The independence number of the orthogonality graph in dimension 2^k

Hajime Tanaka (joint work with Ferdinand Ihringer) Research Center for Pure and Applied Mathematics Graduate School of Information Sciences Tohoku University

September 28, 2019 Frontiers in Mathematical Science Research Workshop

About myself

Research area:

algebraic combinatorics, algebraic graph theory, spectral graph theory, etc.

Professional background

Mar '04 : Ph.D. in Math from Kyushu U Apr '04 – Mar '07 : JSPS postdoc at GSIS, Tohoku U Apr '07 – Sep '07 : in USA (WPI, MIT) Oct '07 – Jul '12 : Assist. Prof. at GSIS, Tohoku U Aug '12 – : Assoc. Prof. at GSIS, Tohoku U Apr '17 – : Assoc. Prof. at RACMaS, Tohoku U

Pseudo-telepathy game (Brassard–Cleve–Tapp ('99))

Alice & Bob have no communication after the game starts.

They receive n-bit strings (questions)

$$x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \{0, 1\}^n$$

where $n = 2^k$, such that

$$\partial(x, y) = 0 \text{ or } n/2$$

#{ $i : x_i \neq y_i$ } (Hamming distance)

They respond with s-bit strings (answers)

$$a = (a_1, ..., a_s), b = (b_1, ..., b_s) \in \{0, 1\}^s.$$

• They win if $x = y \iff a = b$.

Pseudo-telepathy game (Brassard–Cleve–Tapp ('99))

Theorem (Brassard–Cleve–Tapp). *The pseudo-telepathy* game can be won with

$$s = k = \log_2 n,$$

if Alice & Bob are allowed to use k-qubit quantum systems in the maximally entangled state.

Question. How small can *s* be to win the classical pseudotelepathy game?

The orthogonality graph $\Omega_n (n = 2^k)$

• $V = V(\Omega_n) = \{0,1\}^n$ (vertex set)

• $E = E(\Omega_n) = \{ \{x, y\} : x, y \in V, \ \partial(x, y) = n/2 \}$ (edge set)

Coloring of Ω_n

• Alice & Bob receive $x, y \in V = \{0,1\}^n$ such that $\partial(x, y) = 0$ or n/2.

• They respond with $a, b \in \{0,1\}^s$ so that $x = y \iff a = b$.

• Alice & Bob's answers are functions $f: x \mapsto a, g: y \mapsto b$.

• We must have f = g.

Moreover, we also have

$$\partial(x, y) = n/2 \implies f(x) \neq f(y).$$

x • *y*

Coloring of Ω_n

• The function $f: V \to \{0,1\}^s$ satisfies

$$x \longrightarrow y \implies f(x) \neq f(y).$$

 $x \text{ is "colored" by } a$

In other words, for every $a \in \{0,1\}^s$, the set $f^{-1}(a) = \left\{ x \in V : f(x) = a \right\}$

is an independent set, i.e., no two vertices are adjacent.

• Moreover, these sets partition the vertex set V:

$$V = \bigsqcup_{a \in \{0,1\}^s} f^{-1}(a).$$

• Thus, Ω_n has a coloring with 2^s colors.

The chromatic number of Ω_n

• The chromatic number $\chi(\Omega_n)$ of Ω_n is the smallest number of colors in a coloring of Ω_n .

Remark. We can show $\chi(\Omega_n) \ge n = 2^k$ in general.

Summary.

• Alice & Bob win the classical pseudo-telepathy game $\iff \Omega_n$ has a coloring with 2^s colors $\iff s \ge \log_2 \chi(\Omega_n) \ (\ge k)$ • Alice & Bob win the quantum pseudo-telepathy game with s = k.

The independence number of Ω_n

Problem. Estimate $\log_2 \chi(\Omega_n)$ ($\ge k$).

Theorem (Galliard ('01), Godsil–Newman ('08)). $\log_2 \chi(\Omega_n) = k \iff k \in \{1,2,3\} \text{ (i.e., } n \in \{2,4,8\}\text{)}.$

• The independence number $\alpha(\Omega_n)$ of Ω_n is the largest size of an independent set of Ω_n .

Lemma.
$$\chi(\Omega_n) \alpha(\Omega_n) \ge |V| = 2^n = 2^{2^k}$$
.

