On Some Relationships Among the Association Schemes of Finite Orthogonal Groups Acting on Hyperplanes

Hajime Tanaka

Professor Eiichi Bannai, Adviser
February 23, 2001

Introduction

An association scheme $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ of class d is a pair of a finite set X and a set of nontrivial relations $\left\{R_{i}\right\}_{0 \leq i \leq d}$ on X satisfying the following four conditions:
(i) $R_{0}=\{(x, x) \in X \times X \mid x \in X\}$,
(ii) $R_{0} \cup R_{1} \cup \cdots \cup R_{d}=X \times X$ and $R_{i} \cap R_{j}=\emptyset$ if $i \neq j$,
(iii) for each $i \in\{0,1, \ldots, d\}$, there exists some $i^{\prime} \in\{0,1, \ldots, d\}$ such that ${ }^{t} R_{i}=R_{i^{\prime}}$ holds, where ${ }^{t} R_{i}:=\left\{(y, x) \in X \times X \mid(x, y) \in R_{i}\right\}$,
(iv) for each (orderd) triple $i, j, k \in\{0,1, \ldots, d\}$, the cardinality of the set $\{z \in X \mid(x, z) \in$ $\left.R_{i},(z, y) \in R_{j}\right\}$, which is denoted by $p_{i j}^{k}$, does not depend on the choice of $x, y \in X$ under the condition $(x, y) \in R_{k}$.

The numbers $p_{i j}^{k}$ in condition (iv) are called the intersection numbers of $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$, and in particular we call the numbers $k_{i}:=p_{i i^{\prime}}^{0}=\left|\left\{z \in X \mid(x, z) \in R_{i}\right\}\right| \quad(0 \leq i \leq d)$ the valencies of $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$.

Let A_{i} be the adjacency matrix with respect to the relation R_{i}, that is,

$$
\left(A_{i}\right)_{x, y}:= \begin{cases}1 & \text { if }(x, y) \in R_{i} \\ 0 & \text { if }(x, y) \notin R_{i}\end{cases}
$$

then, since $A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k}$ by condition (iii), $A_{0}, A_{1}, \ldots, A_{d}$ generates an algebra \mathfrak{A} over the complex field \mathbb{C} of dimension $d+1$. We call this algebra the Bose-Mesner algebra of the association scheme. We say that an association scheme $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ is commutative, if the Bose-Mesner algebra is commutative, or equivalently, if $p_{i j}^{k}=p_{j i}^{k}$ holds for all $i, j, k \in\{0,1, \ldots, d\}$. A symmetric association scheme is an association scheme $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ which satisfies ${ }^{t} R_{i}=R_{i}$ for all $i \in\{0,1, \ldots, d\}$. Notice that a symmetric association scheme is a commutative association scheme.

Let $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ be a commutative association scheme, then the Bose-Mesner algebra has a unique set of primitive idempotents $E_{0}=\frac{1}{|X|} J, E_{1}, \ldots, E_{d}$, where J is the matrix whose entries are all 1 (cf. Bannai-Ito [4, §2.3.]). Let

$$
A_{i}=\sum_{j=0}^{d} p_{i}(j) E_{j}
$$

Then the $(d+1)$ by $(d+1)$ matrix P whose (j, i)-entry is $p_{i}(j)$, is called the character table or the first eigenmatrix of the association scheme. The character table P of an association scheme $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ satisfies the orthogonality relations (cf. Bannai-Ito [4, p.62, Theorem 3.5.]):
(i) (The First Orthogonality Relation)

$$
\sum_{\alpha=0}^{d} \frac{1}{k_{\alpha}} p_{\alpha}(i) \overline{p_{\alpha}(j)}=\frac{|X|}{m_{i}} \delta_{i j},
$$

(ii) (The Second Orthogonality Relation)

$$
\sum_{\alpha=0}^{d} m_{\alpha} p_{i}(\alpha) \overline{p_{j}(\alpha)}=|X| k_{i} \delta_{i j}
$$

where $m_{i}:=\operatorname{rank} E_{i}=\operatorname{tr} E_{i}(0 \leq i \leq d)$, and $\delta_{i j}$ is the Kronecker delta. The numbers m_{i} are called the multiplicities of $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$. In particular we shall use the following equality:

$$
\begin{equation*}
\sum_{\alpha=0}^{d} p_{\alpha}(i)=0, \quad \text { if } \quad 1 \leq i \leq d \tag{1}
\end{equation*}
$$

A subassociation scheme (or simply subscheme) of an association scheme $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ is an association scheme $\mathfrak{X}^{\prime}=\left(X,\left\{S_{j}\right\}_{0 \leq j \leq d^{\prime}}\right)$ where each relation $S_{j}, j \in\left\{0,1, \ldots, d^{\prime}\right\}$ is a union of some R_{i} 's. It is an interesting problem to find all the subschemes of an association scheme. Bannai [1, Lemma 1.] showed that any subscheme of a given commutative association scheme is obtained by partitioning its character table into appropriate blocks.

It is natural to regard association schemes as a combinatorial interpretation of finite transitive permutation groups. Let G be a finite group acting transitively on a finite set X. Then G acts naturally on $X \times X$ in such a way that

$$
(x, y)^{g}:=\left(x^{g}, x^{g}\right) \text { for }(x, y) \in X \times X, g \in G,
$$

and we can easily verify that the orbits of G acting on $X \times X$ (which are called the orbitals) satisfy the above four conditions (cf. Bannai-Ito [4, p.53, Example 2.1.]), that is, the action of G on $X \times X$ defines an association scheme. We denote this association scheme by $\mathfrak{X}(G, X)$. It is well known that $\mathfrak{X}(G, X)$ is commutative if and only if the permutation character 1_{H}^{G} is multiplicity-free where H is the stabilizer of an element of X, namely each irreducible character of G occurs in the decomposition with multiplicity at most 1 (cf. Bannai-Ito [4, p.49, Theorem 1.4.]). If $\mathfrak{X}(G, X)$ is commutative, then determining the character table of $\mathfrak{X}(G, X)$ is equivalent to determining all the zonal spherical functions of G on X (cf. Bannai-Ito [4, §2.11.]).

In this paper, we study the association schemes defined by the action of the orthogonal groups $G O_{2 m+1}(q)$ over the finite fields of characteristic 2, on the set $\Omega=\Omega_{2 m+1}(q)$ of positive-type hyperplanes and on the set $\Theta=\Theta_{2 m+1}(q)$ of negative-type hyperplanes. These association schemes are isomorphic to the association schemes defined by the action of $G O_{2 m+1}(q)$ on the set of cosets by $G O_{2 m}^{+}(q)$ and on the set of cosets by $G O_{2 m}^{-}(q)$, respectively.

This paper is organized as follows:

Introduction.

1. Preliminary;
1.1. Quadratic forms and orthogonal groups.
1.2. Description of the relations.
2. Computation of parameters;
2.1. The parameters of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$.
2.2. The parameters of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$.
3. Character tables;
3.1. The character tables of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$.
3.2. The character tables of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$.
4. Subschemes;
4.1. Subschemes of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$.
4.2. Subschemes of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$.
5. Remarks.

In section 3, we calculate the character tables of these association schemes. In fact, we will show that the character tables of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ and $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ are controlled by the character tables of $\mathfrak{X}\left(G O_{3}(q), \Omega_{3}(q)\right)$ and $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$, respectively, by the replacement $q \rightarrow q^{m-1}$. It is known that such phenomena occur in many cases (cf. Bannai-Hao-Song [2], Bannai-Hao-Song-Wei [3], Kwok [9, Bannai-Kawanaka-Song [5). Our method of calculating character tables follows Bannai-Hao-Song [2, $\S 6,7]$ in all essential points, where they determined the character tables of the association schemes obtained from the action of finite orthogonal groups on the sets of non-isotropic projective points. Actually, the association schemes treated in this paper correspond to the case of even q.

In section 4. we first show that $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ and $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ are subschemes of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Omega_{3}\left(q^{m}\right)\right)$ and $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Theta_{3}\left(q^{m}\right)\right)$, respectively. Then we write down all the relations of these subschemes from those of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Omega_{3}\left(q^{m}\right)\right)$ and $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Theta_{3}\left(q^{m}\right)\right)$. It is also shown that $\mathfrak{X}\left(G O_{2 n+1}(q), \Omega_{2 n+1}(q)\right)$ is a subscheme of $\mathfrak{X}\left(G O_{2 m+1}\left(q^{\frac{n}{m}}\right), \Omega_{2 m+1}\left(q^{\frac{n}{m}}\right)\right)$ whenever m divides n, and so forth.

Thus we can say that the two association schemes $\mathfrak{X}\left(G O_{3}(q), \Omega_{3}(q)\right)$ and $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$ controll the other association schemes $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ and $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ at two levels-algebraic level and combinatorial level.

Acknowledgement. The author would like to thank Professor Eiichi Bannai for his suggestion of this research.

1 Preliminary

1.1 Quadratic Forms and Orthogonal Groups

In this subsection, we review some basic facts on quadratic forms and orthogonal groups. For more information, we are referred to Munemasa [12, ATLAS [8.

Let \mathbb{V} be a finite dimensional vector space over the finite field \mathbb{F}_{q} of q elements. A symmetric bilinear form on \mathbb{V} over \mathbb{F}_{q} is a mapping $f: \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{F}_{q}$ which satisfies the following conditions:

$$
\begin{gathered}
f\left(u_{1}+u_{2}, v\right)=f\left(u_{1}, v\right)+f\left(u_{2}, v\right), \\
f(\alpha u, v)=\alpha f(u, v), \\
f(u, v)=f(v, u)
\end{gathered}
$$

for all $u, v, u_{1}, u_{2} \in \mathbb{V}$ and all $\alpha \in \mathbb{F}_{q}$. We define the orthogonal complement U^{\perp} of a subset U of \mathbb{V} by

$$
U^{\perp}:=\{v \in \mathbb{V} \mid f(u, v)=0 \text { for all } u \in U\}
$$

and the radical of f by

$$
\operatorname{Rad} f:=\mathbb{V}^{\perp}=\{v \in \mathbb{V} \mid f(u, v)=0 \text { for all } u \in \mathbb{V}\}
$$

The symmetric bilinear form f is said to be non-degenerate if $\operatorname{Rad} f=0$. The following proposition is a basic fact about non-degenerate symmetric bilinear forms (cf. Munemasa [12, p.3, Proposition 1.1.]).

Proposition 1.1.1. Let $f: \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{F}_{q}$ be a symmetric bilinear form on a finite dimensional vector space \mathbb{V} over \mathbb{F}_{q}, and let U be a subspace of \mathbb{V}. Then we have

$$
\operatorname{dim} U^{\perp}=\operatorname{dim} \mathbb{V}-\operatorname{dim} U+\operatorname{dim} U \cap \operatorname{Rad} f
$$

Moreover if $\left.f\right|_{U}$ is non-degenerate then

$$
\mathbb{V}=U \perp U^{\perp}
$$

A quadratic form on \mathbb{V} over \mathbb{F}_{q} is a mapping $Q: \mathbb{V} \longrightarrow \mathbb{F}_{q}$ which satisfies the following conditions:

$$
\begin{gathered}
Q(\alpha v)=\alpha^{2} Q(v) \\
Q(u+v)=Q(u)+Q(v)+f(u, v)
\end{gathered}
$$

for all $u, v \in \mathbb{V}$ and all $\alpha \in \mathbb{F}_{q}$, where $f: \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{F}_{q}$ is a symmetric bilinear form on \mathbb{V} over \mathbb{F}_{q}. Notice that if q is even, then the bilinear form f is an alternating bilinear form, that is, $f(v, v)=0$ for all $v \in \mathbb{V}$. The quadratic form Q is said to be non-degenerate if $Q^{-1}(0) \cap \operatorname{Rad} f=\{0\}$. If a vector $v \in \mathbb{V}$ satisfies $Q(v)=0$, then we call this vector singular, and a subspace U of \mathbb{V} which consists of sigular vectors is also called singular. A hyperbolic pair is a pair of vectors $\{u, v\}$ of \mathbb{V} satisfying $Q(u)=Q(v)=0$, and $f(u, v)=1$. For later use, we need the following proposition (cf. Munemasa [12, p.7, Proposition 1.8.]).

Proposition 1.1.2. Let $Q: \mathbb{V} \longrightarrow \mathbb{F}_{q}$ be a non-degenerate quadratic form on a finite dimensional vector space \mathbb{V} over \mathbb{F}_{q} and let $u \in \mathbb{V}$ be a non-zero singular vector. Then there exists a vector $v \in \mathbb{V}$ such that $\{u, v\}$ is a hyperbolic pair.

The orthogonal group $O(\mathbb{V}, Q)$ is the group which consists of all automorphisms of Q. More precisely,

$$
O(\mathbb{V}, Q):=\{\tau \in G L(\mathbb{V}) \mid Q(\tau(v))=Q(v) \text { for all } v \in \mathbb{V}\}
$$

Throughout this paper, we always assume that q is even. Let Q be a non-degenerate quadratic form on \mathbb{V}. Suppose $\operatorname{dim} \mathbb{V}=2 m+1$ is odd, then there exists a basis $\left\{v_{1}, v_{2}, \ldots, v_{2 m+1}\right\}$ of \mathbb{V} such that

$$
Q\left(\sum_{i=1}^{2 m+1} \xi_{i} v_{i}\right)=\xi_{1} \xi_{m+1}+\xi_{2} \xi_{m+2}+\cdots+\xi_{m} \xi_{2 m}+\xi_{2 m+1}^{2}
$$

which is equivalent to saying that \mathbb{V} is decomposed as

$$
\mathbb{V}=\left\langle v_{1}, v_{m+1}\right\rangle \perp \ldots \perp\left\langle v_{m}, v_{2 m}\right\rangle \perp\left\langle v_{2 m+1}\right\rangle
$$

where $\left\{v_{1}, v_{m+1}\right\}, \ldots,\left\{v_{m}, v_{2 m}\right\}$ are hyperbolic pairs and $Q\left(v_{2 m+1}\right)=1$. We write $G O_{2 m+1}(q)=$ $O(\mathbb{V}, Q)$. Suppose $\operatorname{dim} \mathbb{V}=2 m$ is even, then one of the following occurs:
(i) there exists a basis $\left\{v_{1}, v_{2}, \ldots, v_{2 m}\right\}$ of \mathbb{V} such that

$$
Q\left(\sum_{i=1}^{2 m} \xi_{i} v_{i}\right)=\xi_{1} \xi_{m+1}+\xi_{2} \xi_{m+2}+\cdots+\xi_{m} \xi_{2 m}
$$

(ii) there exists a basis $\left\{v_{1}, v_{2}, \ldots, v_{2 m}\right\}$ of \mathbb{V} such that

$$
Q\left(\sum_{i=1}^{2 m} \xi_{i} v_{i}\right)=\xi_{1} \xi_{m+1}+\xi_{2} \xi_{m+2}+\cdots+\xi_{m-1} \xi_{2 m-1}+\xi_{m}^{2}+\xi_{m} \xi_{2 m}+\pi \xi_{2 m}^{2}
$$

where $t^{2}+t+\pi$ is an irreducible polynomial over \mathbb{F}_{q}. In what follows, we call the former positivetype and the latter negative-type, and we write their orthogonal groups as $G O_{2 m}^{+}(q)$ and $G O_{2 m}^{-}(q)$, respectively.

