Association schemes and orthogonal polynomials

Hajime Tanaka

Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University

Novemver 25, 2017
 International Workshop on Bannai-Ito Theory

Notation from "Algebraic Combinatorics l" (1984)

- $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{i=0}^{D}\right)$: a (symmetric) association scheme
- $A_{0}, A_{1}, \ldots, A_{D}$: the adjacency matrices
- $E_{0}, E_{1}, \ldots, E_{D}$: the primitive idempotents
- $P=\left(p_{j}(i)\right)_{i, j=0}^{D}, Q=\left(q_{j}(i)\right)_{i, j=0}^{D}$: the eigenmatrices

$$
A_{j}=\sum_{i=0}^{D} p_{j}(i) E_{i}, \quad E_{j}=\frac{1}{|X|} \sum_{i=0}^{D} q_{j}(i) A_{i} \quad(0 \leqslant j \leqslant D)
$$

- Set $k_{j}=p_{j}(0), m_{j}=q_{j}(0) \quad(0 \leqslant j \leqslant D)$.

- $\frac{p_{j}(i)}{k_{j}}=\frac{q_{i}(j)}{m_{i}}(0 \leqslant i, j \leqslant D) \longleftarrow$ Askey-Wilson duality
- $\sum_{i=0}^{D} m_{i} p_{j}(i) p_{\ell}(i)=\delta_{j, \ell}|X| k_{j} \longleftarrow$ orthogonality relation
- $\sum_{i=0}^{D} k_{i} q_{j}(i) q_{\ell}(i)=\delta_{j, \ell}|X| m_{j} \longleftarrow$ orthogonality relation*
- Suppose \mathfrak{X} is $P-\& Q$-polynomial.
- Set $\theta_{i}=p_{1}(i), \theta_{i}^{*}=q_{1}(i)(0 \leqslant i \leqslant D)$.
- $\exists f_{j}(x), f_{j}^{*}(x) \in \mathbb{R}[x]$ s.t. $\operatorname{deg} f_{j}(x)=\operatorname{deg} f_{j}^{*}(x)=j$ and

$$
f_{j}\left(\theta_{i}\right)=\frac{p_{j}(i)}{k_{j}}, \quad f_{j}^{*}\left(\theta_{i}^{*}\right)=\frac{q_{j}(i)}{m_{j}} \quad(0 \leqslant i, j \leqslant D) .
$$

(1) $f_{0}(x)=f_{0}^{*}(x)=1$
(2) $x f_{j}(x)=c_{j} f_{j-1}(x)+a_{j} f_{j}(x)+b_{j} f_{j+1}(x) \longleftarrow$ 3-term recurrence
(3) $x f_{j}^{*}(x)=c_{j}^{*} f_{j-1}^{*}(x)+a_{j}^{*} f_{j}^{*}(x)+b_{j}^{*} f_{j+1}^{*}(x) \longleftarrow$ 3-term recurrence*
(4) $f_{j}\left(\theta_{i}\right)=f_{i}^{*}\left(\theta_{j}^{*}\right) \longleftarrow$ Askey-Wilson duality

Constructions (univariate, terminating)

scheme	polynomials	reference
Hamming	Krawtchouk	Delsarte (1973)
Johnson	Hahn, dual Hahn	Delsarte (1973)
Grassmann	q-Hahn, dual q-Hahn	Delsarte (1976)
bilinear forms	affine q-Krawtchouk	Delsarte (1978)
dual polar	q-Krawtchouk, dual q-Krawtchouk	Stanton (1980)
polygons	q-Racah	Bannai-Ito (1984)
Odd	Bannai-Ito	Bannai-Ito (1984)

- Merit: orthogonality follows automatically.
- Demerit: does not cover full parameter range.
[Example] Bannai-Ito polynomials have 4 parameters r_{1}, r_{2}, s, s^{*} besides D.

