Quantum-walk-based search algorithms on Johnson graphs

Hajime Tanaka
(joint work with M. Sabri, P. Lugão, and R. Portugal)
Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University
April 25, 2024
2nd International Conference on Graph Theory and Combinatorics De La Salle University

How I started this work

- I am a researcher specializing in distance-regular graphs and association schemes.
- Etsuo Segawa (a specialist in quantum walks) invited Portugal to Tohoku U in Jan-Feb 2018, and Portugal gave lectures on quantum-walk-based search algorithms.
- Sabri was a student of Segawa and became my Ph.D. student in Sep 2019.
\Longrightarrow I started studying quantum walks.

Reference

Renato Portugal
Quantum Walks and Search Algorithms (2nd edition)
Springer, Cham, 2018.

Quantum Science and Technology

Renato Portugal
Quantum Walks and Search Algorithms
Second Edition

Some postulates in quantum physics

- a quantum system $\longleftrightarrow \mathscr{H}$: a Hilbert space
- a state of the system $\longleftrightarrow|v\rangle \in \mathscr{H}$ s.t. $\||v\rangle \|=1$

Remark. The "et" symbol $\| \cdot\rangle$ is used to mean vectors in \mathscr{H}. The inner product of $|u\rangle,|v\rangle \in \mathscr{H}$ is denoted $\langle u \mid v\rangle$. linear

- an evolution of the system $\longleftrightarrow U|v\rangle$ unitary operator
- a (projective) measurement $\longleftrightarrow\left\{\left|\phi_{\ell}\right\rangle\right\}_{\ell=1}^{n}:$ an ONB of \mathscr{H}

Remark. The outcome of the measurement is one of $1,2, \ldots, n$. The probability that the outcome is ℓ is $\left|\left\langle\phi_{\ell} \mid v\right\rangle\right|^{2}$. If we get ℓ, then the state collapses to $\left|\phi_{\ell}\right\rangle$.

$$
\sum_{\ell=1}^{n}\left|\left\langle\phi_{\ell} \mid v\right\rangle\right|^{2}=\||v\rangle \|^{2}=1
$$

Set-up (continuous-time)

- $G=(\mathscr{V}, \mathscr{E})$: a finite simple graph, where $|\mathscr{V}|=N$
- \mathscr{V} : the vertex set, where $|\mathscr{V}|=N$
- \mathscr{E} : the edge set
- $\mathscr{H}_{\mathscr{V}}=\operatorname{span}\{|x\rangle: x \in \mathscr{V}\}$, where $\langle x \mid y\rangle=\delta_{x, y}$

- $U(t)(t \in \mathbb{R})$: unitary
- $|\psi(0)\rangle \in \mathscr{H}_{\mathscr{V}}$: the initial state unit vector
- $|\psi(t)\rangle=U(t)|\psi(0)\rangle$: the state at time $t \in \mathbb{R}$
- $|\langle x \mid \psi(t)\rangle|^{2}$: the probability of finding x at time t

Set-up (continuous-time)

$$
\begin{aligned}
& \text { - }|\psi(t)\rangle=U(t)|\psi(0)\rangle \\
& -|\langle x \mid \psi(t)\rangle|^{2}
\end{aligned}
$$

- A : the adjacency matrix :

$$
A_{x, y}=\left\{\begin{array}{ll}
1 & \text { if } x \sim y \\
0 & \text { otherwise }
\end{array} \quad(x, y \in \mathscr{V})\right.
$$

\sim diagonal

- D : the degree matrix : $D_{x, x}=\operatorname{deg}(x) \quad(x \in \mathscr{V})$
- $L=D-A$: the Laplacian matrix

Example.

- $\gamma \in \mathbb{R}_{>0}$
- $U(t)=e^{-i \gamma L t}(t \in \mathbb{R})$

$$
L=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

quantization of the transition matrix $e^{-\gamma L t}$ of the continuous-time random walk with transition rate γ

Set-up (continuous-time)

Example.

