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Pseudo-telepathy game 
(Brassard–Cleve–Tapp (’99))

Alice & Bob have no communication after the game starts.


They receive -bit strings (questions) 
           
where  , such that 
                              .


They respond with -bit strings (answers) 
          .


They win if   .

n
x = (x1, …, xn), y = (y1, …, yn) ∈ {0,1}n

n = 2k

∂(x, y) = 0 or n/2

s
a = (a1, …, as), b = (b1, …, bs) ∈ {0,1}s

x = y ⟺ a = b
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 (Hamming distance)#{i : xi ≠ yi}
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Theorem (Brassard–Cleve–Tapp). The pseudo-telepathy 
game can be won with  
                                   , 
if Alice & Bob are allowed to use -qubit quantum systems in 
the maximally entangled state.

s = k = log2 n
k

Question. How small can  be to win the classical pseudo-
telepathy game?

s

Pseudo-telepathy game 
(Brassard–Cleve–Tapp (’99))



The orthogonality graph  Ωn (n = 2k)

  (vertex set)


  (edge set) 

V = V(Ωn) = {0,1}n

E = E(Ωn) = {{x, y} : x, y ∈ V, ∂(x, y) = n/2}
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Coloring of Ωn

Alice & Bob receive    such that 
                             .


They respond with    so that 
                             .


Alice & Bob’s answers are functions  ,   .


We must have  .


Moreover, we also have 
                  .

x, y ∈ V = {0,1}n

∂(x, y) = 0 or n/2

a, b ∈ {0,1}s

x = y ⟺ a = b

f : x ↦ a g : y ↦ b

f = g

∂(x, y) = n/2 ⟹ f(x) ≠ f(y)
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x y



The function     satisfies 
                                         .


In other words, for every  ,  the set 
                     
is an independent set, i.e., no two vertices are adjacent.


Moreover, these sets partition the vertex set : 
                              .


Thus,  has a coloring with  colors.

f : V → {0,1}s

⟹ f(x) ≠ f(y)

a ∈ {0,1}s

f −1(a) = {x ∈ V : f(x) = a}

V
V = ⨆

a∈{0,1}s

f −1(a)

Ωn 2s

Coloring of Ωn
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x y
 is “colored” by x a



The chromatic number  of  is the smallest number 
of colors in a coloring of .

χ(Ωn) Ωn

Ωn

The chromatic number of Ωn
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Remark. We can show    in general.χ(Ωn) ⩾ n = 2k

Summary.


Alice & Bob win the classical pseudo-telepathy game 
  has a coloring with  colors 
 


Alice & Bob win the quantum pseudo-telepathy game with 
.

⟺ Ωn 2s

⟺ s ⩾ log2 χ(Ωn) ( ⩾ k)

s = k Estimate the gap!!

 has a clique of this size.Ωn
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Theorem (Galliard (’01), Godsil–Newman (’08)). 
            (i.e., ).log2 χ(Ωn) = k ⟺ k ∈ {1,2,3} n ∈ {2,4,8}

Problem. Estimate .log2 χ(Ωn) ( ⩾ k)

The independence number of Ωn

The independence number  of  is the largest size 
of an independent set of .

α(Ωn) Ωn

Ωn

Lemma.  .χ(Ωn) α(Ωn) ⩾ |V | = 2n = 22k

Proof.  A coloring is a partition of  into independent sets.  V ∎
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Corollary.  .χ(Ωn) ⩾ 2n/α(Ωn)

Problem’.  Find , the independence number of .α(Ωn) Ωn

The main problem of this talk

Lemma.  .χ(Ωn) α(Ωn) ⩾ |V | = 2n ( = 22k)
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Problem’.  Find , the independence number of .α(Ωn) Ωn

The main problem of this talk

Galliard (’01) found an independent set of  of size 

                                 , 

and conjectured that this equals  for all  .


De Klerk & Pasechnik (’07) proved this for  , i.e., 
, using the semidefinite programming bound 

due to Schrijver (’05) based on the Terwilliger algebra.


