The independence number of the orthogonality graph in dimension 2^{k}

Hajime Tanaka
(joint work with Ferdinand Ihringer)
Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University

September 28, 2019
Frontiers in Mathematical Science Research Workshop

About myself

- Research area:
algebraic combinatorics, algebraic graph theory, spectral graph theory, etc.
- Professional background

Mar '04 : Ph.D. in Math from Kyushu U
Apr '04 - Mar '07 : JSPS postdoc at GSIS, Tohoku U
Apr '07 - Sep '07 : in USA (WPI, MIT)
Oct '07-Jul '12 : Assist. Prof. at GSIS, Tohoku U
Aug '12 - : Assoc. Prof. at GSIS, Tohoku U
Apr '17-: Assoc. Prof. at RACMaS, Tohoku U

Pseudo-telepathy game (Brassard-Cleve-Tapp ('99))

- Alice \& Bob have no communication after the game starts.
- They receive n-bit strings (questions)

$$
x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in\{0,1\}^{n}
$$

where $n=2^{k}$, such that

$$
\partial(x, y)=0 \text { or } n / 2 .
$$

- They respond with s-bit strings (answers)

$$
a=\left(a_{1}, \ldots, a_{s}\right), b=\left(b_{1}, \ldots, b_{s}\right) \in\{0,1\}^{s} .
$$

-They win if $x=y \Longleftrightarrow a=b$.

Pseudo-telepathy game (Brassard-Cleve-Tapp ('99))

Theorem (Brassard-Cleve-Tapp). The pseudo-telepathy game can be won with

$$
s=k=\log _{2} n,
$$

if Alice \& Bob are allowed to use k-qubit quantum systems in the maximally entangled state.

Question. How small can s be to win the classical pseudotelepathy game?

The orthogonality graph $\Omega_{n}\left(n=2^{k}\right)$

$\bullet V=V\left(\Omega_{n}\right)=\{0,1\}^{n}$ (vertex set)

- $E=E\left(\Omega_{n}\right)=\{\{x, y\}: x, y \in V, \partial(x, y)=n / 2\}$ (edge set)
Ω_{4}

Coloring of Ω_{n}

- Alice \& Bob receive $x, y \in V=\{0,1\}^{n}$ such that

$$
\partial(x, y)=0 \text { or } n / 2 .
$$

- They respond with $a, b \in\{0,1\}^{s}$ so that

$$
x=y \Longleftrightarrow a=b .
$$

\bullet Alice \& Bob's answers are functions $f: x \mapsto a, g: y \mapsto b$.

- We must have $f=g$.
- Moreover, we also have

$$
\begin{aligned}
& \partial(x, y)=n / 2 \Longrightarrow f(x) \neq f(y) . \\
& x \bullet y
\end{aligned}
$$

Coloring of Ω_{n}

- The function $f: V \rightarrow\{0,1\}^{s}$ satisfies

$$
x \bullet y \Longrightarrow f(x) \neq f(y) .
$$

```
x is "colored" by a
```

- In other words, for every $a \in\{0,1\}^{s}$, the set

$$
f^{-1}(a)=\{x \in V: f(x) \stackrel{\downarrow}{=} a\}
$$

is an independent set, i.e., no two vertices are adjacent.

- Moreover, these sets partition the vertex set V :

$$
V=\bigsqcup_{a \in\{0,1\}^{s}} f^{-1}(a) .
$$

- Thus, Ω_{n} has a coloring with 2^{s} colors.

The chromatic number of Ω_{n}

- The chromatic number $\chi\left(\Omega_{n}\right)$ of Ω_{n} is the smallest number of colors in a coloring of Ω_{n}.

Remark. We can show $\chi\left(\Omega_{n}\right) \geqslant n=2^{k}$ in general.

Summary.

- Alice \& Bob win the classical pseudo-telepathy game
$\Longleftrightarrow \Omega_{n}$ has a coloring with 2^{s} colors
$\Longleftrightarrow s \geqslant \log _{2} \chi\left(\Omega_{n}\right)(\geqslant k)$
- Alice \& Bob win the quantum pseudo-telepathy game with $s=k$. Estimate the gap!!

The independence number of Ω_{n}

Problem. Estimate $\log _{2} \chi\left(\Omega_{n}\right)(\geqslant k)$.
Theorem (Galliard ('01), Godsil-Newman ('08)).

$$
\left.\log _{2} \chi\left(\Omega_{n}\right)=k \Longleftrightarrow k \in\{1,2,3\} \text { (i.e., } n \in\{2,4,8\}\right) \text {. }
$$

- The independence number $\alpha\left(\Omega_{n}\right)$ of Ω_{n} is the largest size of an independent set of Ω_{n}.

Lemma. $\chi\left(\Omega_{n}\right) \alpha\left(\Omega_{n}\right) \geqslant|V|=2^{n}=2^{2^{k}}$.
Proof. A coloring is a partition of V into independent sets.

The main problem of this talk

Lemma. $\chi\left(\Omega_{n}\right) \alpha\left(\Omega_{n}\right) \geqslant|V|=2^{n}\left(=2^{2^{k}}\right)$.