- $|\psi(t)\rangle=U(t)|\psi(0)\rangle$
- $|\langle x \mid \psi(t)\rangle|^{2}$
- $\gamma \in \mathbb{R}_{>0}$
- $U(t)=e^{-i \gamma L t}(t \in \mathbb{R})$

Example.

- $z \in \mathscr{V}$: a marked vertex

- $U^{\prime}(t)=e^{-i H t}(t \in \mathbb{R})$, with Hamiltonian H of the form

$$
H=\gamma L-|z\rangle\langle z| \longleftarrow \text { Childs-Goldstone (2004) }
$$

Problem.

Choose $|\psi(0)\rangle \in \mathscr{H}_{\mathscr{V}}, \gamma \in \mathbb{R}_{>0}, t \in \mathbb{R}_{>0}$ that maximize the finding probability $|\langle z \mid \psi(t)\rangle|^{2}$!!

Some previous work

- complete graphs (Childs-Goldstone, 2004) \longleftarrow DRG
- hypercubes (Childs-Goldstone, 2004) \longleftarrow DRG
- Cartesian powers of cycles (Childs-Goldstone, 2004)
- strongly regular graphs (Janmark-Meyer-Wong, 2014) ఒDRG
- Johnson graphs with diameter 3 (Wong, 2016) \square
- Erdős-Renyi graphs (Chakraborty-Novo-Ambainis-Omar, 2016)

Johnson graphs

- $n, r \in \mathbb{N}(1 \leqslant r \leqslant n / 2)$
- \mathscr{V} : the set of r-subsets of $\{1,2, \ldots, n\} \Longrightarrow N=\binom{n}{r}$
- $x \sim y \stackrel{\text { def }}{\Longleftrightarrow}|x \cap y|=r-1 \quad(x, y \in \mathscr{V})$
- $G=J(n, r)$
- $\mathscr{V}_{\ell}=\{x \in \mathscr{V}:|x \cap z|=r-\ell\} \quad(0 \leqslant \ell \leqslant r)$

Search on Johnson graphs

Fix r and let $n \rightarrow \infty!!$

- $H=\gamma L-|z\rangle\langle z|$
- $U(t)=e^{-i H t}$
- $|\psi(t)\rangle=U(t)|\psi(0)\rangle$
- $|\psi(0)\rangle=\frac{1}{\sqrt{N}} \sum_{x \in \mathscr{V}}|x\rangle \in \mathscr{H}_{\mathscr{V}}$: the uniform superposition (T.-Sabri-Portugal, '22)

Theorem. We can choose appropriate $\gamma=\gamma(n, r)>0$ s.t.

$$
\left|\left\langle z \mid \psi\left(t_{\mathrm{opt}}\right)\right\rangle\right|^{2}=1+o(1) \quad(n \rightarrow \infty)
$$

where

$$
t_{\mathrm{opt}}=\frac{\pi n^{r / 2}}{2 \sqrt{r!}} \approx \frac{\pi \sqrt{N}}{2}
$$

Example ($r=4, n=200$).

- $t_{\text {opt }}=\frac{\pi n^{r / 2}}{2 \sqrt{r!}} \approx 12,825.5$

Example ($r=5, n=400$).

- $t_{\mathrm{opt}}=\frac{\pi n^{r / 2}}{2 \sqrt{r!}} \approx 458,859$

Comments

- $\gamma=\gamma(n, r)$ is given as a function of $\epsilon=1 / \sqrt{n}$ as follows:

$$
r=3: \frac{\epsilon^{2}\left(1-3 \epsilon^{2}\right)\left(2+\epsilon^{2}+16 \epsilon^{4}-52 \epsilon^{6}+24 \epsilon^{8}\right)}{6\left(1-\epsilon^{2}\right)^{2}\left(1-2 \epsilon^{2}\right)^{2}}
$$