This gives  .

Ωn

4
n/4−1

∑
i=0

(n − 1
i )

α(Ωn) n = 2k

n = 16 = 24

α(Ω16) = 2304

χ(Ω16) ⩾ 216/2304 = 24.83

We need extra  bit!!.83
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The main result

Theorem (Ihringer–T. (’19)).  For all  ( ), we have 

                             .

n = 2k k ⩾ 2

α(Ωn) = 4
n/4−1

∑
i=0

(n − 1
i )

The proof is a modification of Frankl’s rank argument (’86).


The proof is just around one page, assuming a bit of 
knowledge on association schemes.


I will explain what I think is most interesting in this proof.
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A proof sketch

By Galliard’s construction, we know 

                            .


Hence it suffices to show that  LHS  RHS.

α(Ωn) ⩾ 4
n/4−1

∑
i=0

(n − 1
i )

⩽

Then the proof is reduced to showing the following:
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A proof sketch

Claim.  The matrix 

                                     

is non-singular for any  such that 

     , 
where 

        .

(φ(∂(x, y)))x,y∈C

C ⊂ {0,1}n−1

{∂(x, y) : x, y ∈ C} ⊂ {2i : 0 ⩽ i < n/2, i ≠ n/4}

φ(ξ) = (ξ/2 − 1
n/4 − 1) = (ξ/2 − 1)(ξ/2 − 2)⋯(ξ/2 − n/4 + 1)

(n/4 − 1)!

degree  n/4 − 1



Indeed, from every independent set in  we can construct 
four such ’s, and we have 
                    

                           

                           , 

where the last  uses association scheme theory.

Ωn

C
|C | = rank (φ(∂(x, y)))x,y∈C

⩽ rank (φ(∂(x, y)))x,y∈{0,1}n−1

⩽
n/4−1

∑
i=0

(n − 1
i )

⩽

A proof sketch

degree  n/4 − 1
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follows from Claim



( −1
n/4 − 1)

⋅
⋅

⋅

( −1
n/4 − 1)

16

A proof sketch

Recall the matrix 
                                   , 

where 
    , 
and 

      .

(φ(∂(x, y)))x,y∈C

{∂(x, y) : x, y ∈ C} ⊂ {2i : 0 ⩽ i < n/2, i ≠ n/4}

φ(ξ) = (ξ/2 − 1
n/4 − 1) = (ξ/2 − 1)(ξ/2 − 2)⋯(ξ/2 − n/4 + 1)

(n/4 − 1)!

( i − 1
n /4 − 1)

 on the diagonal−1

0 < i < n /2, i ≠ n /4



Theorem (Lucas).  Let  be a prime, and let 

                             

be -adic expansions of non-negative integers  and . Then 

                            .

p

a =
r

∑
j=0

ajpj, b =
r

∑
j=0

bjpj

p a b

(a
b) ≡

r

∏
j=0 (

aj

bj) (mod p)

Recall the following result:

A proof sketch
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  if  (α
β):= 0 α < β

        
       

a = ar ar−1 ⋯ a1 a0 (p)
b = br br−1 ⋯ b1 b0 (p)



A proof sketch
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As   ,  we have 

      .

n/4 − 1 = 2k−2 − 1 =
k−3

∑
j=0

2j

( i − 1
n/4 − 1) ≡ 0 (mod 2) (0 < i < n/2, i ≠ n/4)

( −1
n/4 − 1)

⋅
⋅

⋅

( −1
n/4 − 1)

( i − 1
n /4 − 1)

 on the diagonal−1

0 < i < n /2, i ≠ n /4

non-singular !!

             
                   

i − 1 = ak−2 ak−3 ⋯ a1 a0 (2)
n/4 − 1 = 0 1 ⋯ 1 1 (2)

Hence                                 (φ(∂(x, y)))x,y∈C
≡ I (mod 2) ∎