Leonard's theorem (1982)

- Let $\left\{f_{j}(x)\right\}_{j=0}^{D},\left\{f_{j}^{*}(x)\right\}_{j=0}^{D} \subset \mathbb{R}[x]$, where $D \in \mathbb{N} \cup\{\infty\}$, satisfy
(1) $f_{0}(x)=f_{0}^{*}(x)=1$
(2) $x f_{j}(x)=c_{j} f_{j-1}(x)+a_{j} f_{j}(x)+b_{j} f_{j+1}(x)$
(3) $x f_{j}^{*}(x)=c_{j}^{*} f_{j-1}^{*}(x)+a_{j}^{*} f_{j}^{*}(x)+b_{j}^{*} f_{j+1}^{*}(x)$
(4) $f_{j}\left(\theta_{i}\right)=f_{i}^{*}\left(\theta_{j}^{*}\right)$ for some $\left\{\theta_{i}\right\}_{i=0}^{D},\left\{\theta_{i}^{*}\right\}_{i=0}^{D} \subset \mathbb{R}$
- Then they are the Askey-Wilson polynomials

$$
{ }_{4} \phi_{3}\left(\left.\begin{array}{c}
q^{-j}, s^{*} q^{j+1}, q^{-y}, s q^{y+1} \\
r_{1} q, r_{2} q, r_{3} q
\end{array} \right\rvert\, q ; q\right) \quad(0 \leqslant j \leqslant D)
$$

in the variable $x=\theta_{0}+h\left(1-q^{y}\right)\left(1-s q^{y+1}\right) q^{-y}$, where

$$
s s^{*}=r_{1} r_{2} r_{3} \quad\left(r_{3}=q^{-D-1} \text { if } D<\infty\right),
$$

or some of their limits in the Askey scheme.

Askey scheme

- q-Hypergeometric orthogonal polynomials, part 1^{\ddagger}

\ddagger taken from: R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer-Verlag, Berlin, 2010.

Askey scheme

- q-Hypergeometric orthogonal polynomials, part 2^{\ddagger}

\ddagger taken from: R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer-Verlag, Berlin, 2010.

Askey scheme

- Hypergeometric orthogonal polynomials ${ }^{\ddagger}$

\ddagger taken from: R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer-Verlag, Berlin, 2010.

Askey scheme

- (-1)-Hypergeometric orthogonal polynomials

[Caution] may be incomplete or wrong!

Remark

The polynomials with $q=-1$ have recently been actively studied by Alexei Zhedanov and others.

Constructions (univariate, non-terminating)

- Suppose \mathfrak{X} is $P-\& Q$-polynomial.
- $\Gamma=\left(X, R_{1}\right)$: distance-regular with valency $k=\theta_{0}$
- μ_{Γ} : the (normalized) spectral distribution of Γ on \mathbb{R} :

$$
\mu_{\Gamma}\left(\left\{\frac{\theta_{i}}{\sqrt{k}}\right\}\right)=\frac{m_{i}}{|X|} \quad(i=0,1, \ldots, D)
$$

- Hora (1998) described the limit distributions

$$
\mu_{\Gamma} \rightarrow \mu_{\infty} \quad \text { (weakly) }
$$

for various growing families of classical examples, including Hamming schemes and Johnson schemes.

Example (Hamming schemes $H(D, q)$)

- $q / D \rightarrow q^{\prime} \in(0, \infty)$

Example (Hamming schemes $H(D, q)$)

- $q / D \rightarrow q^{\prime} \in(0, \infty)$

Example (Hamming schemes $H(D, q)$)

- $q / D \rightarrow q^{\prime} \in(0, \infty)$

Example (Hamming schemes $H(D, q)$)

- $q / D \rightarrow q^{\prime} \in(0, \infty)$

Example (Hamming schemes $H(D, q)$)

- $q / D \rightarrow 0$

Example (Hamming schemes $H(D, q)$)

- $q / D \rightarrow 0$

Example (Hamming schemes $H(D, q)$)

- $q / D \rightarrow 0$

Example (Hamming schemes $H(D, q)$)

- $q / D \rightarrow 0$

Example (Hamming schemes $H(D, q)$)

- $q / D \rightarrow q^{\prime} \in[0, \infty)$

	distribution	polynomials
original	binomial	Krawtchouk
$q^{\prime}>0$	Poisson	Charlier
$q^{\prime}=0$	Gaussian	Hermite

- The orthogonality of the limit polynomials is almost automatic.

