Scaling limits for the Gibbs states on distance-regular graphs with classical parameters

Hajime Tanaka
(joint work with Masoumeh Koohestani and Nobuaki Obata)
Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University

August 5, 2022
19th Workshop: Noncommutative probability, noncommutative harmonic analysis and related topics

Today's topic

- To obtain CLT-type theorems for algebraic probability spaces arising from certain graphs

\qquad "distance-regular"

Reference: A. Hora \& N. Obata, Quantum
Probability and Spectral Analysis of Graphs, Springer-Verlag, 2007.
(1) I specialize in DRGs.
(2) I attended a talk given by Obata in 2009.

(3) I (and some other participants) quickly found how it is related to the theory of DRGs (i.e., the Terwilliger algebra).

Algebraic probability spaces

- (\mathscr{A}, φ) : an algebraic probability space
- $\forall a \in \mathscr{A}$: called an algebraic random variable
- $a \in \mathscr{A}$: real $\stackrel{\text { def }}{\Longleftrightarrow} a^{*}=a$

Remark. For every real $a \in \mathscr{A}$, there exists a Borel probability measure μ on \mathbb{R} s.t.

$$
\varphi\left(a^{i}\right)=\int_{-\infty}^{+\infty} \xi^{i} \mu(d \xi) \quad(i=0,1,2, \ldots) .
$$

Orthogonal polynomials

- μ : a Borel probability measure on \mathbb{R} with finite moments
- $p_{0}, p_{1}, p_{2}, \ldots$: the monic orthogonal polynomials w.r.t.

$$
(f, g)_{\mu}=\int_{-\infty}^{+\infty} \overline{f(\xi)} g(\xi) \mu(d \xi) \quad(f, g \in \mathbb{C}[\xi])
$$

three-term recurrence

Remark. $\exists \omega_{i}>0, \exists \alpha_{i}(i=1,2,3, \ldots)$ s.t.

$$
\xi p_{i}(\xi) \stackrel{\sim}{=} p_{i+1}(\xi)+\alpha_{i+1} p_{i}(\xi)+\omega_{i} p_{i-1}(\xi) \quad(i=0,1, \ldots)
$$

where $p_{-1}(\xi)=0$, and ω_{0} is undefined.

$$
\xi p_{i}=p_{i+1}+\alpha_{i+1} p_{i}+\omega_{i} p_{i-1}
$$

Remark. If $d+1=|\operatorname{supp} \mu|<\infty$, then we only have p_{0}, \ldots, p_{d}, and thus only have $\omega_{1}, \ldots, \omega_{d}$ and $\alpha_{1}, \ldots, \alpha_{d+1}$.

Remark. The scalars ω_{i} and α_{i} conversely determine

$$
\int_{-\infty}^{+\infty} \xi^{i} \mu(d \xi) \quad(i=0,1,2, \ldots)
$$

by the Accardi-Bożejko formula.

$$
(\mathscr{A}, \varphi) \ni a \longmapsto \mu \longmapsto \underbrace{}_{\text {real }} \longmapsto\left\{\omega_{i}\right\},\left\{\alpha_{i}\right\}
$$

Graphs

- $G=(V, E)$: a finite connected simple graph
- ∂ : the path-length distance on V :

$$
\begin{gathered}
x=x_{0} \quad x_{1} \quad x_{2} \quad x_{3} \quad \ldots \quad \begin{array}{ll}
x_{i-1} \quad y=x_{i} \\
\partial(x, y)=i
\end{array} \\
\end{gathered}
$$

○ $d:=\max \{\partial(x, y): x, y \in V\}:$ the diameter of G

Distance-regular graphs

- $G=(V, E)$: a finite connected simple graph with diameter d
- $G_{i}(x)=\{y: \partial(x, y)=i\}:$ the $i^{\text {th }}$ subconstituent w.r.t. x
- G : distance-regular $\stackrel{\text { def }}{\Longleftrightarrow} \exists a_{i}, b_{i}, c_{i}(i=0, \ldots, d)$ s.t. $\forall x, y \in V$ with $\partial(x, y)=i:$