We end this subsection by proving the following enumerative lemma (cf. Bannai-Hao-Song [2, Lemma 1.1.]).
Lemma 1.1.3. For $\beta \in \mathbb{F}_{q}$ and a polynomial $h\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{F}_{q}\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right]$, denote the number of solutions of the equation $h\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)=\beta$ in \mathbb{F}_{q}^{n} by $N\left[h\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)=\beta\right]$.
(i) If we denote

$$
\Gamma_{\beta}(2 m+1):=N\left[\xi_{1} \xi_{m+1}+\xi_{2} \xi_{m+2}+\cdots+\xi_{m} \xi_{2 m}+\xi_{2 m+1}^{2}=\beta\right]
$$

then

$$
\Gamma_{\beta}(2 m+1)=q^{2 m} \text { for all } \beta \in \mathbb{F}_{q}
$$

(ii) If we denote

$$
\Gamma_{\beta}^{+}(2 m):=N\left[\xi_{1} \xi_{m+1}+\xi_{2} \xi_{m+2}+\cdots+\xi_{m} \xi_{2 m}=\beta\right]
$$

then

$$
\Gamma_{\beta}^{+}(2 m)= \begin{cases}q^{m}+q^{m-1}\left(q^{m}-1\right) & \text { for } \beta=0 \\ q^{m-1}\left(q^{m}-1\right) & \text { for } \beta \in \mathbb{F}_{q}^{*}\end{cases}
$$

(iii) If we denote

$$
\Gamma_{\beta}^{-}(2 m):=N\left[\xi_{1} \xi_{m+1}+\xi_{2} \xi_{m+2}+\cdots+\xi_{m-1} \xi_{2 m-1}+\xi_{m}^{2}+\xi_{m} \xi_{2 m}+\pi \xi_{2 m}^{2}=\beta\right]
$$

then

$$
\Gamma_{\beta}^{-}(2 m)= \begin{cases}q^{m-1}+q^{m}\left(q^{m-1}-1\right) & \text { for } \beta=0 \\ q^{m-1}\left(q^{m}+1\right) & \text { for } \beta \in \mathbb{F}_{q}^{*}\end{cases}
$$

where $t^{2}+t+\pi$ is an irreducible polynomial over \mathbb{F}_{q}.

Proof. (i) Since \mathbb{F}_{q} is assumed to be characteristic 2, any element in \mathbb{F}_{q} is a square. Thus we can choose $\xi_{1}, \xi_{2}, \ldots, \xi_{2 m}$ arbitrarily. (ii) Suppose $\left(\xi_{m+1}, \xi_{m+2}, \ldots, \xi_{2 m}\right)=(0,0, \ldots, 0)$, then if $\beta=0$ we have q^{m} choices for $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$. Next suppose $\left(\xi_{m+1}, \xi_{m+2}, \ldots, \xi_{2 m}\right) \neq(0,0, \ldots, 0)$, say $\xi_{2 m} \neq 0$. Then ξ_{m} is uniquely determined depending on $\xi_{1}, \xi_{2}, \ldots, \xi_{m-1}$, hence we have q^{m-1} choices for $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$. (iii) First we consider the case $m=1$. If $\xi_{2}=0$, then clearly ξ_{1} is uniquely determined. If $\xi_{2} \neq 0$, then the number of solutions of the equation

$$
\xi_{1}^{2}+\xi_{1} \xi_{2}+\pi \xi_{2}^{2}=\beta, \quad \xi_{2} \neq 0
$$

is equal to the number of solutions of the equation

$$
\xi^{2}\left(\eta^{2}+\eta+\pi\right)=\beta, \quad \xi \neq 0
$$

by putting $\xi:=\xi_{2}$ and $\eta:=\frac{\xi_{1}}{\xi_{2}}$. Since $t^{2}+t+\pi$ is irreducible over \mathbb{F}_{q}, if $\beta=0$ then there is no solution, and if $\beta \neq 0$ then there are exactly q solutions. Thus, we have

$$
\Gamma_{\beta}^{-}(2)= \begin{cases}1 & \text { for } \beta=0 \\ q+1 & \text { for } \beta \in \mathbb{F}_{q}^{*}\end{cases}
$$

Consequently, from (ii) we have

$$
\begin{aligned}
\Gamma_{0}^{-}(2 m) & =\left\{q^{m-1}+q^{m-2}\left(q^{m-1}-1\right)\right\}+(q-1)(q+1) q^{m-2}\left(q^{m-1}-1\right) \\
& =q^{m-1}+q^{m}\left(q^{m-1}-1\right)
\end{aligned}
$$

and for $\beta \neq 0$ we have

$$
\begin{aligned}
\Gamma_{\beta}^{-}(2 m) & =q^{m-2}\left(q^{m-1}-1\right)+(q+1)\left\{q^{m-1}+q^{m-2}\left(q^{m-1}-1\right)\right\}+(q-2)(q+1) q^{m-2}\left(q^{m-1}-1\right) \\
& =(q+1) q^{m-1}+q^{m}\left(q^{m-1}-1\right) \\
& =q^{m-1}\left(q^{m}+1\right),
\end{aligned}
$$

which completes the proof of Lemma 1.1.3.

1.2 Description of the Relations

Let \mathbb{V} be a $(2 m+1)$-dimensional vector space over a finite field \mathbb{F}_{q} of characteristic 2 , and let $Q: \mathbb{V} \longrightarrow \mathbb{F}_{q}$ be a non-degenerate quadratic form on \mathbb{V} over \mathbb{F}_{q} with associated alternating form $f: \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{F}_{q}$. In this case $\operatorname{Rad} f$ is a 1-dimensional subspace of \mathbb{V}, and there exists a vector $r \in \mathbb{V}$ such that $Q(r)=1$ and

$$
\operatorname{Rad} f=\langle r\rangle
$$

Let $U \subset \mathbb{V}$ be a subspace of \mathbb{V}. If the restriction of Q to U is non-degenerate (resp. degenerate), then we call this subspace non-degenerate (resp. degenerate). Moreover suppose that $\operatorname{dim} U$ is even, then if the restriction of Q to U is positive-type (resp. negative-type), then we call this subspace positive-type (resp. negative-type).

Denote the set of positive-type hyperplanes of \mathbb{V} and the set of negative-type hypeplanes of \mathbb{V} by $\Omega=\Omega_{2 m+1}(q)$ and $\Theta=\Theta_{2 m+1}(q)$, respectively. The orthogonal group $G O_{2 m+1}(q)$ acts transitively on Ω and Θ, and the stabilizer of an element of Ω (resp. Θ) in $G O_{2 m+1}(q)$ is isomorphic to $G O_{2 m}^{+}(q)$ (resp. $G O_{2 m}^{-}(q)$). Note that to see the transitivity we do not need the Witt's extension theorem (cf. Munemasa [12]), since for any $U, U^{\prime} \in \Omega$ (resp. Θ), any isometry $\tau: U \longrightarrow U^{\prime}$ (that is, τ is an injective linear map which has the property that $Q(\tau(u))=Q(u)$ for all $u \in U)$ is extended to an automorphism $\tilde{\tau}: \mathbb{V} \longrightarrow \mathbb{V}$ by $\tilde{\tau}(r):=r$.

The numbers of positive-type and negative-type hyperplanes are given as follows (cf. ATLAS [8, p.xii]):

$$
\begin{align*}
|\Omega| & =\frac{\left|G O_{2 m+1}(q)\right|}{\left|G O_{2 m}^{+}(q)\right|} \\
& =\frac{q^{m^{2}}\left(q^{2 m}-1\right)\left(q^{2 m-2}-1\right) \ldots\left(q^{2}-1\right)}{2 q^{m(m-1)}\left(q^{m}-1\right)\left(q^{2 m-2}-1\right) \ldots\left(q^{2}-1\right)} \\
& =\frac{q^{m}\left(q^{m}+1\right)}{2}, \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
|\Theta| & =\frac{\left|G O_{2 m+1}(q)\right|}{\left|G O_{2 m}^{-}(q)\right|} \\
& =\frac{q^{m^{2}}\left(q^{2 m}-1\right)\left(q^{2 m-2}-1\right) \ldots\left(q^{2}-1\right)}{2 q^{m(m-1)}\left(q^{m}+1\right)\left(q^{2 m-2}-1\right) \ldots\left(q^{2}-1\right)} \\
& =\frac{q^{m}\left(q^{m}-1\right)}{2} \tag{3}
\end{align*}
$$

Now, we describe the relations of the association scheme $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega\right)$, defined by the action of $G O_{2 m+1}(q)$ on the set Ω. Let U, V be two distinct elements in Ω. Note that $U \cap V$ is a ($2 m-1$)-dimensional subspace in \mathbb{V}.
(i) Suppose $U \cap V$ is a degenerate subspace in \mathbb{V}. Then there exists a singular vector w in $U \cap V$ such that

$$
U \cap V=\langle w\rangle^{\perp} \cap U=\langle w\rangle^{\perp} \cap V
$$

since $\left.0 \varsubsetneqq \operatorname{Rad} f\right|_{U \cap V} \subset(U \cap V)^{\perp} \cap U$ and $\operatorname{dim}\left\{(U \cap V)^{\perp} \cap U\right\}=\operatorname{dim} U-\operatorname{dim}(U \cap V)=1$ by Proposition 1.1.1. Let u be a vector in U such that $\{u, w\}$ is a hyperbolic pair (Proposition 1.1.2). Then since U and V are both positive-type, there exists a positive-type hyperplane W of $U \cap V$ and a vector $v \in V$ such that $\{v, w\}$ is a hyperbolic pair and

$$
U=\langle u, w\rangle \perp W, V=\langle v, w\rangle \perp W
$$

Suppose $f(u, v)=0$ holds. Then since $f(u+v, w)=1+1=0$ and $f(u+v, v)=0$, we have $u+v \in \mathbb{V}^{\perp}=\langle r\rangle$ so that $v=u+\alpha r$ for some $\alpha \in \mathbb{F}_{q}$. This implies $u=v$, since $0=Q(v)=\alpha^{2}$, which contradicts the assumption $U \neq V$. Therefore we may assume $f(u, v)=1$ without loss of generality, since $Q(w)=0$.

Let U^{\prime} and V^{\prime} be other distinct elements in Ω such that $U^{\prime} \cap V^{\prime}$ is degenerate, and decompose U^{\prime} and V^{\prime} in the same manner:

$$
U^{\prime}=\left\langle u^{\prime}, w^{\prime}\right\rangle \perp W^{\prime}, V^{\prime}=\left\langle v^{\prime}, w^{\prime}\right\rangle \perp W^{\prime}
$$

where $\left\{u^{\prime}, w^{\prime}\right\},\left\{v^{\prime}, w^{\prime}\right\}$ are hyperbolic pairs, W^{\prime} is a positive-type hyperplane of $U^{\prime} \cap V^{\prime}$, and $f\left(u^{\prime}, v^{\prime}\right)=1$. Let $\tau: W \longrightarrow W^{\prime}$ be an isometry, and define a linear mapping $\tilde{\tau}: \mathbb{V} \longrightarrow \mathbb{V}$ by $\left.\tilde{\tau}\right|_{W}:=\tau, \tilde{\tau}(u):=u^{\prime}, \tilde{\tau}(v):=v^{\prime}$, and $\tilde{\tau}(w):=w^{\prime}$. Then $\tilde{\tau}$ becomes an automorphism of Q and we have $\tau(U)=U^{\prime}, \tau(V)=V^{\prime}$. Hence it follows that

$$
\begin{equation*}
R_{1}:=\{(U, V) \in \Omega \times \Omega \mid U \cap V: \text { degenerate }\} \tag{4}
\end{equation*}
$$

forms a relation of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega\right)$ (that is, an orbital of the transitive action of $G O_{2 m+1}(q)$ on Ω).

Finally we determine the valency k_{1} of R_{1}. Let H be a degenerate hyperplane of U, then any non-degenerate hyperplane K of \mathbb{V} which includes H becomes automatically positive-type. In fact, since there exist a singular vector w in H and a positive-type hyperplane W of H such that

$$
H=\langle w\rangle \perp W
$$

hence $K=W \perp\left(W^{\perp} \cap K\right)$ cannot be negative-type. There are $\frac{q^{2 m+1}-q^{2 m-1}}{q^{2 m}-q^{2 m-1}}=q+1$ hyperplanes of \mathbb{V} which include H. In these $q+1$ hyperplanes, $\langle r\rangle \perp H$ is the only degenerate hyperplane. Thus there are $q-1$ elements V in Ω such that $(U, V) \in R_{1}$ and $U \cap V=H$. It follows from Proposition 1.1.1 that there is a one-to-one correspondence between degenerate hyperplanes of U and 1-dimensional singular subspaces of U. Therefore by Lemma 1.1.3(ii) we have

$$
\begin{equation*}
k_{1}=\frac{q^{m}+q^{m-1}\left(q^{m}-1\right)-1}{q-1}(q-1)=\left(q^{m-1}+1\right)\left(q^{m}-1\right) . \tag{5}
\end{equation*}
$$

(ii) Suppose $U \cap V$ is a non-degenerate subspace in \mathbb{V}. Then there exists a vector w in $U \cap V$ such that $Q(w)=1$ and

$$
U \cap V=\langle w\rangle^{\perp} \cap U=\langle w\rangle^{\perp} \cap V
$$

First of all, we show that for any non-degenerate hyperplane W of $U \cap V$ there exist two vectors $u \in U, v \in V$ such that $Q(u)=Q(v), f(u, w)=f(v, w)=1$ and

$$
U=\langle u, w\rangle \perp W, V=\langle v, w\rangle \perp W .
$$

If W is positive-type (resp. negative-type), then $W^{\perp} \cap U$ is also positive-type (resp. negativetype). Let $u \in W^{\perp} \cap U$ and $v \in W^{\perp} \cap V$ be two vectors such that $f(u, w)=1$ and $f(v, w)=1$, then the polynomials $t^{2}+t+Q(u)$ and $t^{2}+t+Q(v)$ are reducible (resp. irreducible) over \mathbb{F}_{q}. The assertion follows immediately from the fact that the set $\left\{\alpha^{2}+\alpha \mid \alpha \in \mathbb{F}_{q}\right\}$ is an additive subgroup of \mathbb{F}_{q} of index 2 (cf. Munemasa [12, p.12, Lemma 2.9.]). In fact, let α be an element in \mathbb{F}_{q} such that $Q(u)=\alpha^{2}+\alpha+Q(v)$ then $u \in U$ and $v^{\prime}:=\alpha w+v \in V$ are desired vectors, since $Q\left(v^{\prime}\right)=\alpha^{2}+\alpha+Q(v)=Q(u)$ and $f\left(v^{\prime}, w\right)=f(v, w)=1$.

