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How I started this work
I am a researcher specializing in distance-regular graphs 
and association schemes. 
Etsuo Segawa (a specialist in quantum walks) invited 
Portugal to Tohoku U in Jan−Feb 2018, and Portugal gave 
lectures on quantum-walk-based search algorithms.

Sabri was a student of Segawa and became my Ph.D. 
student in Sep 2019.


  I started studying quantum walks.⟹

2



Reference

Quantum Science and Technology

Renato Portugal

Quantum Walks 
and Search 
Algorithms
Second Edition

Renato Portugal

Quantum Walks and Search Algorithms (2nd edition)

Springer, Cham, 2018.


3



Some postulates in quantum physics

a quantum system     : a Hilbert space


a state of the system      s.t.  

⟷ ℋ
⟷ |v⟩ ∈ ℋ ∥|v⟩∥ = 1

unitary operator

4

an evolution of the system    

a (projective) measurement     : an ONB of 

⟷ U |v⟩
⟷ { |ϕℓ⟩}n

ℓ=1 ℋ

Remark.  The “ket” symbol  is used to mean vectors in . 
The inner product of  is denoted .

| ⋅ ⟩ ℋ
|u⟩, |v⟩ ∈ ℋ ⟨u |v⟩ linear

antilinear

Remark.  The outcome of the measurement is one of . 
The probability that the outcome is  is . If we get , 
then the state collapses to .

1,2,…, n
ℓ |⟨ϕℓ |v⟩ |2 ℓ

|ϕℓ⟩ n

∑
ℓ=1

|⟨ϕℓ |v⟩ |2 = ∥|v⟩∥2 = 1



 : a finite simple graph, where  

 

, where 


   : unitary


 : the initial state


 : the state at time 


 : the probability of finding  at time 

G = (𝒱, ℰ) |𝒱 | = N

ℋ𝒱 = span{ |x⟩ : x ∈ 𝒱} ⟨x |y⟩ = δx,y

U(t) (t ∈ ℝ)
|ψ(0)⟩ ∈ ℋ𝒱

|ψ(t)⟩ = U(t) |ψ(0)⟩ t ∈ ℝ

|⟨x |ψ(t)⟩ |2 x t

Set-up (continuous-time)

 : the vertex set, where 


 : the edge set         

𝒱 |𝒱 | = N
ℰ

unit vector
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a set of -element subsets of 2 𝒱



Example.





  

γ ∈ ℝ>0

U(t) = e−iγLt (t ∈ ℝ)

 : the adjacency matrix : 

                    La

 : the degree matrix :       


 : the Laplacian matrix

A

Ax,y = {1 if x ∼ y
0 otherwise

(x, y ∈ 𝒱)

D Dx,x = deg(x) (x ∈ 𝒱)

L = D − A

diagonal


|ψ(t)⟩ = U(t) |ψ(0)⟩
|⟨x |ψ(t)⟩ |2

L = [
1 −1 0

−1 2 −1
0 −1 1 ]

quantization of the transition matrix  of the

continuous-time random walk with transition rate 

e−γLt

γ
6

Set-up (continuous-time)

|{y : x ∼ y} |



Example.





  

γ ∈ ℝ>0

U(t) = e−iγLt (t ∈ ℝ)

Example.


 : a marked vertex


  ,  with Hamiltonian  of the form 

                             

z ∈ 𝒱
U′ (t) = e−iHt (t ∈ ℝ) H

H = γL − |z⟩⟨z | Childs−Goldstone (2004)

z
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Set-up (continuous-time) 
|ψ(t)⟩ = U(t) |ψ(0)⟩
|⟨x |ψ(t)⟩ |2

Problem. 

Choose ,  ,   that maximize 
the finding probability  !!

|ψ(0)⟩ ∈ ℋ𝒱 γ ∈ ℝ>0 t ∈ ℝ>0

|⟨z |ψ(t)⟩ |2
O( N)



Some previous work

complete graphs (Childs−Goldstone, 2004)

hypercubes (Childs−Goldstone, 2004)

Cartesian powers of cycles (Childs−Goldstone, 2004)

strongly regular graphs (Janmark−Meyer−Wong, 2014)

Johnson graphs with diameter  (Wong, 2016)

Erdős−Renyi graphs (Chakraborty−Novo−Ambainis−Omar, 
2016)
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DRG

