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Today’s topic
To obtain CLT-type theorems for algebraic probability spaces 
arising from certain graphs

Reference:  A. Hora & N. Obata, Quantum 
Probability and Spectral Analysis of Graphs, 
Springer-Verlag, 2007.

“distance-regular”

① I specialize in DRGs.


② I attended a talk given by Obata in 2009.


③ I (and some other participants) quickly found how it is 
related to the theory of DRGs (i.e., the Terwilliger algebra).
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 : an algebraic probability space


 : called an algebraic random variable


 : real    

(𝒜, φ)
∀a ∈ 𝒜

a ∈ 𝒜
def

⟺ a* = a

Remark.  For every real , there exists a Borel probability 
measure  on   s.t.


                       .

a ∈ 𝒜
μ ℝ

φ(ai) = ∫
+∞

−∞
ξi μ(dξ) (i = 0,1,2,…)

 momentith

Algebraic probability spaces
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Orthogonal polynomials

 : a Borel probability measure on  with finite moments


 : the monic orthogonal polynomials w.r.t. 

              .L

μ ℝ
p0, p1, p2, …

( f, g)μ = ∫
+∞

−∞
f(ξ)g(ξ)μ(dξ) ( f, g ∈ ℂ[ξ])

Remark. ,     s.t. 

          , 

where  , and  is undefined.

∃ωi > 0 ∃αi (i = 1,2,3,…)
ξpi(ξ) = pi+1(ξ) + αi+1pi(ξ) + ωipi−1(ξ) (i = 0,1,…)

p−1(ξ) = 0 ω0

three-term recurrence
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Remark.  If , then we only have 
, and thus only have    and  .

d + 1 = |supp μ | < ∞
p0, …, pd ω1, …, ωd α1, …, αd+1

ξpi = pi+1 + αi+1pi + ωipi−1

Remark.  The scalars  and  conversely determine 

                                  

by the Accardi–Bożejko formula.

ωi αi

∫
+∞

−∞
ξi μ(dξ) (i = 0,1,2,…)

 momentith

Jacobi coefficients

(𝒜, φ) ∋ a μ {ωi}, {αi}

real finite moments
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Graphs

 : a finite connected simple graph

 : the path-length distance on  :

G = (V, E)
∂ V

vertex set
edge set   a set of -element subsets of = 2 X

x = x0 y = xix1 x2 x3 xi−1

∂(x, y) = i

 : the diameter of d := max{∂(x, y) : x, y ∈ V} G

d = 5

G

x

y
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Distance-regular graphs

x

Gi−1(x) Gi(x) Gi+1(x)
y

 : a finite connected simple graph with diameter 

 : the  subconstituent w.r.t. 


 : distance-regular 

     s.t.   with   :

G = (V, E) d
Gi(x) = {y : ∂(x, y) = i} i th x
G
def

⟺ ∃ai, bi, ci (i = 0,…, d) ∀x, y ∈ V ∂(x, y) = i

ai

bici
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Distance-regular graphs

Gi−1(x) Gi(x) Gi+1(x)
y

 : a finite connected simple graph with diameter 

 : the  subconstituent w.r.t. 


 : distance-regular 

     s.t.   with   :

G = (V, E) d
Gi(x) = {y : ∂(x, y) = i} i th x
G
def

⟺ ∃ai, bi, ci (i = 0,…, d) ∀x, y ∈ V ∂(x, y) = i

ai

bici

degree

x
b0 = k
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G1(x)

Remark.  ai + bi + ci = k = b0



Example ( Hamming graphs  ).


 
   


    


,     

H(d, n)

V = {0,1,…, n − 1}d

= {(x1, x2, …, xd) : x1, x2, …, xd ∈ {0,1,…, n − 1}}
x = (xℓ) ∼ y = (yℓ)

def
⟺ |{ℓ : xℓ ≠ yℓ} | = 1

bi = (d − i)(n − 1) ci = i (i = 0,1,…, d)

8/17H(2,3)
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 : a distance-regular graph with diameter 


 : the adjacency matrix of  : 

                    L


 : the adjacency algebra of 

G = (V, E) d
A ∈ MV(ℂ) G

Ax,y = {1 if x ∼ y
0 otherwise

(x, y ∈ V)

𝒜 = ℂ[A] G

Consider the algebraic probability space , where  
denotes the tracial state.


The probability measure corresponding to the real algebraic 
random variable  is the spectral distribution  of .