Define

$$
\begin{equation*}
\Delta:=\frac{f(u, v)}{f(u, v)+1} . \tag{6}
\end{equation*}
$$

Then we have the following:
Proposition 1.2.1. Δ is well-defined and $\Delta \in \mathbb{F}_{q} \backslash\{0,1\}$. Moreover, the pair $\left\{\Delta, \Delta^{-1}\right\}$ does not depend on the choice of W, u, v.

Proof. Since $f(u+v, w)=1+1=0$, the vector $u+v$ is contained in $(U \cap V)^{\perp}$. By Proposition 1.1.1 we have $\operatorname{dim}(U \cap V)^{\perp}=2$, from which it follows that

$$
u+v=\alpha w+\beta r
$$

for some $\alpha, \beta \in \mathbb{F}_{q}$.
Suppose $f(u, v)=0$, that is $\alpha=0$. Then we have $\beta=0$, since $Q(u)=Q(v)=Q(u+\beta r)=$ $Q(u)+\beta^{2}$. This implies $u=v$, which is a contradiction. Next, suppose $f(u, v)=1$, that is $\alpha=1$. Then we also have $\beta=0$, since $Q(u)=Q(v)=Q(u+w+\beta r)=Q(u)+1+1+\beta^{2}=Q(u)+\beta^{2}$. In this case this implies $u+w=v$, which is also a contradiction.

In order to show that the pair $\left\{\Delta, \Delta^{-1}\right\}$ does not depend on W, u and v, let

$$
U=\left\langle u^{\prime}, w\right\rangle \perp W^{\prime}, V=\left\langle v^{\prime}, w\right\rangle \perp W^{\prime}
$$

be another decomposition such that $Q\left(u^{\prime}\right)=Q\left(v^{\prime}\right)$ and $f\left(u^{\prime}, w\right)=f\left(v^{\prime}, w\right)=1$. Then since $f\left(u^{\prime}, w\right)=1$, we have $u^{\prime}=u+\gamma w+z$ for some $\gamma \in \mathbb{F}_{q}$ and $z \in W$. Let $v^{\prime \prime}:=v+\gamma w+z$ be a vector in V, then clearly $Q\left(v^{\prime \prime}\right)=Q\left(u^{\prime}\right)$ and $f\left(v^{\prime \prime}, w\right)=1$. Furthermore we have $u^{\prime}+v^{\prime \prime}=u+v=\alpha w+\beta r$, that is,

$$
V=\left\langle v^{\prime \prime}, w\right\rangle \perp W^{\prime},
$$

which implies that $v^{\prime \prime}$ must be v^{\prime} or $v^{\prime}+w$, since if we express $v^{\prime \prime}$ as a linear combination of v^{\prime} and w, say $v^{\prime \prime}=\gamma_{1} v^{\prime}+\gamma_{2} w$, then $\gamma_{1}=f\left(v^{\prime \prime}, w\right)=1$ and $Q\left(v^{\prime}\right)=Q\left(v^{\prime \prime}\right)=Q\left(v^{\prime}\right)+\gamma_{2}^{2}+\gamma_{2}$ so that $\gamma_{2}=0$ or $\gamma_{2}=1$. If $v^{\prime \prime}=v^{\prime}$, then we have

$$
\frac{f\left(u^{\prime}, v^{\prime}\right)}{f\left(u^{\prime}, v^{\prime}\right)+1}=\frac{f\left(u^{\prime}, v^{\prime \prime}\right)}{f\left(u^{\prime}, v^{\prime \prime}\right)+1}=\frac{f(u, v)}{f(u, v)+1} .
$$

Similarly if $v^{\prime \prime}=v^{\prime}+w$, then we have

$$
\frac{f\left(u^{\prime}, v^{\prime}\right)}{f\left(u^{\prime}, v^{\prime}\right)+1}=\frac{f\left(u^{\prime}, v^{\prime \prime}+w\right)}{f\left(u^{\prime}, v^{\prime \prime}+w\right)+1}=\frac{f\left(u^{\prime}, v^{\prime \prime}\right)+1}{f\left(u^{\prime}, v^{\prime}\right)}=\frac{f(u, v)+1}{f(u, v)} .
$$

This completes the proof of Proposition 1.2 .1 .

We denote

$$
\begin{equation*}
\Delta(U, V):=\left\{\Delta, \Delta^{-1}\right\} . \tag{7}
\end{equation*}
$$

It should be noticed that in the definition of $\Delta(U, V)$ it does not matter whether W is positive-type or negative-type.

Let U^{\prime} and V^{\prime} be other distinct two elements in Ω such that $\Delta\left(U^{\prime}, V^{\prime}\right)=\Delta(U, V)$, and let

$$
U^{\prime}=\left\langle u^{\prime}, w^{\prime}\right\rangle \perp W^{\prime}, V^{\prime}=\left\langle v^{\prime}, w^{\prime}\right\rangle \perp W^{\prime}
$$

be a decomposition, where $Q\left(w^{\prime}\right)=1, W^{\prime}$ has the same type as $W, Q\left(u^{\prime}\right)=Q\left(v^{\prime}\right)=Q(u)$ and $f\left(u^{\prime}, w^{\prime}\right)=f\left(v^{\prime}, w^{\prime}\right)=1$. Without loss of generality we may assume $f(u, v)=f\left(u^{\prime}, v^{\prime}\right)$. Let $\tau: W \longrightarrow W^{\prime}$ be an isometry, and define a linear mapping $\tilde{\tau}: \mathbb{V} \longrightarrow \mathbb{V}$ by $\left.\tilde{\tau}\right|_{W}:=\tau$, $\tilde{\tau}(u):=u^{\prime}, \tilde{\tau}(v):=v^{\prime}$, and $\tilde{\tau}(w):=w^{\prime}$. Then $\tilde{\tau}$ becomes an automorphism of Q and we have $\tau(U)=U^{\prime}, \tau(V)=V^{\prime}$. Thus, the remaining relations of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega\right)$ are described as follows:

$$
\begin{equation*}
R_{i}:=\left\{(U, V) \in \Omega \times \Omega \mid U \cap V: \text { non-degenerate, } \Delta(U, V)=\left\{\nu^{i-1}, \nu^{-(i-1)}\right\}\right\} \quad\left(2 \leq i \leq \frac{q}{2}\right), \tag{8}
\end{equation*}
$$

where $\nu \in \mathbb{F}_{q}^{*}$ is a primitive element of \mathbb{F}_{q}.
Finally, we determine the valencies k_{i} of $R_{i}\left(2 \leq i \leq \frac{q}{2}\right)$. We define

$$
\begin{equation*}
\lambda_{i}:=\frac{\nu^{i-1}}{1+\nu^{i-1}} \in \mathbb{F}_{q} \backslash\{0,1\}, \quad \text { for } 2 \leq i \leq \frac{q}{2}, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{i}:=\sqrt{\lambda_{i}^{2}+\lambda_{i}} \neq 0, \quad \text { for } 2 \leq i \leq \frac{q}{2} \tag{10}
\end{equation*}
$$

Notice that

$$
\frac{\nu^{-(i-1)}}{1+\nu^{-(i-1)}}=\frac{1}{1+\nu^{i-1}}=\lambda_{i}+1
$$

from which it follows that

$$
\begin{equation*}
\lambda_{i}+\lambda_{j} \neq 0,1, \quad \text { if } i \neq j, \tag{11}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mu_{i} \neq \mu_{j} \quad \text { if } i \neq j . \tag{12}
\end{equation*}
$$

Let H be a non-degenerate hyperplane of U, then there exists a vector w in H such that $Q(w)=1$ and

$$
H=\langle w\rangle^{\perp} \cap U
$$

Fix a vector u in U such that $f(u, w)=1$. Then it follows that the only element V of Ω which satisfies $U \cap V=H$ and $\Delta(U, V)=\left\{\nu^{i-1}, \nu^{-(i-1)}\right\}$ is given by

$$
\begin{equation*}
V:=\langle v\rangle \oplus H, \text { where } v:=u+\lambda_{i} w+\mu_{i} r \in \mathbb{V} . \tag{13}
\end{equation*}
$$

To show this, let V be such an element in Ω and let

$$
U=\langle u, w\rangle \perp W, V=\langle v, w\rangle \perp W
$$

be a decomposition, where $Q(v)=Q(u)$ and $f(v, w)=1$. As is in the proof of Proposition 1.2.1, $u+v=\alpha w+\beta r$ for some $\alpha, \beta \in \mathbb{F}_{q}$, where $\alpha \neq 0,1$, and we may assume

$$
\frac{f(u, v)}{f(u, v)+1}=\nu^{i-1}
$$

without loss of generality. Then we have

$$
\nu^{i-1}=\frac{\alpha}{\alpha+1},
$$

from which it follows $\alpha=\lambda_{i}$. Also we have $Q(u)=Q(v)=Q(u)+\lambda_{i}^{2}+\lambda_{i}+\beta^{2}$ so that $\beta=\mu_{i}$, as desired.

It follows from Proposition 1.1.1 that there is a one-to-one correspondence between nondegenerate hyperplanes of U and 1-dimensional non-singular subspaces of U. Therefore by Lemma 1.1.3(ii) we obtain

$$
\begin{equation*}
k_{i}=q^{m-1}\left(q^{m}-1\right) \tag{14}
\end{equation*}
$$

for $2 \leq i \leq \frac{q}{2}$. To summarize:
The association scheme $\mathfrak{X}\left(G O_{2 m+1}, \Omega\right)=\left(\Omega,\left\{R_{i}\right\}_{0 \leq i \leq \frac{q}{2}}\right)$ is a symmetric association scheme of class $\frac{q}{2}$ whose relations are defined by

$$
\begin{aligned}
& R_{1}:=\{(U, V) \in \Omega \times \Omega \mid U \cap V: \text { degenerate }\} \\
& R_{i}:=\left\{(U, V) \in \Omega \times \Omega \mid U \cap V: \text { non-degenerate, } \Delta(U, V)=\left\{\nu^{i-1}, \nu^{-(i-1)}\right\}\right\} \quad\left(2 \leq i \leq \frac{q}{2}\right) .
\end{aligned}
$$

The valencies of $\mathfrak{X}\left(G O_{2 m+1}, \Omega\right)$ are given as

$$
\begin{aligned}
k_{1} & =\left(q^{m-1}+1\right)\left(q^{m}-1\right), \\
k_{i} & =q^{m-1}\left(q^{m}-1\right) \quad\left(2 \leq i \leq \frac{q}{2}\right)
\end{aligned}
$$

Secondly, we describe the relations of the association scheme $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta\right)$ in the same way as $\mathfrak{X}\left(G O_{2 m+1}, \Omega\right)$. Let U, V be two distinct elements in Θ.
(i) Suppose $U \cap V$ is a degenerate subspace in \mathbb{V}. Notice that this occurs only if $m \geq 2$, since any 2-dimensional negative-type subspace of \mathbb{V} has no non-zero singular vector. There exists a singular vector w in $U \cap V$ such that

$$
U \cap V=\langle w\rangle^{\perp} \cap U=\langle w\rangle^{\perp} \cap V
$$

Let u be a vector in U such that $\{u, w\}$ is a hyperbolic pair (Proposition 1.1.2). Then since U and V are both negative-type, there exists a negative-type hyperplane W of $U \cap V$ and a vector $v \in V$ such that $\{v, w\}$ is a hyperbolic pair and

$$
U=\langle u, w\rangle \perp W, V=\langle v, w\rangle \perp W
$$

Suppose $f(u, v)=0$ holds. Then since $f(u+v, w)=1+1=0$ and $f(u+v, v)=0$, we have $u+v \in \mathbb{V}^{\perp}=\langle r\rangle$ so that $v=u+\alpha r$ for some $\alpha \in \mathbb{F}_{q}$. This implies $u=v$, since $0=Q(v)=\alpha^{2}$, which contradicts the assumption $U \neq V$. Therefore we may assume $f(u, v)=1$ without loss of generality, since $Q(w)=0$.