DRG

DRG
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DRG



  


 : the set of -subsets of      


       


n, r ∈ ℕ (1 ⩽ r ⩽ n/2)
𝒱 r {1,2,…, n} ⟹ N = (n

r)
x ∼ y

def
⟺ |x ∩ y | = r − 1 (x, y ∈ 𝒱)

G = J(n, r)

Johnson graphs

   𝒱ℓ = {x ∈ 𝒱 : |x ∩ z | = r − ℓ} (0 ⩽ ℓ ⩽ r)

z

𝒱ℓ−1 𝒱ℓ 𝒱ℓ+1

x

aℓ

bℓcℓ

aℓ = ℓ(n − 2ℓ)

bℓ = (r − ℓ)(n − r − ℓ)

cℓ = ℓ2
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Search on Johnson graphs

Fix  and let   !!r n → ∞
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 : the uniform superposition|ψ(0)⟩ =
1

N ∑
x∈𝒱

|x⟩ ∈ ℋ𝒱

Theorem.  We can choose appropriate    s.t. 

                  ,

γ = γ(n, r) > 0
|⟨z |ψ(topt)⟩ |2 = 1 + o(1) (n → ∞)







H = γL − |z⟩⟨z |
U(t) = e−iHt

|ψ(t)⟩ = U(t) |ψ(0)⟩

where


                               .topt =
πnr/2

2 r!
≈

π N
2

(T.−Sabri−Portugal, ’22)



Example (  ).
r = 4, n = 200

topt =
πnr/2

2 r!
≈ 12,825.5

10000 20000 30000 40000 50000
time

0.2

0.4

0.6

0.8

1.0

success probability
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Example (  ).
r = 5, n = 400

topt =
πnr/2

2 r!
≈ 458,859

500000 1.0×106 1.5×106
time

0.2

0.4

0.6

0.8

1.0

success probability
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Wong (2016) used   in his algorithm for .γ =
ϵ2

3
+

7ϵ4

6
J(n,3)

 is given as a function of  as follows:  
 :    

 :    

 :   

γ = γ(n, r) ϵ = 1/ n

r = 3 ϵ2(1 − 3ϵ2)(2 + ϵ2 + 16ϵ4 − 52ϵ6 + 24ϵ8)
6(1 − ϵ2)2(1 − 2ϵ2)2

r = 4 ϵ2(1 − 4ϵ2)(3 − 11ϵ2 + 33ϵ4 + 47ϵ6 − 660ϵ8 + 1116ϵ10 − 432ϵ12)
12(1 − ϵ2)2(1 − 2ϵ2)2(1 − 3ϵ2)2

r = 5 ϵ2(1 − 5ϵ2)(12 − 117ϵ2 + 532ϵ4 − 1107ϵ6 + 2508ϵ8 − 22588ϵ10 + 80448ϵ12 − 99648ϵ14 + 34560ϵ16)
60(1 − ϵ2)2(1 − 2ϵ2)2(1 − 3ϵ2)2(1 − 4ϵ2)2

ϵ2

3
+

7ϵ4

6
+ O(ϵ6)
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Comments



, where 


 : the shift operator on  

                                     


 : the Grover coin operator on  

            

ℋ𝒜 = span{ |a⟩ : a ∈ 𝒜} ⟨a |b⟩ = δa,b

S ℋ𝒜

S |a⟩ = |a⟩

C ℋ𝒜

C |a⟩ =
2

deg(tail(a)) ∑
tail(b)=tail(a)

|b⟩ − |a⟩

opposite arc of a

Set-up (discrete-time)

 : a finite simple graph, where 
G = (𝒱, ℰ) |𝒱 | = N
𝒜 = {a = (x, y) : x, y ∈ 𝒱, x ∼ y} arc set

head
tail
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1

1/31/3

1/3 1/3
1/3 −2/3

1/31/3

1/3 1/3
1/3 −2/3

C

S

 : the evolution operator on U = SC ℋ𝒜
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Set-up (discrete-time)



Set-up (discrete-time)

 : the initial state


 : the state at time 


 : the probability of finding  at time 

|ψ(0)⟩ ∈ ℋ𝒜

|ψ(t)⟩ = Ut |ψ(0)⟩ t ∈ ℕ

∑
tail(a) = x

or
head(a) = x

|⟨a |ψ(t)⟩ |2 x t

U = SC
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unit vector

 : the oracle for  on  :  
         .