$r=4: \frac{\epsilon^{2}\left(1-4 \epsilon^{2}\right)\left(3-11 \epsilon^{2}+33 \epsilon^{4}+47 \epsilon^{6}-660 \epsilon^{8}+1116 \epsilon^{10}-432 \epsilon^{12}\right)}{12\left(1-\epsilon^{2}\right)^{2}\left(1-2 \epsilon^{2}\right)^{2}\left(1-3 \epsilon^{2}\right)^{2}}$
$\boldsymbol{r}=5: \frac{\epsilon^{2}\left(1-5 \epsilon^{2}\right)\left(12-117 \epsilon^{2}+532 \epsilon^{4}-1107 \epsilon^{6}+2508 \epsilon^{8}-22588 \epsilon^{10}+80448 \epsilon^{12}-99648 \epsilon^{14}+34560 \epsilon^{16}\right)}{60\left(1-\epsilon^{2}\right)^{2}\left(1-2 \epsilon^{2}\right)^{2}\left(1-3 \epsilon^{2}\right)^{2}\left(1-4 \epsilon^{2}\right)^{2}}$

- Wong (2016) used $\gamma=\frac{\epsilon^{2}}{3}+\frac{7 \epsilon^{4}}{6}$ in his algorithm for $J(n, 3)$.

Set-up (discrete-time)

- $G=(\mathscr{V}, \mathscr{E})$: a finite simple graph, where $|\mathscr{V}|=N$
- $\mathscr{A}=\{a=(x, y): x, y \in \mathscr{V}, x \sim y\}$
- $\mathscr{H}_{\mathscr{A}}=\operatorname{span}\{|a\rangle: a \in \mathscr{A}\}$, where $\langle a \mid b\rangle=\delta_{a, b}$
- S : the shift operator on $\mathscr{H}_{\mathscr{A}}$

$$
S|a\rangle=|\bar{a}\rangle
$$

- C : the Grover coin operator on $\mathscr{H}_{\mathscr{A}}$

$$
C|a\rangle=\frac{2}{\operatorname{deg}(\operatorname{tail}(a))} \sum_{\operatorname{tail}(b)=\operatorname{tail}(a)}|b\rangle-|a\rangle
$$

Set-up (discrete-time)

- $U=S C$: the evolution operator on $\mathscr{H}_{\mathscr{A}}$

Set-up (discrete-time)

unit vector

- $|\psi(0)\rangle \in \mathscr{H}_{\mathscr{A}}$: the initial state
- $|\psi(t)\rangle=U^{t}|\psi(0)\rangle$: the state at time $t \in \mathbb{N}$
- $\quad \sum|\langle a \mid \psi(t)\rangle|^{2}$: the probability of finding x at time t $\operatorname{tail}(a)=x$
or
head $(a)=x$

marked vertex

- R : the oracle for z on $\mathscr{H}_{\mathscr{A}}$:

$$
R|a\rangle=\left\{\begin{array}{ll}
-|a\rangle & \text { if } \operatorname{tail}(a)=z, \\
|a\rangle & \text { otherwise, }
\end{array} \quad(a \in \mathscr{A})\right.
$$

- $U^{\prime}=U R$: the modified evolution operator on $\mathscr{H}_{\mathscr{A}}$

Some previous work

- complete graphs (Grover, 1996) \longleftarrow DRG
- hypercubes (Shenvi-Kempe-Whaley, 2003)
$\longleftarrow D R G$
- finite two-dimensional lattices (Tulsi, 2008)
- Johnson graphs with diameter 3 (Xue-Ruan-Liu, 2019)

Search on Johnson graphs

- $U=S C$
- $U^{\prime}=U R$

Fix r and let $n \rightarrow \infty!!$

$$
|\psi(0)\rangle=\frac{1}{\sqrt{|\mathscr{A}|}} \sum_{a \in \mathscr{A}}|a\rangle \in \mathscr{H}_{\mathscr{A}}
$$

Theorem. We have

$$
\begin{aligned}
& \sum_{\operatorname{tail}(a)=z}\left|\left\langle a \mid \psi\left(t_{\text {opt }}\right)\right\rangle\right|^{2}=1+o(1) \quad(n \rightarrow \infty), \\
& \quad \operatorname{or} \\
& \operatorname{head}(a)=z
\end{aligned}
$$

where

$$
t_{\mathrm{opt}}=\left\lfloor\frac{\pi n^{r / 2}}{2 \sqrt{2 r!}}\right\rfloor \approx \frac{\pi \sqrt{N}}{2 \sqrt{2}} .
$$