Let U^{\prime} and V^{\prime} be other distinct elements in Θ such that $U^{\prime} \cap V^{\prime}$ is degenerate, and decompose U^{\prime} and V^{\prime} in the same manner:

$$
U^{\prime}=\left\langle u^{\prime}, w^{\prime}\right\rangle \perp W^{\prime}, V^{\prime}=\left\langle v^{\prime}, w^{\prime}\right\rangle \perp W^{\prime}
$$

where $\left\{u^{\prime}, w^{\prime}\right\},\left\{v^{\prime}, w^{\prime}\right\}$ are hyperbolic pairs, W^{\prime} is a negative-type hyperplane of $U^{\prime} \cap V^{\prime}$, and $f\left(u^{\prime}, v^{\prime}\right)=1$. Let $\tau: W \longrightarrow W^{\prime}$ be an isometry, and define a linear mapping $\tilde{\tau}: \mathbb{V} \longrightarrow \mathbb{V}$ by $\left.\tilde{\tau}\right|_{W}:=\tau, \tilde{\tau}(u):=u^{\prime}, \tilde{\tau}(v):=v^{\prime}$, and $\tilde{\tau}(w):=w^{\prime}$. Then $\tilde{\tau}$ becomes an automorphism of Q and we have $\tau(U)=U^{\prime}, \tau(V)=V^{\prime}$. Hence it follows that

$$
\begin{equation*}
S_{1}:=\{(U, V) \in \Theta \times \Theta \mid U \cap V: \text { degenerate }\} \tag{15}
\end{equation*}
$$

forms a relation of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta\right)$.
Finally we determine the valency h_{1} of S_{1}. Let H be a degenerate hyperplane of U, then any non-degenerate hyperplane K of \mathbb{V} which includes H becomes automatically negative-type. In fact, since there exist a singular vector w in H and a negative-type hyperplane W of H such that

$$
H=\langle w\rangle \perp W,
$$

hence $K=W \perp\left(W^{\perp} \cap K\right)$ cannot be positive-type. There are $\frac{q^{2 m+1}-q^{2 m-1}}{q^{2 m}-q^{2 m-1}}=q+1$ hyperplanes of \mathbb{V} which include H. In these $q+1$ hyperplanes, $\langle r\rangle \perp H$ is the only degenerate hyperplane. Thus there
are $q-1$ elements V in Θ such that $(U, V) \in S_{1}$ and $U \cap V=H$. It follows from Proposition 1.1.1 that there is a one-to-one correspondence between degenerate hyperplanes of U and 1-dimensional singular subspaces of U. Therefore by Lemma 1.1.3(iii) we have

$$
\begin{equation*}
h_{1}=\frac{q^{m-1}+q^{m}\left(q^{m-1}-1\right)-1}{q-1}(q-1)=\left(q^{m-1}-1\right)\left(q^{m}+1\right) . \tag{16}
\end{equation*}
$$

(ii) Suppose $U \cap V$ is a non-degenerate subspace in \mathbb{V}. Then there exists a vector w in $U \cap V$ such that $Q(w)=1$ and

$$
U \cap V=\langle w\rangle^{\perp} \cap U=\langle w\rangle^{\perp} \cap V
$$

First of all, we show that for any non-degenerate hyperplane W of $U \cap V$ there exist two vectors $u \in U, v \in V$ such that $Q(u)=Q(v), f(u, w)=f(v, w)=1$ and

$$
U=\langle u, w\rangle \perp W, V=\langle v, w\rangle \perp W
$$

If W is positive-type (resp. negative-type), then $W^{\perp} \cap U$ is negative-type (resp. positive-type). Let $u \in W^{\perp} \cap U$ and $v \in W^{\perp} \cap V$ be two vectors such that $f(u, w)=1$ and $f(v, w)=1$, then the polynomials $t^{2}+t+Q(u)$ and $t^{2}+t+Q(v)$ are irreducible (resp. reducible) over \mathbb{F}_{q}. The assertion follows immediately from the fact that the set $\left\{\alpha^{2}+\alpha \mid \alpha \in \mathbb{F}_{q}\right\}$ is an additive subgroup of \mathbb{F}_{q} of index 2 (cf. Munemasa [12, p.12, Lemma 2.9.]). In fact, let α be an element in \mathbb{F}_{q} such that $Q(u)=\alpha^{2}+\alpha+Q(v)$ then $u \in U$ and $v^{\prime}:=\alpha w+v \in V$ are desired vectors, since $Q\left(v^{\prime}\right)=\alpha^{2}+\alpha+Q(v)=Q(u)$ and $f\left(v^{\prime}, w\right)=f(v, w)=1$.

Define

$$
\begin{equation*}
\Pi:=\frac{f(u, v)}{f(u, v)+1} \tag{17}
\end{equation*}
$$

The proof of the following proposition is exactly the same as that of Proposition 1.2.1,
Proposition 1.2.2. Π is well-defined and $\Pi \in \mathbb{F}_{q} \backslash\{0,1\}$. Moreover, the pair $\left\{\Pi, \Pi^{-1}\right\}$ does not depend on the choice of W, u, v.
Proof. Since $f(u+v, w)=1+1=0$, the vector $u+v$ is contained in $(U \cap V)^{\perp}$. By Proposition 1.1.1 we have $\operatorname{dim}(U \cap V)^{\perp}=2$, from which it follows that $u+v=\alpha w+\beta r$ for some $\alpha, \beta \in \mathbb{F}_{q}$.

Suppose $f(u, v)=0$, that is $\alpha=0$. Then we have $\beta=0$, since $Q(u)=Q(v)=Q(u+\beta r)=$ $Q(u)+\beta^{2}$. This implies $u=v$, which is a contradiction. Next, suppose $f(u, v)=1$, that is $\alpha=1$. Then we also have $\beta=0$, since $Q(u)=Q(v)=Q(u+w+\beta r)=Q(u)+1+1+\beta^{2}=Q(u)+\beta^{2}$. In this case this implies $u+w=v$, which is also a contradiction.

In order to show that the pair $\left\{\Pi, \Pi^{-1}\right\}$ does not depend on W, u and v, let

$$
U=\left\langle u^{\prime}, w\right\rangle \perp W^{\prime}, V=\left\langle v^{\prime}, w\right\rangle \perp W^{\prime}
$$

be another decomposition such that $Q\left(u^{\prime}\right)=Q\left(v^{\prime}\right)$ and $f\left(u^{\prime}, w\right)=f\left(v^{\prime}, w\right)=1$. Then since $f\left(u^{\prime}, w\right)=1$, we have $u^{\prime}=u+\gamma w+z$ for some $\gamma \in \mathbb{F}_{q}$ and $z \in W$. Let $v^{\prime \prime}:=v+\gamma w+z$ be a vector in V, then clearly $Q\left(v^{\prime \prime}\right)=Q\left(u^{\prime}\right)$ and $f\left(v^{\prime \prime}, w\right)=1$. Furthermore we have $u^{\prime}+v^{\prime \prime}=u+v=\alpha w+\beta r$, that is,

$$
V=\left\langle v^{\prime \prime}, w\right\rangle \perp W^{\prime},
$$

which implies that $v^{\prime \prime}$ must be v^{\prime} or $v^{\prime}+w$, since if we express $v^{\prime \prime}$ as a linear combination of v^{\prime} and w, say $v^{\prime \prime}=\gamma_{1} v^{\prime}+\gamma_{2} w$, then $\gamma_{1}=f\left(v^{\prime \prime}, w\right)=1$ and $Q\left(v^{\prime}\right)=Q\left(v^{\prime \prime}\right)=Q\left(v^{\prime}\right)+\gamma_{2}^{2}+\gamma_{2}$ so that $\gamma_{2}=0$ or $\gamma_{2}=1$. If $v^{\prime \prime}=v^{\prime}$, then we have

$$
\frac{f\left(u^{\prime}, v^{\prime}\right)}{f\left(u^{\prime}, v^{\prime}\right)+1}=\frac{f\left(u^{\prime}, v^{\prime \prime}\right)}{f\left(u^{\prime}, v^{\prime \prime}\right)+1}=\frac{f(u, v)}{f(u, v)+1} .
$$

Similarly if $v^{\prime \prime}=v^{\prime}+w$, then we have

$$
\frac{f\left(u^{\prime}, v^{\prime}\right)}{f\left(u^{\prime}, v^{\prime}\right)+1}=\frac{f\left(u^{\prime}, v^{\prime \prime}+w\right)}{f\left(u^{\prime}, v^{\prime \prime}+w\right)+1}=\frac{f\left(u^{\prime}, v^{\prime \prime}\right)+1}{f\left(u^{\prime}, v^{\prime}\right)}=\frac{f(u, v)+1}{f(u, v)} .
$$

This completes the proof of Proposition 1.2.2.

We denote

$$
\begin{equation*}
\Pi(U, V):=\left\{\Pi, \Pi^{-1}\right\} . \tag{18}
\end{equation*}
$$

It should be noticed that in the definition of $\Pi(U, V)$ it does not matter whether W is positive-type or negative-type.

Let U^{\prime} and V^{\prime} be other distinct two elements in Θ such that $\Pi\left(U^{\prime}, V^{\prime}\right)=\Pi(U, V)$, and let

$$
U^{\prime}=\left\langle u^{\prime}, w^{\prime}\right\rangle \perp W^{\prime}, V^{\prime}=\left\langle v^{\prime}, w^{\prime}\right\rangle \perp W^{\prime}
$$

be a decomposition, where $Q\left(w^{\prime}\right)=1, W^{\prime}$ has the same type as $W, Q\left(u^{\prime}\right)=Q\left(v^{\prime}\right)=Q(u)$ and $f\left(u^{\prime}, w^{\prime}\right)=f\left(v^{\prime}, w^{\prime}\right)=1$. Without loss of generality we may assume $f(u, v)=f\left(u^{\prime}, v^{\prime}\right)$. Let $\tau: W \longrightarrow W^{\prime}$ be an isometry, and define a linear mapping $\tilde{\tau}: \mathbb{V} \longrightarrow \mathbb{V}$ by $\left.\tilde{\tau}\right|_{W}:=\tau$, $\tilde{\tau}(u):=u^{\prime}, \tilde{\tau}(v):=v^{\prime}$, and $\tilde{\tau}(w):=w^{\prime}$. Then $\tilde{\tau}$ becomes an automorphism of Q and we have $\tau(U)=U^{\prime}, \quad \tau(V)=V^{\prime}$. Thus, the remaining relations of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta\right)$ are described as follows:

$$
\begin{equation*}
S_{i}:=\left\{(U, V) \in \Theta \times \Theta \mid U \cap V: \text { non-degenerate, } \Pi(U, V)=\left\{\nu^{i-1}, \nu^{-(i-1)}\right\}\right\} \quad\left(2 \leq i \leq \frac{q}{2}\right) \tag{19}
\end{equation*}
$$

Finally, we determine the valencies h_{i} of $S_{i}\left(2 \leq i \leq \frac{q}{2}\right)$. Let H be a non-degenerate hyperplane of U, then there exists a vector w in H such that $Q(w)=1$ and

$$
H=\langle w\rangle^{\perp} \cap U
$$

Fix a vector u in U such that $f(u, w)=1$. Then it follows that the only element V of Θ which satisfies $U \cap V=H$ and $\Pi(U, V)=\left\{\nu^{i-1}, \nu^{-(i-1)}\right\}$ is given by

$$
\begin{equation*}
V:=\langle v\rangle \oplus H, \text { where } v:=u+\lambda_{i} w+\mu_{i} r \in \mathbb{V} . \tag{20}
\end{equation*}
$$

To show this, let V be such an element in Θ and let

$$
U=\langle u, w\rangle \perp W, V=\langle v, w\rangle \perp W
$$

be a decomposition, where $Q(v)=Q(u)$ and $f(v, w)=1$. As is in the proof of Proposition 1.2.2, $u+v=\alpha w+\beta r$ for some $\alpha, \beta \in \mathbb{F}_{q}$, where $\alpha \neq 0,1$, and we may assume

$$
\frac{f(u, v)}{f(u, v)+1}=\nu^{i-1}
$$

without loss of generality. Then we have

$$
\nu^{i-1}=\frac{\alpha}{\alpha+1},
$$

from which it follows $\alpha=\lambda_{i}$. Also we have $Q(u)=Q(v)=Q(u)+\lambda_{i}^{2}+\lambda_{i}+\beta^{2}$ so that $\beta=\mu_{i}$, as desired.

It follows from Proposition 1.1.1 that there is a one-to-one correspondence between nondegenerate hyperplanes of U and 1-dimensional non-singular subspaces of U. Therefore by Lemma 1.1.3(iii) we obtain

$$
\begin{equation*}
h_{i}=q^{m-1}\left(q^{m}+1\right) \tag{21}
\end{equation*}
$$

for $2 \leq i \leq \frac{q}{2}$. To summarize:
The association scheme $\mathfrak{X}\left(G O_{2 m+1}, \Theta\right)=\left(\Theta,\left\{S_{i}\right\}_{0 \leq i \leq \frac{q}{2}}\right)$ is a symmetric association scheme of class $\frac{q}{2}$ if $m \geq 2$, whose relations are defined by

$$
\begin{aligned}
S_{1} & :=\{(U, V) \in \Theta \times \Theta \mid U \cap V: \text { degenerate }\} \\
S_{i} & :=\left\{(U, V) \in \Theta \times \Theta \mid U \cap V: \text { non-degenerate, } \Pi(U, V)=\left\{\nu^{i-1}, \nu^{-(i-1)}\right\}\right\} \quad\left(2 \leq i \leq \frac{q}{2}\right) .
\end{aligned}
$$

If $m=1$ then we have $S_{1}=\emptyset$ so that $\mathfrak{X}\left(G O_{3}(q), \Theta\right)$ is a symmetric association scheme of class $\frac{q}{2}-1$. The valencies of $\mathfrak{X}\left(G O_{2 m+1}, \Theta\right)$ are given as

$$
\begin{aligned}
h_{1} & =\left(q^{m-1}-1\right)\left(q^{m}+1\right), \\
h_{i} & =q^{m-1}\left(q^{m}+1\right) \quad\left(2 \leq i \leq \frac{q}{2}\right) .
\end{aligned}
$$

2 Computation of Parameters

2.1 The Parameters of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$

In this subsection, we compute the intersection numbers $\left\{p_{i j}^{k}\right\}$ of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$.
(i) Suppose first $2 \leq i, j, k \leq \frac{q}{2}$. Let U and V be elements in Ω such that $(U, V) \in R_{k}$, and let w denote the vector in $H:=U \cap V$ such that $Q(w)=1$ and

$$
H=U \cap V=\langle w\rangle^{\perp} \cap U=\langle w\rangle^{\perp} \cap V
$$

First of all, we count the number of elements K in Ω which satisfy $(U, K) \in R_{i},(V, K) \in R_{j}$, and $U \cap K=V \cap K=H$. Let v be a vector in V with $f(v, w)=1$ and define

$$
u:=v+\lambda_{k} w+\mu_{k} r .
$$

Then it follows from (13) that

$$
U=H \oplus\langle u\rangle,
$$

and the only element K in Ω such that $(V, K) \in R_{j}$ and $V \cap K=H$ is given by

$$
K:=H \oplus\langle z\rangle, \quad \text { where } z:=v+\lambda_{j} w+\mu_{j} r .
$$

Since

$$
u+z=\left(\lambda_{j}+\lambda_{k}\right) w+\left(\mu_{j}+\mu_{k}\right) r
$$

if $(U, K) \in R_{i}$, then we have

$$
\frac{\lambda_{j}+\lambda_{k}}{\lambda_{j}+\lambda_{k}+1}=\nu^{ \pm(i-1)},
$$

that is,

$$
\lambda_{j}+\lambda_{k}=\lambda_{i}, \quad \text { or } \quad \lambda_{j}+\lambda_{k}=\lambda_{i}+1,
$$

which is equivalent to

$$
\mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0
$$

Thus the number n_{1} of elements K in Ω which satisfy $(U, K) \in R_{i},(V, K) \in R_{j}$, and $U \cap K=$ $V \cap K=H$ is

$$
n_{1}= \begin{cases}1 & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \tag{22}\\ 0 & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0\end{cases}
$$

Next, fix a vector w^{\prime} in $V \backslash\langle w\rangle$ with $Q\left(w^{\prime}\right)=1$, and define two subspaces of V as

$$
\begin{aligned}
H^{\prime} & :=\left\langle w^{\prime}\right\rangle^{\perp} \cap V \\
W & :=H \cap H^{\prime}=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V
\end{aligned}
$$

We need to determine whether there exists an element K in Ω such that $(U, K) \in R_{i},(V, K) \in$ R_{j} and $V \cap K=H^{\prime}$. Notice that $\left.\operatorname{Rad} f\right|_{\left\langle w, w^{\prime}\right\rangle}=0$ holds if and only if $f\left(w, w^{\prime}\right) \neq 0$, that is, W is non-degenerate if and only if $f\left(w, w^{\prime}\right) \neq 0$. Assume $f\left(w, w^{\prime}\right) \neq 0$, then W is positive-type if and only if the polynomial $t^{2}+f\left(w, w^{\prime}\right) t+1 \in \mathbb{F}_{q}[t]$ is reducible over \mathbb{F}_{q}, since a 2-dimensional negative-type subspace has no non-zero singular vector.