Example (Johnson schemes $J(N, D)$)

- $N / D \rightarrow N^{\prime} \in[2, \infty)$

	distribution	polynomials
original	(no name?)	dual Hahn
$N^{\prime}>2$	geometric	Meixner
$N^{\prime}=2$	exponential	Laguerre

- Hora (1998) obtained these results by evaluating the spectra directly, which is usually quite complicated.
- Hora, Obata and others then revisited the results from the viewpoint of the quantum decomposition

$$
A_{1}=L+F+R
$$

in the Terwilliger algebra of \mathfrak{X}.

- Their motivation is on finding concrete combinatorial models for quantum probability theory. \ddagger
\ddagger See: A. Hora and N. Obata, Quantum probability and spectral analysis of graphs, Springer, Berlin, 2007.

Remark

Koornwinder (2011) found a new limit from q-Racah to big q-Jacobi in which the orthogonality property remains present.

Constructions (multivariate, terminating)

- \mathfrak{X} : arbitrary
- $\mathfrak{A}=\left\langle A_{0}, \ldots, A_{D}\right\rangle=\left\langle E_{0}, \ldots, E_{D}\right\rangle$: the Bose-Mesner algebra

Observation (Delsarte, 1973)

- $\operatorname{Sym}^{n}(\mathfrak{A})$: the BM algebra of an association scheme $(\forall n \in \mathbb{N})$

Example

- $D=1 \Longrightarrow H(n,|X|)$

Theorem (Mizukawa-T. (2004))

- The eigenmatrices of $\operatorname{Sym}^{n}(\mathfrak{A})$ are described by the D-variate Krawtchouk polynomials.

Example ($D=2$)

- The bivariate Krawtchouk polynomials in the variables x, y are given in terms of the Aomoto-Gelfand hypergeometric series:

$$
\sum_{\substack{a, b, c, d \in \mathbb{Z}_{\geqslant 0} \\ a+b+c+d \leqslant n}} \frac{(-i)_{a+b}(-j)_{c+d}(-x)_{a+c}(-y)_{b+d}}{(-n)_{a+b+c+d} a!b!c!d!} \alpha^{a} \beta^{b} \gamma^{c} \delta^{d}
$$

for $i, j \in \mathbb{Z}_{\geqslant 0}$ with $i+j \leqslant n$, for some fixed $\alpha, \beta, \gamma, \delta \in \mathbb{R}$.

Remark

- There are some other examples which give rise to multivariate orthogonal polynomials, e.g., the non-binary Johnson schemes, but these examples are imprimitive.
defined by Tarnanen-Aaltonen-Goethals (1985), but studied earlier by Dunkl (1976)

Constructions (multivariate, non-terminating)

- Suppose $D=2 \Longrightarrow \mathfrak{X}: P$ - \& Q-polynomial
- P is of the form

$$
P=\left(\begin{array}{ccc}
1 & k & \bar{k} \\
1 & r & -r-1 \\
1 & s & -s-1
\end{array}\right)
$$

where $|X|=1+k+\bar{k}$ and $k \geqslant r \geqslant 0>s$.

- $\Gamma=\left(X, R_{1}\right), \bar{\Gamma}=\left(X, R_{2}\right)$: strongly regular complement of Γ

Remark

- When $D=1$,

$$
\Gamma=\left(X, R_{1}\right)=K_{|X|}(\text { complete graph }) .
$$

- The adjacency matrices in $\operatorname{Sym}^{n}(\mathfrak{A})$ corresponding to the degree 1 Krawtchouk polynomials are

$$
\begin{aligned}
\boldsymbol{A} & =\sum_{\ell=1}^{n} I \otimes \cdots \otimes I \otimes \underset{\bar{\ell}}{A_{1}} \otimes I \otimes \cdots \otimes I, \\
\overline{\boldsymbol{A}} & =\sum_{\ell=1}^{n} I \otimes \cdots \otimes I \otimes \underset{\bar{\ell}}{A_{2}} \otimes I \otimes \cdots \otimes I .
\end{aligned}
$$

- $\boldsymbol{A}($ resp. $\overline{\boldsymbol{A}})$: the adjacency matrix of $\Gamma_{\Sigma}^{n}\left(\right.$ resp. $\left.\bar{\Gamma}^{n}\right)$