Comments

adjacency

- $J(n, r)$ has $r+1$ distinct eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{r}$:

$$
\theta_{\ell}=(r-\ell)(n-r-\ell)-\ell \quad(0 \leqslant \ell \leqslant r) .
$$

- The eigenvalues of U are $\pm 1, \mathrm{e}^{ \pm i \omega_{1}}, \ldots, \mathrm{e}^{ \pm i \omega_{r}}$, where

$$
\omega_{\ell}=\arccos \left(\frac{\theta_{\ell}}{\theta_{0}}\right) \quad(1 \leqslant \ell \leqslant r) .
$$

The element k-distinctness problem

Given a sequence of data of length n

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{i_{1}}, \ldots, a_{i_{2}}, \ldots \ldots, a_{i_{k}}, \ldots, a_{n}
$$

find if it contains k identical entries!
a k-collision

- Classically, we need $\Omega(n)$ queries.
- Ambainis ('07) found a quantum-walk-based algorithm with $O\left(n^{k /(k+1)}\right)$ queries.
\longleftarrow optimal when $k=2$
- Belovs ('12) improved this to $O\left(n^{\left.1-2^{k-2 /(2 ~} 2^{k}-1\right)}\right)$.

Ambainis' algorithm

- The main part of Ambainis' algorithm handles the following case:

Assumption. The sequence $a_{1}, a_{2}, \ldots, a_{n}$ contains precisely one k-collision, denoted $K=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$.

- Ambainis considered the following graph: $\quad C^{r=\left\lfloor n^{k(k+1)}\right\rfloor}$
vertex set : $\left\{(x, y): \begin{array}{c}x, y \subset\{1,2, \ldots, n\}, x \subset y \\ |x|=r,|y|=r+1\end{array}\right\}$
adjacency : $(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x=x^{\prime}$ or $y=y^{\prime}$
- Ambainis used a staggered quantum walk on this graph to find a vertex (x, y) such that $K \subset x$.

Our algorithm

Rebuild the main part of Ambainis' algorithm using a better graph and a simpler quantum walk!

- We use the Johnson graph $J(n, r)$ and the Grover quantum walk on it.
- $|\psi(0)\rangle=\frac{1}{\sqrt{|\mathscr{A}|}} \sum_{a \in \mathscr{A}}|a\rangle \in \mathscr{H}_{\mathscr{A}}$
- R : the oracle on $\mathscr{H}_{\mathscr{A}}$:

$$
R|a\rangle=\left\{\begin{array}{ll}
-|a\rangle & \text { if } K \subset \operatorname{tail}(a), \operatorname{head}(a), \\
|a\rangle & \text { otherwise },
\end{array} \quad(a \in \mathscr{A})\right.
$$

Our algorithm

- $U^{\prime}=U^{s} R$: the modified evolution operator on $\mathscr{H}_{\mathscr{A}}$
- $|\psi(t)\rangle=\left(U^{\prime}\right)^{t}|\psi(0)\rangle$: the state at time $t \in \mathbb{N}$

Theorem. $p_{\text {succ }}\left(t_{\text {opt }}\right)=1+o(1)(n \rightarrow \infty)$ when $s=s_{\text {opt }}$, where

$$
s_{\mathrm{opt}}=2\left\lfloor\frac{\pi}{2 \arccos \left(\theta_{k} / \theta_{0}\right)}\right\rfloor+1, \quad t_{\mathrm{opt}}=\left\lfloor\frac{\pi n^{k / 2}}{4 r^{k / 2}}\right\rfloor .
$$

Remark. $s_{\mathrm{opt}} t_{\mathrm{opt}} \approx \frac{\pi^{2} n^{k /(k+1)}}{4 \sqrt{2 k}}$.