 : the modified evolution operator on 

R z ℋ𝒜

R |a⟩ = {− |a⟩ if tail(a) = z,
|a⟩ otherwise,

(a ∈ 𝒜)

U′ = UR ℋ𝒜

marked vertex



Some previous work

complete graphs (Grover, 1996)

hypercubes (Shenvi−Kempe−Whaley, 2003)

finite two-dimensional lattices (Tulsi, 2008)

Johnson graphs with diameter  (Xue−Ruan−Liu, 2019)3
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DRG

DRG

DRG



Search on Johnson graphs

Fix  and let   !!r n → ∞
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|ψ(0)⟩ =
1
|𝒜 | ∑

a∈𝒜

|a⟩ ∈ ℋ𝒜

Theorem.  We have 

                  ,∑
tail(a) = z

or
head(a) = z

|⟨a |ψ(topt)⟩ |2 = 1 + o(1) (n → ∞)


U = SC
U′ = UR

where

                           .topt = ⌊ πnr/2

2 2r! ⌋ ≈
π N

2 2

(T.−Sabri−Portugal, ’22)
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 has   distinct eigenvalues   : 

              .


The eigenvalues of  are  ,  where 

                      .

J(n, r) r + 1 θ0 > θ1 > ⋯ > θr

θℓ = (r − ℓ)(n − r − ℓ) − ℓ (0 ⩽ ℓ ⩽ r)

U ±1, e±iω1, …, e±iωr

ωℓ = arccos( θℓ

θ0 ) (1 ⩽ ℓ ⩽ r)

1

θ1/θ0

θ2/θ0

θr /θ0

Comments

⏟adjacency

“Spectral Mapping Theorem”
−1



The element -distinctness problemk

Given a sequence of data of length  

          , 

find if it contains  identical entries!

n
a1, a2, a3, …, ai1, …, ai2, ……, aik, …, an

k

Classically, we need  queries.

Ambainis (’07) found a quantum-walk-based algorithm with 

 queries.


Belovs (’12) improved this to .

Ω(n)

O(nk/(k+1))
O(n1−2k−2/(2k−1))
optimal when k = 2
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a -collisionk



Ambainis’ algorithm
The main part of Ambainis’ algorithm handles the following 
case:

Assumption. The sequence  contains precisely 
one -collision, denoted .

a1, a2, …, an

k K = {i1, i2, …, ik}

Ambainis considered the following graph:

vertex set : 


adjacency :        or  

{(x, y) :
x, y ⊂ {1,2,…, n}, x ⊂ y

|x | = r, |y | = r + 1 }
(x, y) ∼ (x′ , y′ ) ⟺ x = x′ y = y′ 

Ambainis used a staggered quantum walk on this graph to 
find a vertex  such that .(x, y) K ⊂ x

r = ⌊nk/(k+1)⌋
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Rebuild the main part of Ambainis’ algorithm using a better 
graph and a simpler quantum walk!

We use the Johnson graph  and the Grover quantum 
walk on it.

J(n, r)

r = ⌊nk/(k+1)⌋

 : the oracle on  : 

         .

R ℋ𝒜

R |a⟩ = {− |a⟩ if K ⊂ tail(a), head(a),
|a⟩ otherwise,

(a ∈ 𝒜)

U = SC
|ψ(0)⟩ =

1
|𝒜 | ∑

a∈𝒜

|a⟩ ∈ ℋ𝒜

Our algorithm
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Our algorithm
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 : the modified evolution operator on U′ = UsR ℋ𝒜

 : fixeds ∈ ℕ

 : the state at time 


 : the probability of finding  at time 

|ψ(t)⟩ = (U′ )t |ψ(0)⟩ t ∈ ℕ

∑
K ⊂ tail(a)

or
K ⊂ head(a)

|⟨a |ψ(t)⟩ |2 K t

Theorem.       when ,psucc(topt) = 1 + o(1) (n → ∞) s = sopt

psucc(t)
=:

where


       ,     .sopt = 2⌊ π
2 arccos(θk /θ0) ⌋+ 1 topt = ⌊πnk/2

4rk/2 ⌋
Remark.   .sopttopt ≈

π2nk/(k+1)

4 2k
related to # of queries !!