Distance-regular graphs

- $G=(V, E)$: a finite connected simple graph with diameter d
- $G_{i}(x)=\{y: \partial(x, y)=i\}:$ the $i^{\text {th }}$ subconstituent w.r.t. x
- G : distance-regular $\stackrel{\text { def }}{\Longleftrightarrow} \exists a_{i}, b_{i}, c_{i}(i=0, \ldots, d)$ s.t. $\forall x, y \in V$ with $\partial(x, y)=i:$

Remark. $a_{i}+b_{i}+c_{i}=k=b_{0}$

Example (Hamming graphs $H(d, n)$).

$$
\begin{aligned}
V & =\{0,1, \ldots, n-1\}^{d} \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right): x_{1}, x_{2}, \ldots, x_{d} \in\{0,1, \ldots, n-1\}\right\} \\
-x & =\left(x_{\ell}\right) \sim y=\left(y_{\ell}\right) \stackrel{\text { def }}{\Longleftrightarrow}\left|\left\{\ell: x_{\ell} \neq y_{\ell}\right\}\right|=1 \\
b_{i} & =(d-i)(n-1), c_{i}=i \quad(i=0,1, \ldots, d)
\end{aligned}
$$

$H(2,3)$

- $G=(V, E)$: a distance-regular graph with diameter d
- $A \in M_{V}(\mathbb{C})$: the adjacency matrix of G :

$$
A_{x, y}=\left\{\begin{array}{ll}
1 & \text { if } x \sim y \\
0 & \text { otherwise }
\end{array} \quad(x, y \in V)\right.
$$

- $\mathscr{A}=\mathbb{C}[A]$: the adjacency algebra of G
- Consider the algebraic probability space $\left(\mathscr{A}, \varphi_{\mathrm{tr}}\right)$, where φ_{tr} denotes the tracial state.
- The probability measure corresponding to the real algebraic random variable A is the spectral distribution μ_{G} of A.

Problem. If G "grows", then $\mu_{G} \rightarrow \exists \mu$?

variance

- Since $\varphi_{\mathrm{tr}}(A)=0$ and $\varphi_{\mathrm{tr}}\left(A^{2}\right)=k$, we will instead work with A / \sqrt{k}, and normalize μ_{G} accordingly.

Example (Hamming graphs $H(d, n)$). $k=d(n-1)$

- $n / d \rightarrow 0$

Problem. If G "grows", then $\mu_{G} \rightarrow \exists \mu$?

- Since $\varphi_{\mathrm{tr}}(A)=0$ and $\varphi_{\mathrm{tr}}\left(A^{2}\right)=k$, we will instead work with A / \sqrt{k}, and normalize μ_{G} accordingly.

Example (Hamming graphs $H(d, n)$).

variance

- $n / d \rightarrow \nu \in(0, \infty)$

- The limit distributions have been computed by Hora, Obata, and others, for DRGs including Hamming, Johnson, Odd, and Grassmann graphs.

graphs	limit distributions
Hamming	Gaussian, Poisson
Johnson	geometric, exponential

Gibbs states

- Let $t \in \mathbb{R}$, and define $Q_{t} \in \mathscr{A}$ by

$$
\left(Q_{t}\right)_{x, y}=t^{\partial(x, y)} \quad(x, y \in V)
$$

- The Gibbs state φ_{t} on \mathscr{A} is defined by

$$
\varphi_{t}(B)=\frac{1}{|V|}\left\langle Q_{t}, B\right\rangle \quad(B \in \mathscr{A}) .
$$

