The element distinctness problem revisited

Hajime Tanaka
Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University

August 21, 2023
Recent topics on generalized orthogonal polynomials and their applications
ICIAM 2023 TOKYO

The element k-distinctness problem

Given a sequence of data of length n

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{i_{1}}, \ldots, a_{i_{2}}, \ldots \ldots, a_{i_{k}}, \ldots, a_{n}
$$

find if it contains k identical entries!
a k-collision

- Classically, we need $\Omega(n)$ queries.
- Ambainis ('07) found a quantum-walk-based algorithm with $O\left(n^{k /(k+1)}\right)$ queries.
\longleftarrow optimal when $k=2$
- Belovs ('12) improved this to $O\left(n^{\left.1-2^{k-2 /(2 ~} 2^{k}-1\right)}\right)$.

Ambainis' algorithm

- The main part of Ambainis' algorithm handles the following case:

Assumption. The sequence $a_{1}, a_{2}, \ldots, a_{n}$ contains precisely one k-collision, denoted $K=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$.

- Ambainis considered the following graph:
vertex set : $\left\{\begin{array}{c}\left.(S, T): \begin{array}{c}S, T \subset\{1,2, \ldots, n\}, S \subset T \\ |S|=r,|T|=r+1\end{array}\right\}\end{array}\right\}$
adjacency: $(S, T) \sim\left(S^{\prime}, T^{\prime}\right) \Longleftrightarrow S=S^{\prime}$ or $T=T^{\prime}$
- Ambainis used a staggered quantum walk on this graph to find a vertex (S, T) such that $K \subset S$.

The goal

Rebuild the main part of Ambainis' algorithm using a better graph and a simpler quantum walk!

- We use the Johnson graph $J(n, r)$:
vertex set: $\{S: S \subset\{1,2, \ldots, n\},|S|=r\}$
adjacency : $S \sim S^{\prime} \Longleftrightarrow\left|S \cap S^{\prime}\right|=r-1$
distance-regular

The Grover quantum walk on a graph

- Γ : a finite simple graph with vertex set V
- D : the set of arcs (or directed edges) in Γ :

$$
D=\{a=(x, y): x, y \in V, x \sim y\}
$$

- For $a=(x, y) \in D$, let

$$
\operatorname{tail}(a)=x, \operatorname{head}(a)=y, \bar{a}=(y, x) .
$$

- $\mathscr{H}_{D}=\operatorname{span}\{|a\rangle: a \in D\}$, where $\langle a \mid b\rangle=\delta_{a, b}$
- S : the shift operator on $\mathscr{H}_{D}: \mathrm{S}|a\rangle=|\bar{a}\rangle$
- C : the Grover coin operator on \mathscr{H}_{D} :

$$
\mathrm{C}|a\rangle=\frac{2}{\operatorname{deg}(\operatorname{tail}(a))} \sum_{\operatorname{tail}(b)=\operatorname{tail}(a)}|b\rangle-|a\rangle
$$

The Grover quantum walk on a graph

- $\mathrm{U}=\mathrm{SC}$: the Grover evolution operator on \mathscr{H}_{D}

Our algorithm

$$
r=\left\lfloor n^{k(k+1)}\right\rfloor
$$

- Let $\Gamma=J(n, r)$.
- R : an oracle on \mathscr{H}_{D} :

$$
\mathrm{R}|a\rangle=\left\{\begin{aligned}
-|a\rangle & \text { if } K \subset \operatorname{tail}(a), \operatorname{head}(a), \\
|a\rangle & \text { otherwise } .
\end{aligned}\right.
$$

- $|\sigma\rangle=|D|^{-1 / 2} \sum_{a \in D}|a\rangle$: the initial state
- $|\tau\rangle=\left(\mathrm{U}^{t_{2} \mathrm{R}}\right)^{t_{1}}|\sigma\rangle$, where $t_{1}=\left\lfloor\frac{\pi \sqrt{r}}{4}\right\rfloor, t_{2}=2\left\lfloor\frac{\pi \sqrt{r}}{2 \sqrt{2 k}}\right\rfloor+1$
- $p_{\text {suck }}=\sum_{a \in D}|\langle a \mid \tau\rangle|^{2}$: the success probability

$$
K \subset \operatorname{tail}(a), \operatorname{head}(a)
$$

Theorem. We have $p_{\text {suck }}=1+o(1)(n \rightarrow \infty)$.

How orthogonal polynomials play a role

- A pair $A, A^{*} \in \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{d+1}\right)$ is a Leonard pair if:
(1) There is an ordered eigenbasis of A for which A^{*} is irreducible tridiagonal.
(2) There is an ordered eigenbasis of A^{*} for which A is irreducible tridiagonal.
nonzero superdiagonal/subdiagonal entries
Fact. Leonard pairs characterize the terminating branch of the Askey scheme consisting of q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk, Racah, Hahn, dual Hahn, Krawtchouk, and Bannai/Ito polynomials.

How orthogonal polynomials play a role

- Recall $J(n, r)$ with $V=\{S: S \subset\{1,2, \ldots, n\},|S|=r\}$.
- Consider $\mathscr{H}_{V}=\operatorname{span}\{|S\rangle: S \in V\}$.
- Fix $S \in V$ and set $\left|v_{i}\right\rangle=\sum_{\substack{S^{\prime} \in V \\\left|S \cap S^{\prime}\right|=i}}\left|S^{\prime}\right\rangle \quad(i=0,1, \ldots, r)$.

Theorem (Terwilliger, '91). The linear span of the $\left|v_{i}\right\rangle$ affords a Leonard pair, one of whose operators is the adjacency operator.

- Recall the k-collision $K=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$.
- Set $\left|u_{i}\right\rangle=\sum_{\substack{S^{\prime} \in V \\\left|K \cap S^{\prime}\right|=i}}\left|S^{\prime}\right\rangle \quad(i=0,1, \ldots, k)$.

Theorem (T., '11). The linear span of the $\left|u_{i}\right\rangle$ affords \cdots.

An orthogonality for dual Hahn polynomials

- Recall the dual Hahn polynomials:

$$
\begin{aligned}
& R_{i}(\lambda(j) ; \gamma, \delta, N)={ }_{3} F_{2}\left(\left.\begin{array}{c}
-i,-j, j+\gamma+\delta+1 \\
\gamma+1,-N
\end{array} \right\rvert\, 1\right) \\
& \text { for } i=0,1, \ldots, N, \text { where } \lambda(j)=j(j+\gamma+\delta+1) .
\end{aligned}
$$

Fact. The polynomials associated with the $\left|v_{i}\right\rangle$ are the dual Hahn polynomials with $N=r, \gamma=r-n-1, \delta=-r-1$.

Theorem (T., '09, '11). The polynomials associated with the $\left|u_{i}\right\rangle$ are the dual Hahn polynomials with $N=k$ and the same γ, δ :

$$
\begin{aligned}
\sum_{j=0}^{k} \frac{(2 j+\gamma+\delta+1)(\gamma+1)_{j}(-k)_{j} k!}{(-1)^{j}(j+\gamma+\delta+1)_{k+1}(\delta+1)_{j} j!} R_{i}(\lambda(j) ; r) R_{\ell}(\lambda(j) ; k)=0 \\
\text { if } i<\ell \text { or } i>\ell+r-k .
\end{aligned}
$$