Let v be a vector in H such that $f\left(v, w^{\prime}\right)=1$, and let v^{\prime} be a vector in H^{\prime} such that $f\left(v^{\prime}, w\right)=1$. We define

$$
\begin{aligned}
& u:=v^{\prime}+\lambda_{k} w+\mu_{k} r, \\
& z:=v+\lambda_{j} w^{\prime}+\mu_{j} r,
\end{aligned}
$$

so that $U=H \oplus\langle u\rangle$, and $K:=H^{\prime} \oplus\langle z\rangle$ is the unique element in Ω which satisfies $(V, K) \in R_{j}$ and $V \cap K=H^{\prime}$.

Since $\mathbb{V}=W \oplus\left\langle v, v^{\prime}\right\rangle \oplus\langle r\rangle$, any vector x in $U \cap K$ is uniquely written as

$$
x=\alpha v+\beta v^{\prime}+y+\gamma r
$$

for some $\alpha, \beta, \gamma \in \mathbb{F}_{q}$ and $y \in W$. Then it follows from $U=H \oplus\langle u\rangle$ and $K=H^{\prime} \oplus\langle z\rangle$ that

$$
\begin{equation*}
\gamma=\alpha \mu_{j}=\beta \mu_{k} \tag{23}
\end{equation*}
$$

Notice that there exist two vectors y and y^{\prime} in W such that

$$
\begin{equation*}
w=f\left(w, w^{\prime}\right) v+y, \quad w^{\prime}=f\left(w, w^{\prime}\right) v^{\prime}+y^{\prime} \tag{24}
\end{equation*}
$$

Let $w^{\prime \prime}$ be a vector in $U \cap K$ such that

$$
U \cap K=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap U=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap K
$$

(a) Suppose $f\left(w, w^{\prime}\right) \neq 0$, that is, W is a non-degenerate subspace of V. Since $\operatorname{dim} W^{\perp}=3$ by Proposition 1.1.1, there exist some elements $\xi, \eta, \delta \in \mathbb{F}_{q}$ such that

$$
w^{\prime \prime}=\xi w+\eta w^{\prime}+\delta r .
$$

Then by (24) we have

$$
w^{\prime \prime}=\xi f\left(w, w^{\prime}\right) v+\eta f\left(w, w^{\prime}\right) v^{\prime}+\xi y+\eta y^{\prime}+\delta r,
$$

so that from (23) we obtain

$$
\begin{equation*}
w^{\prime \prime}=\mu_{k} \epsilon w+\mu_{j} \epsilon w^{\prime}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right) \epsilon r \tag{25}
\end{equation*}
$$

for some $\epsilon \in \mathbb{F}_{q}$. Since $w^{\prime \prime} \neq 0$, we have $\epsilon \neq 0$.
Now suppose $(U, K) \in R_{i}$, then $Q\left(w^{\prime \prime}\right)$ must not be 0 . Hence the inner product $f\left(w, w^{\prime}\right)$ must satisfy

$$
\mu_{j}^{2} \mu_{k}^{2} f\left(w, w^{\prime}\right)^{2}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right)+\mu_{j}^{2}+\mu_{k}^{2} \neq 0
$$

or equivalently

$$
f\left(w, w^{\prime}\right) \neq \frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}\right), \frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}+1\right)
$$

We may assume $Q\left(w^{\prime \prime}\right)=1$ so that

$$
\begin{equation*}
\epsilon^{2}=\frac{1}{\mu_{j}^{2} \mu_{k}^{2} f\left(w, w^{\prime}\right)^{2}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right)+\mu_{j}^{2}+\mu_{k}^{2}} . \tag{26}
\end{equation*}
$$

If $(U, K) \in R_{i}$ then repeating the same argument as before we have

$$
\begin{equation*}
w=\mu_{i} \epsilon^{\prime} w^{\prime \prime}+\mu_{j} \epsilon^{\prime} w^{\prime}+\mu_{i} \mu_{j} f\left(w^{\prime \prime}, w^{\prime}\right) \epsilon^{\prime} r \tag{27}
\end{equation*}
$$

for some $\epsilon^{\prime} \in \mathbb{F}_{q}$. Then since it follows from (25) that

$$
w=\frac{1}{\mu_{k} \epsilon} w^{\prime \prime}+\frac{\mu_{j}}{\mu_{k}} w^{\prime}+\mu_{j} f\left(w, w^{\prime}\right) r,
$$

we have

$$
\epsilon=\frac{1}{\mu_{i}} .
$$

Therefore by (26) the inner product $f\left(w, w^{\prime}\right)$ must satisfy the following condition:

$$
\mu_{j}^{2} \mu_{k}^{2} f\left(w, w^{\prime}\right)^{2}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right)+\mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0
$$

which is equivalent to

$$
\begin{equation*}
f\left(w, w^{\prime}\right)=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{i}+\lambda_{j}+\lambda_{k}\right), \text { or } f\left(w, w^{\prime}\right)=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{i}+\lambda_{j}+\lambda_{k}+1\right) . \tag{28}
\end{equation*}
$$

Conversely, if $f\left(w, w^{\prime}\right)$ satisfies (28) then from (11) we deduce that $(U, K) \in R_{i}$.

We can now count the number of elements K in Ω such that $(U, K) \in R_{i},(V, K) \in R_{j}$, and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H. For brevity we let

$$
\begin{aligned}
\kappa_{i j k} & :=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{i}+\lambda_{j}+\lambda_{k}\right) \\
\kappa_{i j k}^{\prime} & :=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{i}+\lambda_{j}+\lambda_{k}+1\right)
\end{aligned}
$$

for $i, j, k \in\left\{2,3, \ldots, \frac{q}{2}\right\}$, and define

$$
\phi(\alpha):= \begin{cases}1 & \text { if the polynomial } t^{2}+\alpha t+1 \in \mathbb{F}_{q}[t] \text { is reducible over } \mathbb{F}_{q} \\ 0 & \text { otherwise }\end{cases}
$$

for $\alpha \in \mathbb{F}_{q}$. (For $\alpha \in \mathbb{F}_{q}^{*}$ the function $\phi(\alpha)$ is also defined by $\phi(\alpha)=\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\alpha^{-1}\right)$. See Lemma 4.2 .4 below.) We need the following lemma:

Lemma 2.1.1. Let W_{0} be a 2-dimensional positive-type (resp. negative-type) subspace of \mathbb{V}, and let w be a vector in W_{0} with $Q(w)=1$. Then for any $\alpha \in \mathbb{F}_{q}^{*}$ such that $\phi(\alpha)=1 \quad($ resp. $\phi(\alpha)=0)$ there exist two vectors $w_{1}^{\prime}, w_{2}^{\prime}$ in W_{0} such that $Q\left(w_{i}^{\prime}\right)=1$ and $f\left(w, w_{i}^{\prime}\right)=\alpha(i=1,2)$.
Proof. Let y be a vector in $W_{0} \backslash\langle w\rangle$ with $Q(y)=1$, then we have $f(w, y) \neq 0$ and $\phi(f(w, y))=1$ (resp. $\phi(f(w, y))=0)$. If a vector y^{\prime} in W_{0} satisfies $Q\left(y^{\prime}\right)=1$ and $f\left(w, y^{\prime}\right)=f(w, y)$, then y^{\prime} must be y or $y+f(w, y) w$. The number of elements $\alpha \in \mathbb{F}_{q}^{*}$ such that $\phi(\alpha)=1($ resp. $\phi(\alpha)=0)$ is obviously equal to $\frac{q}{2}-1$ (resp. $\frac{q}{2}$), and by Proposition 1.1.3 the number of vectors y in W_{0} other than w with $Q(y)=1$ is given by $q-2$ (resp. q), which proves the lemma.

Suppose for instance $\kappa_{i j k} \neq 0$ and $\phi\left(\kappa_{i j k}\right)=1$ (resp. $\phi\left(\kappa_{i j k}\right)=0$). If $w^{\prime} \in V$ satisfies $Q\left(w^{\prime}\right)=1$ and $f\left(w, w^{\prime}\right)=\kappa_{i j k}$, then as mentioned before, $W:=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V$ is a positivetype (resp. negative-type) hyperplane of H. On the other hand, let W be a positive-type (resp. negative-type) hyperplane of H, then by Lemma 2.1.1 the number of vectors w^{\prime} in $W^{\perp} \cap V$ which satisfy $Q\left(w^{\prime}\right)=1$ and $f\left(w, w^{\prime}\right)=\kappa_{i j k}$ is exactly 2 . Thus from (22) (resp. (3)), the number of vectors w^{\prime} in V such that $Q\left(w^{\prime}\right)=1$ and $f\left(w, w^{\prime}\right)=\kappa_{i j k}$ is given by

$$
q^{m-1}\left(q^{m-1}+1\right) \quad\left(\text { resp. } q^{m-1}\left(q^{m-1}-1\right)\right)
$$

Since $\kappa_{i j k}, \kappa_{i j k}^{\prime} \neq 0$ unless $\mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0$, the number n_{2} of elements K in Ω such that $(U, K) \in R_{i},(V, K) \in R_{j}$ and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H, is obtained as follows:

$$
n_{2}= \begin{cases}q^{m-1}\left(q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=1, \tag{29}\\ q^{m-1}\left(q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=0, \\ 2 q^{m-1}\left(q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=1, \\ 2 q^{m-1}\left(q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=0, \\ 2 q^{2 m-2} & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and }\left\{\phi\left(\kappa_{i j k}\right), \phi\left(\kappa_{i j k}^{\prime}\right)\right\}=\{0,1\} .\end{cases}
$$

(b) Suppose $f\left(w, w^{\prime}\right)=0$, that is, W is a degenerate subspace of V. Notice that this occurs only if $m \geq 2$. In this case $\left\langle w, w^{\prime}\right\rangle$ is a subspace of W. Since $\operatorname{dim} W^{\perp} \cap K=2$ by Proposition 1.1.1 we have $W^{\perp} \cap K=\left\langle w, w^{\prime}\right\rangle$. Therefore there exist two elements ξ and η in \mathbb{F}_{q} such that

$$
w^{\prime \prime}=\xi w+\eta w^{\prime}
$$

Let $x=\alpha v+\beta v^{\prime}+y+\gamma r$ be a vector in $U \cap K$, then it follows from (23) that

$$
0=\mu_{k} f\left(x, w^{\prime \prime}\right)=\beta \mu_{k} \xi+\alpha \mu_{k} \eta=\alpha\left(\mu_{j} \xi+\mu_{k} \eta\right)
$$

so that

$$
\begin{equation*}
w^{\prime \prime}=\mu_{k} \epsilon w+\mu_{j} \epsilon w^{\prime} \tag{30}
\end{equation*}
$$

for some $\epsilon \in \mathbb{F}_{q}$.
Now suppose $(U, K) \in R_{i}$, then $Q\left(w^{\prime \prime}\right)$ must not be 0 , that is, $\mu_{j}^{2}+\mu_{k}^{2} \neq 0$. We may assume $Q\left(w^{\prime \prime}\right)=1$ so that

$$
\epsilon^{2}=\frac{1}{\mu_{j}^{2}+\mu_{k}^{2}}
$$

If $(U, K) \in R_{i}$ then repeating the same argument as before we have

$$
\begin{equation*}
w=\mu_{i} \epsilon^{\prime} w^{\prime \prime}+\mu_{j} \epsilon^{\prime} w^{\prime} \tag{31}
\end{equation*}
$$

for some $\epsilon^{\prime} \in \mathbb{F}_{q}$. Then since it follows from (30) that

$$
w=\frac{1}{\mu_{k} \epsilon} w^{\prime \prime}+\frac{\mu_{j}}{\mu_{k}} w^{\prime}
$$

we have

$$
\epsilon=\frac{1}{\mu_{i}},
$$

so that

$$
\begin{equation*}
\mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 . \tag{32}
\end{equation*}
$$

Conversely, if (32) is satisfied, then from (12) we deduce $(U, K) \in R_{i}$. By Lemma 1.1.3(i) there are $q^{2 m-2}-1$ vectors w^{\prime} in H other than w such that $Q\left(w^{\prime}\right)=1$, hence the number n_{3} of elements K in Ω such that $(U, K) \in R_{i},(V, K) \in R_{j}$ and $W=U \cap V \cap K=H \cap K$ is a degenerate hyperplane of H, is given by

$$
n_{3}= \begin{cases}q^{2 m-2}-1 & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \tag{33}\\ 0 & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0\end{cases}
$$

From (22), (29) and (33), we obtain

$$
\begin{align*}
p_{i j}^{k} & =n_{1}+n_{2}+n_{3} \\
& = \begin{cases}q^{m-1}\left(2 q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=1, \\
q^{m-1}\left(2 q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=0, \\
2 q^{m-1}\left(q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=1, \\
2 q^{m-1}\left(q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=0, \\
2 q^{2 m-2} & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and }\left\{\phi\left(\kappa_{i j k}\right), \phi\left(\kappa_{i j k}^{\prime}\right)\right\}=\{0,1\},\end{cases} \tag{34}
\end{align*}
$$

for $i, j, k \in\left\{2,3, \ldots, \frac{q}{2}\right\}$.
(ii) Suppose $i=1$ and $2 \leq j, k \leq \frac{q}{2}$. Let U and V be elements in Ω such that $(U, V) \in R_{k}$. We use the same notation as in (i). Notice that if an element K in Ω satisfies $(U, K) \in R_{1}$ and $(V, K) \in R_{j}$, then $U \cap V \cap K=H \cap K$ has dimension $2 m-2$, since $U \cap K$ is degenerate by definition while H is non-degenerate.

