{\prime}}$

Theorem (Suda-T.-Tokushige (2015))

- Suppose

$$
\begin{aligned}
& \text { - } p_{1}=\max \left\{p_{r}: r \in[n]\right\}, \quad q_{1}=\max \left\{q_{r}: r \in[n]\right\} \\
& p_{r}, q_{r} \leqslant \frac{1}{2}(\forall r \geqslant 2)
\end{aligned}
$$

- $U_{1} \subset \Omega_{1}, U_{2} \subset \Omega_{2}$: cross-intersecting
- Then $\mu_{1}\left(U_{1}\right) \mu_{2}\left(U_{2}\right) \leqslant p_{1} q_{1}$.
- If $\mu_{1}\left(U_{1}\right) \mu_{2}\left(U_{2}\right)=p_{1} q_{1}$ then $\exists r \in w$ s.t.

$$
U_{1}=\left\{x \in \Omega_{1}: r \in x\right\}, \quad U_{2}=\left\{y \in \Omega_{2}: r \in y\right\}
$$

unless $p_{1}=q_{1}=\frac{1}{2}$ and $|w| \geqslant 3$, where

$$
w=w_{\boldsymbol{p}, \boldsymbol{q}}:=\left\{r \in[n]:\left(p_{r}, q_{r}\right)=\left(p_{1}, q_{1}\right)\right\} .
$$

Main result; an application of $\widehat{\vartheta^{\prime}}$

Remark

- The theorem generalizes and strengthens a result of Fishburn-Frankl-Freed-Lagarias-Odlyzko (1986) for intersecting families.
- Partial results were obtained previously:
- Tokushige (2010) : $\frac{1}{2}>p_{1}=\cdots=p_{n}, \frac{1}{2}>q_{1}=\cdots=q_{n}$
- Borg (2012) : $\frac{1}{2} \geqslant p_{1} \geqslant \cdots \geqslant p_{n}, \frac{1}{2} \geqslant q_{1} \geqslant \cdots \geqslant q_{n}$ (not precise)

How the proof proceeds [see arXiv: 1504.00135 for the details]

- In fact, the SDP method works only when $p_{1}, q_{1} \leqslant \frac{1}{2}$, and invokes an idea of Friedgut (2008):
- Find a "nice" feasible solution when $n=1$;
- Construct feasible solutions for general n by taking "tensor products".
- When $p_{1}>\frac{1}{2}$ or $q_{1}>\frac{1}{2}$, the proof is reduced to the above case by considering

$$
\tilde{\boldsymbol{p}}:=\left(\max _{r \geqslant 2} p_{r}, p_{2}, \ldots, p_{n}\right), \quad \tilde{\boldsymbol{q}}:=\left(\max _{r \geqslant 2} q_{r}, q_{2}, \ldots, q_{n}\right),
$$

which is an idea of Fishburn et al. (1986).