Remark

- When $D=1, \Gamma^{n}=\left(K_{|X|}\right)^{n}$ is the Hamming graph $H(n,|X|)$.
- The eigenspaces of $\operatorname{Sym}^{n}(\mathfrak{A})$ are parameterized by

$$
\left\{(i, j): i, j \in \mathbb{Z}_{\geqslant 0}, i+j \leqslant n\right\} .
$$

- Consider the joint spectrum of $\Gamma^{n}, \bar{\Gamma}^{n}$:

$$
\left(\begin{array}{cccc}
\left(\theta_{0,0}, \bar{\theta}_{0,0}\right) & \cdots & \left(\theta_{i, j}, \bar{\theta}_{i, j}\right) & \cdots \\
m_{0,0} & \cdots & m_{i, j} & \cdots
\end{array}\right)
$$

- $\mu_{\Gamma^{n}, \bar{\Gamma}^{n}}$: the (normalized) joint spectral distribution of $\Gamma^{n}, \bar{\Gamma}^{n}$ on \mathbb{R}^{2} :

$$
\mu_{\Gamma^{n}, \bar{\Gamma}^{n}}\left(\left\{\left(\frac{\theta_{i, j}}{\sqrt{\boldsymbol{k}}}, \frac{\bar{\theta}_{i, j}}{\sqrt{\boldsymbol{h}}}\right)\right\}\right)=\frac{m_{i, j}}{|X|^{n}} \quad\left(i, j \in \mathbb{Z}_{\geqslant 0}, i+j \leqslant n\right),
$$

where $\boldsymbol{k}=\theta_{0,0}\left(\right.$ resp. $\left.\boldsymbol{h}=\bar{\theta}_{0,0}\right)$ is the valency of $\Gamma^{n}\left(\right.$ resp. $\left.\bar{\Gamma}^{n}\right)$.

- Let

$$
\begin{aligned}
& \text { valency of } \Gamma \\
& k / n \rightarrow k^{\prime}, \quad \bar{k} / n \rightarrow \bar{k}^{\prime}, \quad r / n \rightarrow r^{\prime}, \quad s / n \rightarrow s^{\prime} .
\end{aligned}
$$

[Note] Γ is not fixed and may vary with n.

Theorem (Morales-Obata-T.)

We have $r^{\prime}=0$ or $s^{\prime}=0$, and

$$
\mu_{\Gamma^{n}, \bar{\Gamma}^{n}} \rightarrow \mu_{\infty} \quad \text { (weakly) }
$$

where μ_{∞} takes one of the following:
(1) $k^{\prime}>0, \bar{k}^{\prime}=-s^{\prime}>0, r^{\prime}=0$: bivariate Poisson;
(2) $k^{\prime}=r^{\prime}>0, \bar{k}^{\prime}>0, s^{\prime}=0$: bivariate Poisson;
(3) $k^{\prime}+\bar{k}^{\prime}>0, r^{\prime}=s^{\prime}=0$: product of Poisson and Gaussian;
(4) $k^{\prime}=\bar{k}^{\prime}=r^{\prime}=s^{\prime}=0$: bivariate Gaussian

Example (Paley graphs Paley (q))

- $\Gamma=\operatorname{Paley}(q)(q \equiv 1 \bmod 4)$
- $q / n \rightarrow q^{\prime} \in(0, \infty)$

Example (Paley graphs Paley (q))

- $\Gamma=\operatorname{Paley}(q)(q \equiv 1 \bmod 4)$
- $q / n \rightarrow q^{\prime} \in(0, \infty)$

Example (Paley graphs Paley (q))

- $\Gamma=\operatorname{Paley}(q)(q \equiv 1 \bmod 4)$
- $q / n \rightarrow q^{\prime} \in(0, \infty)$

Example (Paley graphs Paley (q))

- $\Gamma=\operatorname{Paley}(q)(q \equiv 1 \bmod 4)$
- $q / n \rightarrow q^{\prime} \in(0, \infty)$

Example (Paley graphs Paley (q))