In the same way as (i), fix a vector w^{\prime} in $V \backslash\langle w\rangle$ with $Q\left(w^{\prime}\right)=1$, and define two subspaces of V as

$$
\begin{aligned}
H^{\prime} & :=\left\langle w^{\prime}\right\rangle^{\perp} \cap V \\
W & :=H \cap H^{\prime}=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V .
\end{aligned}
$$

Let K be the unique element in Ω which satisfies $(V, K) \in R_{j}$ and $V \cap K=H^{\prime}$, and let $w^{\prime \prime}$ be a vector in $U \cap K$ such that $U \cap K=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap U=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap K$. Then $(U, K) \in R_{1}$ if and only if $Q\left(w^{\prime \prime}\right)=0$.
(a) Suppose $f\left(w, w^{\prime}\right) \neq 0$, that is, W is a non-degenerate subspace of V, then it follows from (25) that $(U, K) \in R_{1}$ if and only if

$$
\mu_{j}^{2} \mu_{k}^{2} f\left(w, w^{\prime}\right)^{2}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right)+\mu_{j}^{2}+\mu_{k}^{2}=0
$$

which is equivalent to

$$
\begin{equation*}
f\left(w, w^{\prime}\right)=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}\right), \text { or } f\left(w, w^{\prime}\right)=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}+1\right) . \tag{35}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\phi\left(\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}\right)\right)=\phi\left(\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}+1\right)\right)=1 . \tag{36}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
\frac{1}{\mu_{j}^{2} \mu_{k}^{2}}\left(\lambda_{j}^{2}+\lambda_{k}^{2}\right) & =\frac{1}{\left(\lambda_{j}^{2}+\lambda_{j}\right)\left(\lambda_{k}^{2}+\lambda_{k}\right)}\left(\lambda_{j}^{2}+\lambda_{k}^{2}\right) \\
& =\frac{1}{\left(\lambda_{j}^{2}+\lambda_{j}\right)\left(\lambda_{k}^{2}+\lambda_{k}\right)}\left(\lambda_{j}^{2}\left(\lambda_{k}^{2}+1\right)+\lambda_{k}^{2}\left(\lambda_{j}^{2}+1\right)\right) \\
& =\left(\frac{\lambda_{j}}{\lambda_{j}+1}\right)\left(\frac{\lambda_{k}+1}{\lambda_{k}}\right)+\left(\frac{\lambda_{k}}{\lambda_{k}+1}\right)\left(\frac{\lambda_{j}+1}{\lambda_{j}}\right) \\
& =\nu^{j-k}+\nu^{-(j-k)}
\end{aligned}
$$

Likewise

$$
\begin{aligned}
\frac{1}{\mu_{j}^{2} \mu_{k}^{2}}\left(\lambda_{j}^{2}+\lambda_{k}^{2}+1\right) & =\frac{1}{\left(\lambda_{j}^{2}+\lambda_{j}\right)\left(\lambda_{k}^{2}+\lambda_{k}\right)}\left(\lambda_{j}^{2}+\lambda_{k}^{2}+1\right) \\
& =\frac{1}{\left(\lambda_{j}^{2}+\lambda_{j}\right)\left(\lambda_{k}^{2}+\lambda_{k}\right)}\left(\lambda_{j}^{2} \lambda_{k}^{2}+\left(\lambda_{j}^{2}+1\right)\left(\lambda_{k}^{2}+1\right)\right) \\
& =\left(\frac{\lambda_{j}}{\lambda_{j}+1}\right)\left(\frac{\lambda_{k}}{\lambda_{k}+1}\right)+\left(\frac{\lambda_{j}+1}{\lambda_{j}}\right)\left(\frac{\lambda_{k}+1}{\lambda_{k}}\right) \\
& =\nu^{j+k}+\nu^{-(j+k)}
\end{aligned}
$$

It follows from (2) that the number of positive-type hyperplanes of H is given by

$$
\frac{q^{m-1}\left(q^{m-1}+1\right)}{2}
$$

Hence by Lemma 2.1.1 the number n_{2}^{\prime} of elements K in Ω such that $(U, K) \in R_{1},(V, K) \in R_{j}$ and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H, is obtained as

$$
n_{2}^{\prime}= \begin{cases}q^{m-1}\left(q^{m-1}+1\right) & \text { if } j=k, \tag{37}\\ 2 q^{m-1}\left(q^{m-1}+1\right) & \text { if } j \neq k\end{cases}
$$

since n_{2}^{\prime} is equal to the number of vectors w^{\prime} in $V \backslash H$ with $Q\left(w^{\prime}\right)=1$ which satisfies (35).
(b) Suppose $f\left(w, w^{\prime}\right)=0$, that is, W is a degenerate subspace of V, which occurs only if $m \geq 2$. Then it follows from (30) that $(U, K) \in R_{1}$ if and only if

$$
\mu_{j}^{2}+\mu_{k}^{2}=0
$$

that is, $j=k$. By Lemma 1.1.3(i), the number of vectors w^{\prime} in H other than w with $Q\left(w^{\prime}\right)=1$ is equal to $q^{2 m-2}-1$, from which it follows that the number n_{3}^{\prime} of elements K in Ω such that $(U, K) \in R_{1},(V, K) \in R_{j}$ and $W=U \cap V \cap K=H \cap K$ is a degenerate hyperplane of H, is given by

$$
n_{3}^{\prime}= \begin{cases}q^{2 m-2}-1 & \text { if } j=k \tag{38}\\ 0 & \text { if } j \neq k\end{cases}
$$

From (37) and (38), we obtain

$$
p_{1 j}^{k}=n_{2}^{\prime}+n_{3}^{\prime}= \begin{cases}\left(2 q^{m-1}-1\right)\left(q^{m-1}+1\right) & \text { if } j=k \tag{39}\\ 2 q^{m-1}\left(q^{m-1}+1\right) & \text { if } j \neq k\end{cases}
$$

(iii) Suppose $2 \leq i \leq \frac{q}{2}$ and $j=k=1$. Let U and V be elements in Ω such that $(U, V) \in R_{1}$, and let w denote a vector in $H:=U \cap V$ such that $Q(w)=0$ and

$$
H=U \cap V=\langle w\rangle^{\perp} \cap U=\langle w\rangle^{\perp} \cap V
$$

Notice that in this case w is not uniquely determined, and also notice that if an element K in Ω satisfies $(U, K) \in R_{i}$ and $(V, K) \in R_{1}$, then $U \cap V \cap K=H \cap K$ has dimension $2 m-2$, since $U \cap K$ is non-degenerate by definition while H is degenerate. Fix a vector w^{\prime} in $V \backslash\langle w\rangle$ with $Q\left(w^{\prime}\right)=0$, and define two subspaces of V as

$$
\begin{aligned}
H^{\prime} & :=\left\langle w^{\prime}\right\rangle^{\perp} \cap V \\
W & :=H \cap H^{\prime}=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V .
\end{aligned}
$$

We determine whether there exists an element K in Ω such that $(U, K) \in R_{i},(V, K) \in R_{1}$ and $V \cap K=H^{\prime}$.
(a) Suppose $f\left(w, w^{\prime}\right) \neq 0$, that is, W is a non-degenerate hyperplane of H. Since $Q(w)=$ $Q\left(w^{\prime}\right)=0$, we may assume $f\left(w, w^{\prime}\right)=1$ without loss of generality. Define

$$
v_{\alpha}:=w+w^{\prime}+\alpha r,
$$

for $\alpha \in \mathbb{F}_{q}^{*}$, then $K_{\alpha}:=H^{\prime} \oplus\left\langle v_{\alpha}\right\rangle\left(\alpha \in \mathbb{F}_{q}^{*}\right)$ are distinct elements in Ω with $K_{\alpha} \cap V=H^{\prime}$. In fact, since these hyperplanes of \mathbb{V} do not contain the vector r, they are non-degenerate. Moreover since W is positive-type and $H^{\prime}=W \perp\left\langle w^{\prime}\right\rangle$, we conclude that $K_{\alpha}=W \perp\left(W^{\perp} \cap K_{\alpha}\right)$ is positive-type for all $\alpha \in \mathbb{F}_{q}^{*}$, and also it follows that they are distinct elements in Ω since we have $v_{\alpha}+v_{\beta}=(\alpha+\beta) r$ for $\alpha, \beta \in \mathbb{F}_{q}^{*}$. The number of hyperplanes K of \mathbb{V} which include H^{\prime} is given by $\frac{q^{2 m+1}-q^{2 m-1}}{q^{2 m}-q^{2 m-1}}=q+1$. In these $q+1$ hyperplanes of $\mathbb{V}, H^{\prime} \perp\langle r\rangle$ is the only degenerate hyperplane, that is, there are $q-1$ elements K in Ω such that $K \cap V=H^{\prime}$ and hence each K is written as $K=K_{\alpha}$ for some $\alpha \in \mathbb{F}_{q}^{*}$. By the same reason, there exists an element α_{0} in \mathbb{F}_{q}^{*} such that

$$
U=H \oplus\left\langle v_{\alpha_{0}}\right\rangle
$$

Fix an element α in \mathbb{F}_{q}^{*}, then since $\mathbb{V}=W \oplus\left\langle w, w^{\prime}\right\rangle \oplus\langle r\rangle$, any vector x in $U \cap K_{\alpha}$ is uniquely written as

$$
x=\xi w+\eta w^{\prime}+y+\delta r,
$$

for some $\xi, \eta, \delta \in \mathbb{F}_{q}$ and $y \in W$. Then it follows from $U=H \oplus\left\langle v_{\alpha_{0}}\right\rangle$ and $K_{\alpha}=H^{\prime} \oplus\left\langle v_{\alpha}\right\rangle$ that

$$
\begin{equation*}
\delta=\xi \alpha=\eta \alpha_{0} . \tag{40}
\end{equation*}
$$

Let $w^{\prime \prime}$ be a vector in $U \cap K_{\alpha}$ such that

$$
U \cap K_{\alpha}=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap U=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap K_{\alpha} .
$$

Since $W^{\perp}=\left\langle w, w^{\prime}, r\right\rangle$, it follows from (40) that

$$
\begin{equation*}
w^{\prime \prime}=\alpha_{0} \epsilon w+\alpha \epsilon w^{\prime}+\alpha_{0} \alpha \epsilon r, \tag{41}
\end{equation*}
$$

for an element $\epsilon \in \mathbb{F}_{q}$. Since $w^{\prime \prime} \neq 0$, we have $\epsilon \neq 0$.
Now suppose $\left(U, K_{\alpha}\right) \in R_{i}$, then $Q\left(w^{\prime \prime}\right)$ must not be 0 , so that

$$
\alpha_{0}^{2} \alpha^{2}+\alpha_{0} \alpha \neq 0,
$$

which is equivalent to

$$
\alpha \neq \alpha_{0}^{-1}
$$

We may assume $Q\left(w^{\prime \prime}\right)=1$ so that

$$
\epsilon^{2}=\frac{1}{\alpha_{0}^{2} \alpha^{2}+\alpha_{0} \alpha} .
$$

Then we have

$$
\begin{equation*}
\frac{1}{\alpha \epsilon} w+\frac{1}{\alpha_{0} \epsilon} w^{\prime}=\frac{1}{\alpha_{0} \alpha \epsilon^{2}} w^{\prime \prime}+\frac{1}{\epsilon} r=\left(\alpha_{0} \alpha+1\right) w^{\prime \prime}+\frac{1}{\epsilon} r . \tag{42}
\end{equation*}
$$

From $f\left(w, w^{\prime \prime}\right)=\alpha \epsilon, f\left(w^{\prime}, w^{\prime \prime}\right)=\alpha_{0} \epsilon$ and $Q(w)=Q\left(w^{\prime}\right)=0$ it follows that

$$
\frac{\alpha_{0} \alpha+1}{\alpha_{0} \alpha}=\nu^{i-1} \quad \text { or } \quad \frac{\alpha_{0} \alpha+1}{\alpha_{0} \alpha}=\nu^{-(i-1)},
$$

or equivalently

$$
\begin{equation*}
\alpha_{0} \alpha=\lambda_{i} \quad \text { or } \quad \alpha_{0} \alpha=\lambda_{i}+1 . \tag{43}
\end{equation*}
$$

Conversely if (43) is satisfied, then from (11) we deduce that $(U, K) \in R_{i}$. Therefore for each 1-dimensional singular subspace $\left\langle w^{\prime}\right\rangle$ in V such that $f\left(w, w^{\prime}\right) \neq 0$, there are exactly 2 elements K in Ω such that $(U, K) \in R_{i},(V, K) \in R_{1}$ and $V \cap K=H^{\prime}:=\left\langle w^{\prime}\right\rangle^{\perp} \cap V$. The number of vectors v in V such that $f(v, w) \neq 0$ is $q^{2 m}-q^{2 m-1}$, and hence the number of 2-dimensional positive-type subspaces of V which include $\langle w\rangle$ is by Proposition 1.1.2 equal to

$$
\begin{equation*}
\frac{q^{2 m}-q^{2 m-1}}{q^{2}-q}=q^{2 m-2} \tag{44}
\end{equation*}
$$

which is also equal to the number of 1-dimensional singular subspace $\left\langle w^{\prime}\right\rangle$ in V such that $f\left(w, w^{\prime}\right) \neq$ 0 since any 2 -dimensional positive-type subspace of \mathbb{V} contains two 1-dimensional singular subspaces. Thus the number m_{1} of elements K in Ω such that $(U, K) \in R_{i},(V, K) \in R_{1}$ and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H, is given by

$$
\begin{equation*}
m_{1}=2 q^{2 m-2} \tag{45}
\end{equation*}
$$

(b) Suppose $f\left(w, w^{\prime}\right)=0$, which never happens if $m=1$, then $\left\langle w, w^{\prime}\right\rangle=W^{\perp} \cap V$ is a singular subspace of W. Hence if an element K in Ω satisfies $U \cap V \cap K=W$, then $U \cap K$ cannot be non-degenerate, since $(U \cap K)^{\perp} \cap K \subset W^{\perp} \cap K=\left\langle w, w^{\prime}\right\rangle$. This implies that there is no element K in Ω such that $(U, K) \in R_{i},(V, K) \in R_{1}$ and $W=U \cap V \cap K=H \cap K$ is a degenerate hyperplane of H.