Remark. $\varphi_{0}=\varphi_{\text {tr }}$
positive semidefinite
Remark. φ_{t} : a state $\Longleftrightarrow Q_{t} \geqslant 0$

$$
\varphi_{t}: \text { a state } \Longleftrightarrow Q_{t} \succcurlyeq 0
$$

- $\pi(G)=\left\{t \in \mathbb{R}: Q_{t} \geqslant 0\right\} \subset[-1,1]$
- We have

$$
\varphi_{t}(A)^{\prime}=t k, \quad \varphi_{t}\left((A-t k I)^{2}\right)^{2}=k(1-t)\left(1+t+t a_{1}\right) .
$$

- Hence we will work with $(A-t k I) / \Sigma_{t}$.
- Hora (' 00) showed $[0,1] \subset \pi(G)$ if G is a Hamming graph or a Johnson graph, and computed the limit distributions:

graphs	limit distributions
Hamming	Gaussian, Poisson
Johnson	compound Poisson distributions of gamma and Pascal distributions

DRGs with classical parameters

- $G=(V, E)$: a DRG with diameter d
- G is said to have classical parameters (d, q, α, β) if

$$
\begin{aligned}
& b_{i}=\left(\left[\begin{array}{l}
d \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right), \\
& c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) \\
& \text { for } i=0,1, \ldots, d .
\end{aligned}\left[\begin{array}{l}
n \\
1
\end{array}\right]=\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q}=1+q+\cdots+q^{n-1} .
$$

Remark. Most of the known infinite families of DRGs either have classical parameters or are related to such families.

Example (Hamming graphs $H(d, n)$).

$$
\begin{aligned}
& b_{i}=\left(\left[\begin{array}{l}
d \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) \\
& c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right)
\end{aligned}
$$

- $b_{i}=(d-i)(n-1), c_{i}=i$
- $q=1, \alpha=0, \beta=n-1$

$$
\pi(G)=\left\{t \in \mathbb{R}: Q_{t} \geqslant 0\right\}
$$

Proposition (Koohestani-Obata-T., '21). If G has classical parameters with $q \neq 1$, then $q^{-i} \in \pi(G)(i=0,1,2, \ldots)$.

Theorem (Koohestani-Obata-T., '21). Assume the following.

- (Λ, \leqslant) : a directed set
- $\left(G_{\lambda}\right)_{\lambda \in \Lambda}$: a net of DRGs, where $d \rightarrow \infty$, such that:
(1) Each G_{λ} has classical parameters (d, q, α, β) with $q \neq 1$.
(2) The limit Jacobi coefficients of $(A-t k I) / \Sigma_{t}$ exist.

Then q eventually takes at most three values. Suppose that q is eventually constant. Then so is α, and the following hold:

- If $\alpha \neq 0$, then β / \sqrt{k} is eventually bounded, and $\exists \gamma, \rho \in \mathbb{R}$ s.t. $\rho>0, \gamma(\rho+\alpha / \rho)>-1, t \sqrt{k} \rightarrow \gamma$, and the accumulation points of β / \sqrt{k} are in $\{\rho, \alpha / \rho\}$.
- If $\alpha=0$, then $\exists \gamma, \rho \in \mathbb{R}$ s.t. $\rho \geqslant 0, \gamma \rho>-1, t \sqrt{k} \rightarrow \gamma$, and $\beta / \sqrt{k} \rightarrow \rho$.
- $\# q \leqslant 3$
- If $\# q=1$ then
* $t \sqrt{k} \rightarrow \gamma$
* $\beta / \sqrt{k} \rightarrow\{\rho, \alpha / \rho\}$

Remark. Many of the previous results are sufficient conditions for the existence of limit distributions. Our theorem provides a necessary condition, which is also more or less sufficient.

Remark. The limit distributions are explicitly described in terms of q, α, γ, ρ (and one other parameter when $\alpha=0$).

Remark. For $\gamma=0$, the corresponding orthogonal polynomials belong to the Askey scheme of q-hypergeometric orthogonal polynomials.