Proof. A coloring is a partition of V into independent sets.

The main problem of this talk

Lemma.
$$\chi(\Omega_n) \alpha(\Omega_n) \ge |V| = 2^n (=2^{2^k}).$$

Corollary. $\chi(\Omega_n) \ge 2^n / \alpha(\Omega_n)$.

Problem'. Find $\alpha(\Omega_n)$, the independence number of Ω_n .

The main problem of this talk

Problem'. Find $\alpha(\Omega_n)$, the independence number of Ω_n .

• Galliard ('01) found an independent set of Ω_n of size $4\sum_{i=0}^{n/4-1} \binom{n-1}{i}$,

and conjectured that this equals $\alpha(\Omega_n)$ for all $n = 2^k$.

- De Klerk & Pasechnik ('07) proved this for $n = 16 = 2^4$, i.e., $\alpha(\Omega_{16}) = 2304$, using the semidefinite programming bound due to Schrijver ('05) based on the Terwilliger algebra.
- This gives $\chi(\Omega_{16}) \ge 2^{16}/2304 = 2^{4.83}$.

- We need extra .83 bit!!

The main result

Theorem (Ihringer–T. ('19)). For all $n = 2^k$ ($k \ge 2$), we have

$$\alpha(\Omega_n) = 4 \sum_{i=0}^{n/4-1} \binom{n-1}{i}.$$

- The proof is a modification of Frankl's rank argument ('86).
- The proof is just around one page, assuming a bit of knowledge on association schemes.
- I will explain what I think is most interesting in this proof.

• By Galliard's construction, we know $\alpha(\Omega_n) \ge 4 \sum_{i=0}^{n/4-1} \binom{n-1}{i}.$

• Hence it suffices to show that LHS \leq RHS.

Then the proof is reduced to showing the following:

Claim. The matrix

$$\left(\varphi(\partial(x,y))\right)_{x,y\in C}$$

is non-singular for any $C \subset \{0,1\}^{n-1}$ such that

 $\{\partial(x,y): x,y \in C\} \subset \{2i: 0 \leq i < n/2, i \neq n/4\},\$

where

$$\varphi(\xi) = \binom{\xi/2 - 1}{n/4 - 1} = \frac{(\xi/2 - 1)(\xi/2 - 2)\cdots(\xi/2 - n/4 + 1)}{(n/4 - 1)!}.$$

degree $n/4 - 1$

where the last \leq uses association scheme theory.

Recall the matrix

 $(\varphi(\partial(x,y)))_{x,y\in C}$,

where

$$\{\partial(x, y) : x, y \in C\} \subset \{2i : 0 \le i < n/2, i \ne n/4\},\$$
and

$$\varphi(\xi) = \binom{\xi/2 - 1}{n/4 - 1} = \frac{(\xi/2 - 1)(\xi/2 - 2)\cdots(\xi/2 - n/4 + 1)}{(n/4 - 1)!}.$$

Recall the following result:

Theorem (Lucas). Let *p* be a prime, and let

$$a = \sum_{j=0}^{r} a_j p^j, \ b = \sum_{j=0}^{r} b_j p^j$$

be *p*-adic expansions of non-negative integers *a* and *b*. Then

$$\binom{a}{b} \equiv \prod_{j=0}^{r} \binom{a_j}{b_j} \pmod{p}.$$

$$\binom{\alpha}{\beta} := 0 \text{ if } \alpha < \beta$$

$$a = a_r a_{r-1} \cdots a_1 a_{0(p)}$$

$$b = b_r b_{r-1} \cdots b_1 b_{0(p)}$$

• As
$$n/4 - 1 = 2^{k-2} - 1 = \sum_{j=0}^{k-3} 2^j$$
, we have
 $\binom{i-1}{n/4 - 1} \equiv 0 \pmod{2} \quad (0 < i < n/2, \ i \neq n/4).$

$$n/4 - 1 = a_{k-2} a_{k-3} \cdots a_1 a_{0(2)}$$
$$n/4 - 1 = 0 \quad 1 \quad \cdots \quad 1 \quad 1 \quad (2)$$

• Hence $(\varphi(\partial(x, y)))_{x, y \in C} \equiv I \pmod{2}$ — non-singular !!