Thus by (45)

$$
\begin{equation*}
p_{i 1}^{1}=m_{1}=2 q^{2 m-2} . \tag{46}
\end{equation*}
$$

(iv) Finally suppose $i=j=k=1$. Let U and V be elements in Ω such that $(U, V) \in R_{1}$. We use the same notation as in (iii). In the same way as (iii), fix a vector w^{\prime} in $V \backslash\langle w\rangle$ with $Q\left(w^{\prime}\right)=1$, and define two subspaces of V as

$$
\begin{aligned}
H^{\prime} & :=\left\langle w^{\prime}\right\rangle^{\perp} \cap V \\
W & :=H \cap H^{\prime}=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V .
\end{aligned}
$$

(a) Suppose $f\left(w, w^{\prime}\right) \neq 0$, that is, W is a non-degenerate hyperplane of H. We may assume $f\left(w, w^{\prime}\right)=1$ without loss of generality, since $Q(w)=Q\left(w^{\prime}\right)=0$. Define

$$
v_{\alpha}:=w+w^{\prime}+\alpha r
$$

for $\alpha \in \mathbb{F}_{q}^{*}$, then as mentioned before, $U=H \oplus\left\langle v_{\alpha_{0}}\right\rangle$ for some $\alpha_{0} \in \mathbb{F}_{q}^{*}$. Also $K_{\alpha}:=H^{\prime} \oplus\left\langle v_{\alpha}\right\rangle$ $\left(\alpha \in \mathbb{F}_{q}^{*}\right)$ are distinct elements in Ω with $K_{\alpha} \cap V=H^{\prime}$, and each element K in Ω such that $K \cap V=H^{\prime}$ is written as $K=K_{\alpha}$ for some $\alpha \in \mathbb{F}_{q}^{*}$.

Fix an element α in \mathbb{F}_{q}^{*} and let $w^{\prime \prime}$ be a vector in $U \cap K_{\alpha}$ such that $U \cap K_{\alpha}=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap U=$ $\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap K_{\alpha}$. Then $(U, K) \in R_{1}$ if and only if $Q\left(w^{\prime \prime}\right)=0$, which is by (41) equivalent to

$$
\alpha_{0}^{2} \alpha^{2}+\alpha_{0} \alpha=0,
$$

that is, $\alpha=\alpha_{0}^{-1}$. Therefore for each 1-dimensional singular subspace $\left\langle w^{\prime}\right\rangle$ in V such that $f\left(w, w^{\prime}\right) \neq$ 0 , there is exactly one element K in Ω such that $(U, K) \in R_{1},(V, K) \in R_{1}$ and $V \cap K=H^{\prime}:=$ $\left\langle w^{\prime}\right\rangle^{\perp} \cap V$. Hence it follows from (44) that the number m_{1}^{\prime} of elements K in Ω such that $(U, K) \in R_{1}$, $(V, K) \in R_{1}$ and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H, is given by

$$
\begin{equation*}
m_{1}^{\prime}=q^{2 m-2} . \tag{47}
\end{equation*}
$$

(b) Suppose $f\left(w, w^{\prime}\right)=0$, that is, W is a degenerate hyperplane of H. This happens only if $m \geq 2$. In this case any element K in Ω such that $U \cap V \cap K=W$ satisfies $(U, K) \in R_{1}$, since $(U \cap K)^{\perp} \cap K \subset W^{\perp} \cap K=\left\langle w, w^{\prime}\right\rangle$ and $\left\langle w, w^{\prime}\right\rangle$ is a singular subspace.

The number of singular vectors in H is given by

$$
\begin{equation*}
q^{m}+q^{m-1}\left(q^{m-1}-1\right) . \tag{48}
\end{equation*}
$$

To show this, let W^{\prime} be a non-degenerate hyperplane of H so that we have $H=W^{\prime} \perp\langle w\rangle$. Since W^{\prime} is positive-type and $Q(w)=0$, it follows from Lemma 1.1.3(ii) that the number of singular vectors in H is equal to

$$
q\left\{q^{m-1}+q^{m-2}\left(q^{m-1}-1\right)\right\}=q^{m}+q^{m-1}\left(q^{m-1}-1\right)
$$

as desired. Thus by (48) the number m_{2}^{\prime} of elements K in Ω such that $(U, K) \in R_{1},(V, K) \in R_{1}$ and $W=U \cap V \cap K=H \cap K$ is a degenerate hyperplane of H, is given by

$$
\begin{equation*}
m_{2}^{\prime}=\frac{q^{m}+q^{m-1}\left(q^{m-1}-1\right)-q}{q-1}(q-1)=q^{m}+q^{m-1}\left(q^{m-1}-1\right)-q . \tag{49}
\end{equation*}
$$

(c) We have to count the number m_{3}^{\prime} of the elements K in Ω such that $(U, K) \in R_{1},(V, K) \in R_{1}$ and $U \cap K=H$. Since there are exactly $\frac{q^{2 m+1}-q^{2 m-1}}{q^{2 m}-q^{2 m-1}}-1=q$ elements in Ω which include H, m_{3}^{\prime} is given by

$$
\begin{equation*}
m_{3}^{\prime}=q-2 \tag{50}
\end{equation*}
$$

From (47), (49) and (50) we obtain

$$
\begin{equation*}
p_{11}^{1}=m_{1}^{\prime}+m_{2}^{\prime}+m_{3}^{\prime}=q^{m-1}\left(2 q^{m-1}+q-1\right)-2 . \tag{51}
\end{equation*}
$$

The rest of parameters are directly computed by the following equality (cf. Bannai-Ito 4, p.55, Proposition 2.2.]):

Proposition 2.1.2. Let $\left\{p_{i j}^{k}\right\}$ denotes the intersection numbers of a symmetric association scheme $\mathfrak{X}=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$. Then for all $i, j, k \in\left\{0,1, \ldots, \frac{q}{2}\right\}$ we have $k_{k} p_{i j}^{k}=k_{j} p_{k i}^{j}=k_{i} p_{j k}^{i}$.

Hence from (46)

$$
\begin{equation*}
p_{11}^{k}=\frac{k_{1}}{k_{k}} p_{k 1}^{1}=2 q^{m-1}\left(q^{m-1}+1\right) \quad \text { for } 2 \leq k \leq \frac{q}{2} . \tag{52}
\end{equation*}
$$

Also from (39)

$$
p_{i j}^{1}=\frac{k_{j}}{k_{1}} p_{1 i}^{j}= \begin{cases}q^{m-1}\left(2 q^{m-1}-1\right) & \text { if } 2 \leq i=j \leq \frac{q}{2} \tag{53}\\ 2 q^{2 m-2} & \text { if } 2 \leq i, j \leq \frac{q}{2} \text { and } i \neq j\end{cases}
$$

To summarize:

Lemma 2.1.3. The intersection numbers $p_{i j}^{k}$ of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega\right)$ are given as follows.

$$
\begin{aligned}
& p_{i j}^{1}=p_{j i}^{1}= \begin{cases}q^{m-1}\left(2 q^{m-1}+q-1\right)-2 & \text { if } i=j=1, \\
q^{m-1}\left(2 q^{m-1}-1\right) & \text { if } 2 \leq i=j \leq \frac{q}{2}, \\
2 q^{2 m-2} & \text { if } 1 \leq i<j \leq \frac{q}{2},\end{cases} \\
& p_{1 j}^{k}=p_{j 1}^{k}= \begin{cases}\left(2 q^{m-1}-1\right)\left(q^{m-1}+1\right) & \text { if } 2 \leq j=k \leq \frac{q}{2}, \\
2 q^{m-1}\left(q^{m-1}+1\right) & \text { if } 1 \leq j \leq \frac{q}{2}, 2 \leq k \leq \frac{q}{2}, j \neq k .\end{cases}
\end{aligned}
$$

For other $2 \leq i, j, k \leq \frac{q}{2}$,

$$
p_{i j}^{k}= \begin{cases}q^{m-1}\left(2 q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=1, \\ q^{m-1}\left(2 q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=0, \\ 2 q^{m-1}\left(q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=1, \\ 2 q^{m-1}\left(q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=0, \\ 2 q^{2 m-2} & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and }\left\{\phi\left(\kappa_{i j k}\right), \phi\left(\kappa_{i j k}^{\prime}\right)\right\}=\{0,1\} .\end{cases}
$$

2.2 The Parameters of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$

In this subsection, we compute the intersection numbers $\left\{s_{i j}^{k}\right\}$ of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$.
(i) Suppose first $2 \leq i, j, k \leq \frac{q}{2}$. Let U and V be elements in Θ such that $(U, V) \in S_{k}$, and let w denote the vector in $H:=U \cap V$ such that $Q(w)=1$ and

$$
H=U \cap V=\langle w\rangle^{\perp} \cap U=\langle w\rangle^{\perp} \cap V
$$

First of all, we count the number of elements K in Θ which satisfy $(U, K) \in S_{i},(V, K) \in S_{j}$, and $U \cap K=V \cap K=H$. Let v be a vector in V with $f(v, w)=1$ and define

$$
u:=v+\lambda_{k} w+\mu_{k} r .
$$

Then it follows from (20) that

$$
U=H \oplus\langle u\rangle,
$$

and the only element K in Θ such that $(V, K) \in S_{j}$ and $V \cap K=H$ is given by

$$
K:=H \oplus\langle z\rangle, \quad \text { where } z:=v+\lambda_{j} w+\mu_{j} r .
$$

Since

$$
u+z=\left(\lambda_{j}+\lambda_{k}\right) w+\left(\mu_{j}+\mu_{k}\right) r
$$

if $(U, K) \in S_{i}$, then we have

$$
\frac{\lambda_{j}+\lambda_{k}}{\lambda_{j}+\lambda_{k}+1}=\nu^{ \pm(i-1)}
$$

that is,

$$
\lambda_{j}+\lambda_{k}=\lambda_{i}, \quad \text { or } \quad \lambda_{j}+\lambda_{k}=\lambda_{i}+1
$$

which is equivalent to

$$
\mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0
$$

Thus the number n_{1} of elements K in Θ which satisfy $(U, K) \in S_{i},(V, K) \in S_{j}$, and $U \cap K=$ $V \cap K=H$ is

$$
n_{1}= \begin{cases}1 & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \tag{54}\\ 0 & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0\end{cases}
$$

Next, fix a vector w^{\prime} in $V \backslash\langle w\rangle$ with $Q\left(w^{\prime}\right)=1$, and define two subspaces of V as

$$
\begin{aligned}
H^{\prime} & :=\left\langle w^{\prime}\right\rangle^{\perp} \cap V \\
W & :=H \cap H^{\prime}=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V
\end{aligned}
$$

We need to determine whether there exists an element K in Θ such that $(U, K) \in S_{i},(V, K) \in S_{j}$ and $V \cap K=H^{\prime}$. Notice that $\left.\operatorname{Rad} f\right|_{\left\langle w, w^{\prime}\right\rangle}=0$ holds if and only if $f\left(w, w^{\prime}\right) \neq 0$, that is, W is non-degenerate if and only if $f\left(w, w^{\prime}\right) \neq 0$. Assume $f\left(w, w^{\prime}\right) \neq 0$, then W is negative-type if and only if the polynomial $t^{2}+f\left(w, w^{\prime}\right) t+1 \in \mathbb{F}_{q}[t]$ is reducible over \mathbb{F}_{q}, since a 2-dimensional negative-type subspace has no non-zero singular vector.

Let v be a vector in H such that $f\left(v, w^{\prime}\right)=1$, and let v^{\prime} be a vector in H^{\prime} such that $f\left(v^{\prime}, w\right)=1$. We define

$$
\begin{aligned}
& u:=v^{\prime}+\lambda_{k} w+\mu_{k} r, \\
& z:=v+\lambda_{j} w^{\prime}+\mu_{j} r,
\end{aligned}
$$

so that $U=H \oplus\langle u\rangle$, and $K:=H^{\prime} \oplus\langle z\rangle$ is the unique element in Θ which satisfies $(V, K) \in S_{j}$ and $V \cap K=H^{\prime}$.

Since $\mathbb{V}=W \oplus\left\langle v, v^{\prime}\right\rangle \oplus\langle r\rangle$, any vector x in $U \cap K$ is uniquely written as

$$
x=\alpha v+\beta v^{\prime}+y+\gamma r
$$

for some $\alpha, \beta, \gamma \in \mathbb{F}_{q}$ and $y \in W$. Then it follows from $U=H \oplus\langle u\rangle$ and $K=H^{\prime} \oplus\langle z\rangle$ that

$$
\begin{equation*}
\gamma=\alpha \mu_{j}=\beta \mu_{k} \tag{55}
\end{equation*}
$$

Notice that there exist two vectors y and y^{\prime} in W such that

$$
\begin{equation*}
w=f\left(w, w^{\prime}\right) v+y, \quad w^{\prime}=f\left(w, w^{\prime}\right) v^{\prime}+y^{\prime} \tag{56}
\end{equation*}
$$

Let $w^{\prime \prime}$ be a vector in $U \cap K$ such that

$$
U \cap K=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap U=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap K .
$$

(a) Suppose $f\left(w, w^{\prime}\right) \neq 0$, that is, W is a non-degenerate subspace of V. Since by Proposition 1.1.1 we have $\operatorname{dim} W^{\perp}=3$, there exist some elements $\xi, \eta, \delta \in \mathbb{F}_{q}$ such that

$$
w^{\prime \prime}=\xi w+\eta w^{\prime}+\delta r .
$$

Then by (56) we have

$$
w^{\prime \prime}=\xi f\left(w, w^{\prime}\right) v+\eta f\left(w, w^{\prime}\right) v^{\prime}+\xi y+\eta y^{\prime}+\delta r,
$$

so that from (55) we obtain

$$
\begin{equation*}
w^{\prime \prime}=\mu_{k} \epsilon w+\mu_{j} \epsilon w^{\prime}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right) \epsilon r, \tag{57}
\end{equation*}
$$

for some $\epsilon \in \mathbb{F}_{q}$. Since $w^{\prime \prime} \neq 0$, we have $\epsilon \neq 0$.
Now suppose $(U, K) \in S_{i}$, then $Q\left(w^{\prime \prime}\right)$ must not be 0 . Hence the inner product $f\left(w, w^{\prime}\right)$ must satisfy

$$
\mu_{j}^{2} \mu_{k}^{2} f\left(w, w^{\prime}\right)^{2}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right)+\mu_{j}^{2}+\mu_{k}^{2} \neq 0
$$

or equivalently

$$
f\left(w, w^{\prime}\right) \neq \frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}\right), \frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}+1\right) .
$$

We may assume $Q\left(w^{\prime \prime}\right)=1$ so that

$$
\begin{equation*}
\epsilon^{2}=\frac{1}{\mu_{j}^{2} \mu_{k}^{2} f\left(w, w^{\prime}\right)^{2}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right)+\mu_{j}^{2}+\mu_{k}^{2}} . \tag{58}
\end{equation*}
$$

If $(U, K) \in S_{i}$ then repeating the same argument as before we have

$$
\begin{equation*}
w=\mu_{i} \epsilon^{\prime} w^{\prime \prime}+\mu_{j} \epsilon^{\prime} w^{\prime}+\mu_{i} \mu_{j} f\left(w^{\prime \prime}, w^{\prime}\right) \epsilon^{\prime} r \tag{59}
\end{equation*}
$$

for some $\epsilon^{\prime} \in \mathbb{F}_{q}$. Then since it follows from (57) that

$$
w=\frac{1}{\mu_{k} \epsilon} w^{\prime \prime}+\frac{\mu_{j}}{\mu_{k}} w^{\prime}+\mu_{j} f\left(w, w^{\prime}\right) r,
$$

we have

$$
\epsilon=\frac{1}{\mu_{i}} .
$$

Therefore by (58) the inner product $f\left(w, w^{\prime}\right)$ must satisfy the following condition:

$$
\mu_{j}^{2} \mu_{k}^{2} f\left(w, w^{\prime}\right)^{2}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right)+\mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0
$$

which is equivalent to

$$
\begin{equation*}
f\left(w, w^{\prime}\right)=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{i}+\lambda_{j}+\lambda_{k}\right), \text { or } f\left(w, w^{\prime}\right)=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{i}+\lambda_{j}+\lambda_{k}+1\right) . \tag{60}
\end{equation*}
$$

Conversely, if $f\left(w, w^{\prime}\right)$ satisfies (60) then from (11) we deduce that $(U, K) \in S_{i}$.
We can now count the number of elements K in Θ such that $(U, K) \in S_{i},(V, K) \in S_{j}$, and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H. We use the same notation as the previous subsection.