(𝒜, φtr) φtr

A μG A

φtr(B) =
tr(B)
|V |
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Problem.  If  “grows”, then  ?G μG → ∃μ

Since    and  , we will instead work with  
, and normalize  accordingly.
φtr(A) = 0 φtr(A2) = k

A/ k μG

mean

variance

“Central Limit Theorem”
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Example ( Hamming graphs  ).
H(d, n)
n/d → 0

k = d(n − 1)
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Problem.  If  “grows”, then  ?G μG → ∃μ

Since    and  , we will instead work with  
, and normalize  accordingly.
φtr(A) = 0 φtr(A2) = k

A/ k μG

mean

variance

“Central Limit Theorem”
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Example ( Hamming graphs  ).
H(d, n)
n/d → ν ∈ (0,∞)

k = d(n − 1)

10/17



The limit distributions have been computed by Hora, Obata, 
and others, for DRGs including Hamming, Johnson, Odd, 
and Grassmann graphs.

graphs limit distributions
Hamming Gaussian, Poisson
Johnson geometric, exponential
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Gibbs states

Let  , and define  by 

                             . 

The Gibbs state    on  is defined by 

                             .L

t ∈ ℝ Qt ∈ 𝒜

(Qt)x,y = t∂(x,y) (x, y ∈ V)

φt 𝒜

φt(B) =
1

|V |
⟨Qt, B⟩ (B ∈ 𝒜)

Remark.  .φ0 = φtr

or deformed vacuum state

Remark.   : a state    φt ⟺ Qt ≽ 0
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positive semidefinite



 : a state  φt ⟺ Qt ≽ 0



We have 
     ,      .


Hence we will work with   .

π(G) = {t ∈ ℝ : Qt ≽ 0} ⊂ [−1,1]

φt(A) = tk φt((A − tkI)2) = k(1 − t)(1 + t + ta1)

(A − tkI)/Σt

mean variance

Σ2
t

:
=

Hora (’00) showed    if  is a Hamming graph 
or a Johnson graph, and computed the limit distributions:

[0,1] ⊂ π(G) G

graphs limit distributions
Hamming Gaussian, Poisson

Johnson compound Poisson distributions of 
gamma and Pascal distributions 
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DRGs with classical parameters

 : a DRG with diameter 


 is said to have classical parameters  if 

                , 

                  

for  .

G = (V, E) d

G (d, q, α, β)

bi = ([d
1]−[ i

1])(β − α[ i
1])

ci = [ i
1](1 + α[i − 1

1 ])
i = 0,1,…, d [n

1]=[n
1]

q
= 1 + q + ⋯ + qn−1

Remark.  Most of the known infinite families of DRGs either 
have classical parameters or are related to such families.
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bi = ([d
1]−[ i

1])(β − α[ i
1])

ci = [ i
1](1 + α[i − 1

1 ])
Example ( Hamming graphs  ).


,  


,  ,  

H(d, n)

bi = (d − i)(n − 1) ci = i

q = 1 α = 0 β = n − 1

Proposition (Koohestani–Obata–T., ’21).  If  has classical 
parameters with , then    .

G
q ≠ 1 q−i ∈ π(G) (i = 0,1,2,…)

π(G) = {t ∈ ℝ : Qt ≽ 0}

(cf. Voit, ’21)
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Theorem (Koohestani–Obata–T., ’21).  Assume the following.

 : a directed set


 : a net of DRGs, where  , such that: 

① Each  has classical parameters  with .  
② The limit Jacobi coefficients of  exist. 

Then  eventually takes at most three values. Suppose that  is 
eventually constant. Then so is , and the following hold:

(Λ, ⩽ )
(Gλ)λ∈Λ d → ∞

Gλ (d, q, α, β) q ≠ 1
(A − tkI)/Σt

q q
α

If  , then    is eventually bounded, and  
s.t.  ,  ,  ,  and the 
accumulation points of    are in . 
If  , then   s.t.  ,  ,  , 
and  .

α ≠ 0 β/ k ∃γ, ρ ∈ ℝ
ρ > 0 γ(ρ + α/ρ) > − 1 t k → γ

β/ k {ρ, α/ρ}
α = 0 ∃γ, ρ ∈ ℝ ρ ⩾ 0 γρ > − 1 t k → γ

β/ k → ρ

For each , fix .λ ∈ Λ t ∈ π(Gλ)
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Remark.  If  is not constant, then there 
exists a subnet of  for which  is 
eventually constant and .

q
(Gλ)λ∈Λ q

α = 0

Remark.  Many of the previous results are sufficient conditions 
for the existence of limit distributions. Our theorem provides a 
necessary condition, which is also more or less sufficient.

 
If  then
♯ q ⩽ 3

♯ q = 1

Remark.  The limit distributions are explicitly described in 
terms of  (and one other parameter when ).q, α, γ, ρ α = 0
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Remark.  For , the corresponding orthogonal 
polynomials belong to the Askey scheme of -hypergeometric 
orthogonal polynomials.

γ = 0
q

 t k → γ
β/ k → {ρ, α/ρ}


