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The element -distinctness problemk

Given a sequence of data of length  

          , 

find if it contains  identical entries!

n
a1, a2, a3, …, ai1, …, ai2, ……, aik, …, an

k

Classically, we need  queries.

Ambainis (’07) found a quantum-walk-based algorithm with 

 queries.


Belovs (’12) improved this to .

Ω(n)

O(nk/(k+1))
O(n1−2k−2/(2k−1))
optimal when k = 2

a -collisionk
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Ambainis’ algorithm
The main part of Ambainis’ algorithm handles the following 
case:

Assumption. The sequence  contains precisely 
one -collision, denoted .

a1, a2, …, an

k K = {i1, i2, …, ik}

Ambainis considered the following graph:

vertex set : 


adjacency :        or  

{(S, T) :
S, T ⊂ {1,2,…, n}, S ⊂ T

|S | = r, |T | = r + 1 }
(S, T) ∼ (S′ , T′ ) ⟺ S = S′ T = T′ 

Ambainis used a staggered quantum walk on this graph to 
find a vertex  such that .(S, T) K ⊂ S

r = ⌊nk/(k+1)⌋
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The goal

Rebuild the main part of Ambainis’ algorithm using a better 
graph and a simpler quantum walk!

We use the Johnson graph :J(n, r)

vertex set : 


adjacency :     

{S : S ⊂ {1,2,…, n}, |S | = r}
S ∼ S′ ⟺ |S ∩ S′ | = r − 1

r = ⌊nk/(k+1)⌋

distance-regular {1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}

n = 4, r = 2 :
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The Grover quantum walk on a graph

 : a finite simple graph with vertex set 

 : the set of arcs (or directed edges) in  : 

       


For , let  

       ,  ,  .

Γ V
D Γ

D = {a = (x, y) : x, y ∈ V, x ∼ y}

a = (x, y) ∈ D
tail(a) = x head(a) = y ā = (y, x)

x y

a
tail(a) head(a)

, where 


 : the shift operator on  :   


 : the Grover coin operator on  : 

            

ℋD = span{ |a⟩ : a ∈ D} ⟨a |b⟩ = δa,b

𝖲 ℋD 𝖲 |a⟩ = |a⟩

𝖢 ℋD

𝖢 |a⟩ =
2

deg(tail(a)) ∑
tail(b)=tail(a)

|b⟩ − |a⟩
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1

1/31/3

1/3 1/3
1/3 −2/3

1/31/3

1/3 1/3
1/3 −2/3

𝖢

𝖲

 : the Grover evolution operator on 𝖴 = 𝖲𝖢 ℋD

The Grover quantum walk on a graph
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Our algorithm
Let .


 : an oracle on  : 

     

Γ = J(n, r)
𝖱 ℋD

𝖱 |a⟩ = {− |a⟩ if K ⊂ tail(a), head(a),
− |a⟩ otherwise.

 : the initial state


, where , 


                   : the success probability

|σ⟩ = |D |−1/2
∑
a∈D

|a⟩

|τ⟩ = (𝖴t2𝖱)t1 |σ⟩ t1 = ⌊ π r
4 ⌋ t2 = 2⌊ π r

2 2k ⌋ + 1

psucc = |⟨a |τ⟩ |2

r = ⌊nk/(k+1)⌋

∑
a ∈ D

K ⊂ tail(a), head(a)

Theorem.  We have    .psucc = 1 + o(1) (n → ∞) 7



How orthogonal polynomials play a role

A pair  is a Leonard pair if :A, A* ∈ Endℂ(ℂd+1)

① There is an ordered eigenbasis of  for which  is 
irreducible tridiagonal.


② There is an ordered eigenbasis of  for which  is 
irreducible tridiagonal.

A A*

A* A

Terwilliger (’01)

nonzero superdiagonal/subdiagonal entries

Fact.  Leonard pairs characterize the terminating branch of the  
Askey scheme consisting of -Racah, -Hahn, dual -Hahn, 

-Krawtchouk, dual -Krawtchouk, quantum -Krawtchouk, 
affine -Krawtchouk, Racah, Hahn, dual Hahn, Krawtchouk, 
and Bannai/Ito polynomials.

q q q
q q q

q
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How orthogonal polynomials play a role

Recall  with .

Consider . 


Fix  and set              . 

J(n, r) V = {S : S ⊂ {1,2,…, n}, |S | = r}
ℋV = span{ |S⟩ : S ∈ V}

S ∈ V |vi⟩ = |S′ ⟩ (i = 0,1,…, r)∑
S′ ∈ V

|S ∩ S′ | = i

Theorem (Terwilliger, ’91).  The linear span of the  affords a 
Leonard pair, one of whose operators is the adjacency operator.

|vi⟩

Recall the -collision .

Set              . 

k K = {i1, i2, …, ik}
|ui⟩ = |S′ ⟩ (i = 0,1,…, k)∑

S′ ∈ V
|K ∩ S′ | = i

Theorem (T., ’11).  The linear span of the  affords .|ui⟩ ⋯ 9



An orthogonality for dual Hahn polynomials

Recall the dual Hahn polynomials :  
 

for , where .

Ri(λ( j); γ, δ, N) = 3F2(−i, − j, j + γ + δ + 1
γ + 1, − N

1)
i = 0,1,…, N λ( j) = j( j + γ + δ + 1)

Fact.  The polynomials associated with the  are the dual 
Hahn polynomials with , , .

|vi⟩
N = r γ = r − n − 1 δ = − r − 1

Theorem (T., ’09, ’11).  The polynomials associated with the  
are the dual Hahn polynomials with  and the same  :

|ui⟩
N = k γ, δ

k

∑
j=0

(2j + γ + δ + 1)(γ + 1)j(−k)jk!

(−1) j( j + γ + δ + 1)k+1(δ + 1)j j!
Ri(λ( j); r)Rℓ(λ( j); k) = 0

if  or .i < ℓ i > ℓ + r − k
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