- $\Gamma=\operatorname{Paley}(q)(q \equiv 1 \bmod 4)$
- $q / n \rightarrow 0$

Example (Paley graphs Paley (q))

- $\Gamma=\operatorname{Paley}(q)(q \equiv 1 \bmod 4)$
- $q / n \rightarrow 0$

Example (Paley graphs Paley (q))

- $\Gamma=\operatorname{Paley}(q)(q \equiv 1 \bmod 4)$
- $q / n \rightarrow 0$

Example (Paley graphs Paley (q))

- $\Gamma=\operatorname{Paley}(q)(q \equiv 1 \bmod 4)$
- $q / n \rightarrow 0$

	distribution	polynomials
original	trinomial	bivariate Krawtchouk
() , (2)	bivariate Poisson	bivariate Charlier
(3)	Poisson \times Gaussian	bivariate Charlier-Hermite
(4)	bivariate Gaussian	bivariate Hermite
seems previously unnoticed		

$$
\begin{aligned}
& \text { (1) } k^{\prime}>0, \bar{k}^{\prime}=-s^{\prime}>0, r^{\prime}=0 \\
& \text { (2) } k^{\prime}=r^{\prime}>0, \bar{k}^{\prime}>0, s^{\prime}=0 \\
& \text { (3) } k^{\prime}+\bar{k}^{\prime}>0, r^{\prime}=s^{\prime}=0 \\
& \text { (4) } k^{\prime}=\bar{k}^{\prime}=r^{\prime}=s^{\prime}=0
\end{aligned}
$$

- Again, our motivation comes from quantum probability theory.

Constructions (non-symmetric, terminating)

- There is a fundamental connection:

AW polynomials \longleftrightarrow the DAHA of type $\left(C_{1}^{\vee}, C_{1}\right)$

- Fix $\kappa_{0}, \kappa_{1}, \kappa_{0}^{\prime}, \kappa_{1}^{\prime} \in \mathbb{C} \backslash\{0\}$.
- $\mathcal{H}=\mathcal{H}\left(\kappa_{0}, \kappa_{1}, \kappa_{0}^{\prime}, \kappa_{1}^{\prime} ; q\right)$: the DAHA of type $\left(C_{1}^{\vee}, C_{1}\right)$
generators: $\quad \mathcal{T}_{0}^{ \pm 1}, \mathcal{T}_{1}^{ \pm 1}, \mathcal{X}^{ \pm 1}$
relations:

$$
\begin{array}{ll}
\left(\mathcal{T}_{i}-\kappa_{i}\right)\left(\mathcal{T}_{i}+\kappa_{i}^{-1}\right)=0 \quad(i=0,1) \\
\left(\mathcal{T}_{i}^{\prime}-\kappa_{i}^{\prime}\right)\left(\mathcal{T}_{i}^{\prime}+\kappa_{i}^{\prime-1}\right)=0 \quad(i=0,1)
\end{array}
$$

where

$$
\mathcal{T}_{0}^{\prime}:=q^{-1 / 2} \mathcal{X} \mathcal{T}_{0}^{-1}, \quad \mathcal{T}_{1}^{\prime}:=\mathcal{X}^{-1} \mathcal{T}_{1}^{-1}
$$

- $f(z) \in \mathbb{C}\left[z, z^{-1}\right]$: a Laurent polynomial

$$
\begin{aligned}
& f: \text { symmetric } \stackrel{\text { def }}{\Longleftrightarrow} f(z)=f\left(z^{-1}\right) \\
& f: \text { non-symmetric } \stackrel{\text { def }}{\Longleftrightarrow} f(z) \neq f\left(z^{-1}\right)
\end{aligned}
$$

- $\{$ symmetric Laurent polynomials in $z\}=\left\{\right.$ polynomials in $\left.z+z^{-1}\right\}$
- Recall the AW polynomials

$$
f_{j}(x)={ }_{4} \phi_{3}\left(\left.\begin{array}{c}
q^{-j}, s^{*} q^{j+1}, q^{-y}, s q^{y+1} \\
r_{1} q, r_{2} q, r_{3} q
\end{array} \right\rvert\, q ; q\right) \quad(j=0,1,2, \ldots),
$$

which we view now as symmetric Laurent polynomials in the variable $z=s^{1 / 2} q^{1 / 2+y}$:

$$
f_{j}(z)={ }_{4} \phi_{3}\left(\left.\begin{array}{c}
q^{-j}, s^{*} q^{j+1},(s q)^{1 / 2} z^{-1},(s q)^{1 / 2} z \\
r_{1} q, r_{2} q, r_{3} q
\end{array} \right\rvert\, q ; q\right)
$$