Corollary. $\chi\left(\Omega_{n}\right) \geqslant 2^{n} / \alpha\left(\Omega_{n}\right)$.

Problem'. Find $\alpha\left(\Omega_{n}\right)$, the independence number of Ω_{n}.

The main problem of this talk

Problem'. Find $\alpha\left(\Omega_{n}\right)$, the independence number of Ω_{n}.

- Galliard ('01) found an independent set of Ω_{n} of size

$$
4 \sum_{i=0}^{n / 4-1}\binom{n-1}{i}
$$

and conjectured that this equals $\alpha\left(\Omega_{n}\right)$ for all $n=2^{k}$.

- De Klerk \& Pasechnik ('07) proved this for $n=16=2^{4}$, i.e., $\alpha\left(\Omega_{16}\right)=2304$, using the semidefinite programming bound due to Schrijver ('05) based on the Terwilliger algebra.
- This gives $\chi\left(\Omega_{16}\right) \geqslant 2^{16} / 2304=2^{4.83}$.

The main result

Theorem (Ihringer-T. ('19)). For all $n=2^{k}(k \geqslant 2)$, we have

$$
\alpha\left(\Omega_{n}\right)=4 \sum_{i=0}^{n / 4-1}\binom{n-1}{i} .
$$

- The proof is a modification of Frankl's rank argument ('86).
- The proof is just around one page, assuming a bit of knowledge on association schemes.
- I will explain what I think is most interesting in this proof.

A proof sketch

- By Galliard's construction, we know

$$
\alpha\left(\Omega_{n}\right) \geqslant 4 \sum_{i=0}^{n / 4-1}\binom{n-1}{i}
$$

- Hence it suffices to show that LHS \leqslant RHS.
- Then the proof is reduced to showing the following:

A proof sketch

Claim. The matrix

$$
(\varphi(\partial(x, y)))_{x, y \in C}
$$

is non-singular for any $C \subset\{0,1\}^{n-1}$ such that

$$
\{\partial(x, y): x, y \in C\} \subset\{2 i: 0 \leqslant i<n / 2, i \neq n / 4\},
$$

where

$$
\varphi(\xi)=\binom{\xi / 2-1}{n / 4-1}=\frac{(\xi / 2-1)(\xi / 2-2) \cdots(\xi / 2-n / 4+1)}{(n / 4-1)!} .
$$

A proof sketch

- Indeed, from every independent set in Ω_{n} we can construct four such C 's, and we have

$$
|C|_{\bar{y}}^{=} \operatorname{rank}(\varphi(\partial(x, y)))_{x, y \in C}
$$

follows from Claim $\leqslant \operatorname{rank}(\varphi(\partial(x, y)))_{x, y \in\{0,1\}^{n-1}}$

$$
\leqslant \sum_{i=0}^{n / 4-1}\binom{n-1}{i}, \quad \text { degree } n / 4-1
$$

where the last \leqslant uses association scheme theory.

A proof sketch

- Recall the matrix

$$
(\varphi(\partial(x, y)))_{x, y \in C},
$$

where

$$
\{\partial(x, y): x, y \in C\} \subset\{2 i: 0 \leqslant i<n / 2, i \neq n / 4\},
$$

and

$$
\varphi(\xi)=\binom{\xi / 2-1}{n / 4-1}=\frac{(\xi / 2-1)(\xi / 2-2) \cdots(\xi / 2-n / 4+1)}{(n / 4-1)!} .
$$

-1 on the diagonal

A proof sketch

- Recall the following result:

Theorem (Lucas). Let p be a prime, and let

$$
a=\sum_{j=0}^{r} a_{j} p^{j}, \quad b=\sum_{j=0}^{r} b_{j} p^{j}
$$

be p-adic expansions of non-negative integers a and b. Then

$$
\begin{aligned}
& \binom{a}{b} \equiv \prod_{j=0}^{r}\binom{a_{j}}{b_{j}} \times(\bmod p) . \quad\binom{\alpha}{\beta}:=0 \text { if } \alpha<\beta \\
& a=a_{r} a_{r-1} \cdots a_{1} a_{0(p)} \\
& b=b_{r} b_{r-1} \cdots b_{1} b_{0(p)}
\end{aligned}
$$

A proof sketch
-1 on the diagonal $\xrightarrow[\binom{(-1}{m 4-1}]{\left(\begin{array}{c}(-1 \\ m-1 \\ m-1\end{array}\right)}$
-As $n / 4-1=2^{k-2}-1=\sum_{j=0}^{k-3} 2^{j}$, we have

$$
\begin{gathered}
\binom{i-1}{n / 4-1} \equiv 0 \quad(\bmod 2) \quad(0<i<n / 2, i \neq n / 4) \\
i-1=a_{k-2} a_{k-3} \cdots a_{1} a_{0(2)} \\
n / 4-1=0 \quad 1 \cdots 11_{(2)}
\end{gathered}
$$

- Hence $(\varphi(\partial(x, y)))_{x, y \in C} \equiv I(\bmod 2) \longleftarrow$ non-singular!! \square