- There is a faithful irreducible representation

$$
\pi: \mathcal{H} \rightarrow \operatorname{End}\left(\mathbb{C}\left[z, z^{-1}\right]\right)
$$

such that the symmetric AW polynomials are eigenfunctions of

$$
\mathcal{X}+\mathcal{X}^{-1}
$$

- $\tilde{f}_{j}(z)$: the AW polynomials with parameters $\tilde{s}, \tilde{s}^{*}, \tilde{r}_{1}, \tilde{r}_{2}, \tilde{r}_{3}$, where

$$
\tilde{s}=s q^{2}, \quad \tilde{s}^{*}=s^{*} q^{2}, \quad \tilde{r}_{1}=r_{1} q, \quad \tilde{r}_{2}=r_{2} q, \quad \tilde{r}_{3}=r_{3} q^{2} .
$$

- The non-symmetric AW polynomials

$$
e_{ \pm j}(z) \in \mathbb{C}\left[z, z^{-1}\right] \quad(j=0,1,2, \ldots)
$$

are eigenfunctions of

$$
\mathcal{X}^{ \pm 1}
$$

and are written as \mathbb{C}-linear combinations of

$$
f_{j}(z), \quad \frac{\left(1-(s q)^{1 / 2} z\right)\left(1-r_{3}(q / s)^{1 / 2} z\right)}{z} \tilde{f}_{j-1}(z)
$$

- Suppose \mathfrak{X} is $P-\& Q$-polynomial of q-Racah type
- Suppose further that $\Gamma=\left(X, R_{1}\right)$ has a clique C of size
- Fix $\gamma \in C$.

$$
|C|=1-\frac{k}{\theta_{D}} \quad \text { (Hoffmann bound). }
$$

- The distance partition from γ : \longleftarrow equitable

- This affordsthe regular representation of \mathfrak{A}, and captures the (symmetric) q-Racah polynomials $f_{j}(z)$.
[Keywords] primary $T(\gamma)$-module, Leonard pairs
- The distance partition from $C: \longleftarrow$ equitable

- There is associated another set of q-Racah polynomials.
- The distance partition from both γ and C :
\longleftarrow equitable

- Lee $(2013,2017)$ defined an irreducible \mathcal{H}-module structure here, and then gave a combinatorial proof of the orthogonality of the non-symmetric q-Racah polynomials.
- Lee and T. (2017+) applied this approach to the dual polar schemes, and obtained the non-symmetric dual q-Krawtchouk polynomials.
- We encounter nil-DAHAs defined by Cherednik and Orr (2015).
- For $\left(C_{1}^{\vee}, C_{1}\right)$, the definition reads as follows:

There is a flexibility in the definition.

- Fix $\kappa, \kappa^{\prime} \in \mathbb{C} \backslash\{0\}$.
- $\overline{\mathcal{H}}=\overline{\mathcal{H}}\left(\kappa, \kappa^{\prime}\right)$: a nil-DAHA of type $\left(C_{1}^{\vee}, C_{1}\right)$
generators: $\quad \mathcal{T}^{ \pm 1}, \mathcal{U}, \mathcal{X}^{ \pm 1}$
relations: $\quad(\mathcal{T}-\kappa)\left(\mathcal{T}+\kappa^{-1}\right)=\mathcal{U}(\mathcal{U}+1)=0$
$\left(\mathcal{T}^{\prime}-\kappa^{\prime}\right)\left(\mathcal{T}^{\prime}+\kappa^{\prime-1}\right)=\mathcal{U}^{\prime 2}=0$
where

$$
\mathcal{T}^{\prime}=\mathcal{X} \mathcal{T}^{-1}, \quad \mathcal{U}^{\prime}=\mathcal{X}^{-1}(\mathcal{U}+1)
$$