Suppose for instance $\kappa_{i j k} \neq 0$ and $\phi\left(\kappa_{i j k}\right)=1$ (resp. $\phi\left(\kappa_{i j k}\right)=0$). If $w^{\prime} \in V$ satisfies $Q\left(w^{\prime}\right)=1$ and $f\left(w, w^{\prime}\right)=\kappa_{i j k}$, then as mentioned before, $W:=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V$ is a negative-type (resp. positive-type) hyperplane of H. On the other hand, let W be a negative-type (resp. positivetype) hyperplane of H, then by Lemma 2.1.1 the number of vectors w^{\prime} in $W^{\perp} \cap V$ which satisfy $Q\left(w^{\prime}\right)=1$ and $f\left(w, w^{\prime}\right)=\kappa_{i j k}$ is exactly 2 . Thus from (3) (resp. (21)), the number of vectors w^{\prime} in V such that $Q\left(w^{\prime}\right)=1$ and $f\left(w, w^{\prime}\right)=\kappa_{i j k}$ is given by

$$
q^{m-1}\left(q^{m-1}-1\right) \quad\left(\text { resp. } q^{m-1}\left(q^{m-1}+1\right)\right)
$$

Since $\kappa_{i j k}, \kappa_{i j k}^{\prime} \neq 0$ unless $\mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0$, the number n_{2} of elements K in Θ such that $(U, K) \in S_{i},(V, K) \in S_{j}$ and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H, is obtained as follows:

$$
n_{2}= \begin{cases}q^{m-1}\left(q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=1, \tag{61}\\ q^{m-1}\left(q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=0, \\ 2 q^{m-1}\left(q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=1, \\ 2 q^{m-1}\left(q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=0, \\ 2 q^{2 m-2} & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and }\left\{\phi\left(\kappa_{i j k}\right), \phi\left(\kappa_{i j k}^{\prime}\right)\right\}=\{0,1\} .\end{cases}
$$

(b) Suppose $f\left(w, w^{\prime}\right)=0$, that is, W is a degenerate subspace of V. Notice that this occurs only if $m \geq 2$. In this case $\left\langle w, w^{\prime}\right\rangle$ is a subspace of W. Since $\operatorname{dim} W^{\perp} \cap K=2$ by Proposition 1.1.1 we have $W^{\perp} \cap K=\left\langle w, w^{\prime}\right\rangle$. Therefore there exist two elements ξ and η in \mathbb{F}_{q} such that

$$
w^{\prime \prime}=\xi w+\eta w^{\prime} .
$$

Let $x=\alpha v+\beta v^{\prime}+y+\gamma r$ be a vector in $U \cap K$, then it follows from (55) that

$$
0=\mu_{k} f\left(x, w^{\prime \prime}\right)=\beta \mu_{k} \xi+\alpha \mu_{k} \eta=\alpha\left(\mu_{j} \xi+\mu_{k} \eta\right)
$$

so that

$$
\begin{equation*}
w^{\prime \prime}=\mu_{k} \epsilon w+\mu_{j} \epsilon w^{\prime}, \tag{62}
\end{equation*}
$$

for some $\epsilon \in \mathbb{F}_{q}$.
Now suppose $(U, K) \in S_{i}$, then $Q\left(w^{\prime \prime}\right)$ must not be 0 , that is, $\mu_{j}^{2}+\mu_{k}^{2} \neq 0$. We may assume $Q\left(w^{\prime \prime}\right)=1$ so that

$$
\epsilon^{2}=\frac{1}{\mu_{j}^{2}+\mu_{k}^{2}} .
$$

If $(U, K) \in S_{i}$ then repeating the same argument as before we have

$$
\begin{equation*}
w=\mu_{i} \epsilon^{\prime} w^{\prime \prime}+\mu_{j} \epsilon^{\prime} w^{\prime} \tag{63}
\end{equation*}
$$

for some $\epsilon^{\prime} \in \mathbb{F}_{q}$. Then since it follows from (62) that

$$
w=\frac{1}{\mu_{k} \epsilon} w^{\prime \prime}+\frac{\mu_{j}}{\mu_{k}} w^{\prime},
$$

we have

$$
\epsilon=\frac{1}{\mu_{i}},
$$

so that

$$
\begin{equation*}
\mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \tag{64}
\end{equation*}
$$

Conversely, if (64) is satisfied, then from (12) we deduce $(U, K) \in S_{i}$. By Lemma 1.1.3(i) there are $q^{2 m-2}-1$ vectors w^{\prime} in H other than w such that $Q\left(w^{\prime}\right)=1$, hence the number n_{3} of elements K in Θ such that $(U, K) \in S_{i},(V, K) \in S_{j}$ and $W=U \cap V \cap K=H \cap K$ is a degenerate hyperplane of H, is given by

$$
n_{3}= \begin{cases}q^{2 m-2}-1 & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \tag{65}\\ 0 & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0\end{cases}
$$

From (54), (61) and (65), we obtain

$$
\begin{align*}
s_{i j}^{k} & =n_{1}+n_{2}+n_{3} \\
& = \begin{cases}q^{m-1}\left(2 q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=1, \\
q^{m-1}\left(2 q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=0, \\
2 q^{m-1}\left(q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=1, \\
2 q^{m-1}\left(q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=0, \\
2 q^{2 m-2} & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and }\left\{\phi\left(\kappa_{i j k}\right), \phi\left(\kappa_{i j k}^{\prime}\right)\right\}=\{0,1\},\end{cases} \tag{66}
\end{align*}
$$

for $i, j, k \in\left\{2,3, \ldots, \frac{q}{2}\right\}$.
Notice that we have computed all the intersection numbers of $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$, since if $m=1$ then $S_{1}=\emptyset$. Thus in what follows, we always assume $m \geq 2$.
(ii) Suppose $i=1$ and $2 \leq j, k \leq \frac{q}{2}$. Let U and V be elements in Θ such that $(U, V) \in S_{k}$. We use the same notation as in (i). Notice that if an element K in Θ satisfies $(U, K) \in S_{1}$ and $(V, K) \in S_{j}$, then $U \cap V \cap K=H \cap K$ has dimension $2 m-2$, since $U \cap K$ is degenerate by definition while H is non-degenerate.

In the same way as (i), fix a vector w^{\prime} in $V \backslash\langle w\rangle$ with $Q\left(w^{\prime}\right)=1$, and define two subspaces of V as

$$
\begin{aligned}
H^{\prime} & :=\left\langle w^{\prime}\right\rangle^{\perp} \cap V \\
W & :=H \cap H^{\prime}=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V .
\end{aligned}
$$

Let K be the unique element in Θ which satisfies $(V, K) \in S_{j}$ and $V \cap K=H^{\prime}$, and let $w^{\prime \prime}$ be a vector in $U \cap K$ such that $U \cap K=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap U=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap K$. Then $(U, K) \in S_{1}$ if and only if $Q\left(w^{\prime \prime}\right)=0$.
(a) Suppose $f\left(w, w^{\prime}\right) \neq 0$, that is, W is a non-degenerate subspace of V, then it follows from (57) that $(U, K) \in S_{1}$ if and only if

$$
\mu_{j}^{2} \mu_{k}^{2} f\left(w, w^{\prime}\right)^{2}+\mu_{j} \mu_{k} f\left(w, w^{\prime}\right)+\mu_{j}^{2}+\mu_{k}^{2}=0
$$

which is equivalent to

$$
\begin{equation*}
f\left(w, w^{\prime}\right)=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}\right), \text { or } f\left(w, w^{\prime}\right)=\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}+1\right), \tag{67}
\end{equation*}
$$

where as shown in the previous subsection (cf. (36)) we have

$$
\phi\left(\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}\right)\right)=\phi\left(\frac{1}{\mu_{j} \mu_{k}}\left(\lambda_{j}+\lambda_{k}+1\right)\right)=1 .
$$

It follows from (3) that the number of negative-type hyperplanes of H is given by

$$
\frac{q^{m-1}\left(q^{m-1}-1\right)}{2}
$$

Hence by Lemma 2.1.1 the number n_{2}^{\prime} of elements K in Θ such that $(U, K) \in S_{1},(V, K) \in S_{j}$ and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H, is obtained as

$$
n_{2}^{\prime}= \begin{cases}q^{m-1}\left(q^{m-1}-1\right) & \text { if } j=k, \tag{68}\\ 2 q^{m-1}\left(q^{m-1}-1\right) & \text { if } j \neq k,\end{cases}
$$

since n_{2}^{\prime} is equal to the number of vectors w^{\prime} in $V \backslash H$ with $Q\left(w^{\prime}\right)=1$ which satisfies (67).
(b) Suppose $f\left(w, w^{\prime}\right)=0$, that is, W is a degenerate subspace of V. Then it follows from (62) that $(U, K) \in S_{1}$ if and only if

$$
\mu_{j}^{2}+\mu_{k}^{2}=0
$$

that is, $j=k$. By Lemma 1.1.3(i), the number of vectors w^{\prime} in H other than w with $Q\left(w^{\prime}\right)=1$ is equal to $q^{2 m-2}-1$, from which it follows that the number n_{3}^{\prime} of elements K in Θ such that $(U, K) \in S_{1},(V, K) \in S_{j}$ and $W=U \cap V \cap K=H \cap K$ is a degenerate hyperplane of H, is given by

$$
n_{3}^{\prime}= \begin{cases}q^{2 m-2}-1 & \text { if } j=k \tag{69}\\ 0 & \text { if } j \neq k\end{cases}
$$

From (68) and (69), we obtain

$$
s_{1 j}^{k}=n_{2}^{\prime}+n_{3}^{\prime}= \begin{cases}\left(2 q^{m-1}+1\right)\left(q^{m-1}-1\right) & \text { if } j=k \tag{70}\\ 2 q^{m-1}\left(q^{m-1}-1\right) & \text { if } j \neq k\end{cases}
$$

(iii) Suppose $2 \leq i \leq \frac{q}{2}$ and $j=k=1$. Let U and V be elements in Θ such that $(U, V) \in S_{1}$, and let w denote a vector in $H:=U \cap V$ such that $Q(w)=0$ and

$$
U \cap V=\langle w\rangle^{\perp} \cap U=\langle w\rangle^{\perp} \cap V
$$

Notice that in this case w is not uniquely determined, and also notice that if an element K in Θ satisfies $(U, K) \in S_{i}$ and $(V, K) \in S_{1}$, then $U \cap V \cap K=H \cap K$ has dimension $2 m-2$, since $U \cap K$ is non-degenerate by definition while H is degenerate. Fix a vector w^{\prime} in $V \backslash\langle w\rangle$ with $Q\left(w^{\prime}\right)=0$, and define two subspaces of V as

$$
\begin{aligned}
H^{\prime} & :=\left\langle w^{\prime}\right\rangle^{\perp} \cap V, \\
W & :=H \cap H^{\prime}=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V .
\end{aligned}
$$

We determine whether there exists an element K in Θ such that $(U, K) \in S_{i},(V, K) \in S_{1}$ and $V \cap K=H^{\prime}$.
(a) Suppose $f\left(w, w^{\prime}\right) \neq 0$, that is, W is a non-degenerate hyperplane of H. Since $Q(w)=$ $Q\left(w^{\prime}\right)=0$, we may assume $f\left(w, w^{\prime}\right)=1$ without loss of generality. Define

$$
v_{\alpha}:=w+w^{\prime}+\alpha r
$$

for $\alpha \in \mathbb{F}_{q}^{*}$, then $K_{\alpha}:=H^{\prime} \oplus\left\langle v_{\alpha}\right\rangle\left(\alpha \in \mathbb{F}_{q}^{*}\right)$ are distinct elements in Θ with $K_{\alpha} \cap V=H^{\prime}$. In fact, since these hyperplanes of \mathbb{V} do not contain the vector r, they are non-degenerate. Moreover since W is negative-type and $H^{\prime}=W \perp\left\langle w^{\prime}\right\rangle$, we conclude that $K_{\alpha}=W \perp\left(W^{\perp} \cap K_{\alpha}\right)$ is negative-type for
all $\alpha \in \mathbb{F}_{q}^{*}$, and also it follows that they are distinct elements in Θ since we have $v_{\alpha}+v_{\beta}=(\alpha+\beta) r$ for $\alpha, \beta \in \mathbb{F}_{q}^{*}$. The number of hyperplanes K of \mathbb{V} which include H^{\prime} is given by $\frac{q^{2 m+1}-q^{2 m-1}}{q^{2 m}-q^{2 m-1}}=q+1$. In these $q+1$ hyperplanes of $\mathbb{V}, H^{\prime} \perp\langle r\rangle$ is the only degenerate hyperplane, that is, there are $q-1$ elements K in Θ such that $K \cap V=H^{\prime}$ and hence each K is written as $K=K_{\alpha}$ for some $\alpha \in \mathbb{F}_{q}^{*}$. By the same reason, there exists an element α_{0} in \mathbb{F}_{q}^{*} such that

$$
U=H \oplus\left\langle v_{\alpha_{0}}\right\rangle
$$

Fix an element α in \mathbb{F}_{q}^{*}, then since $\mathbb{V}=W \oplus\left\langle w, w^{\prime}\right\rangle \oplus\langle r\rangle$, any vector x in $U \cap K_{\alpha}$ is uniquely written as

$$
x=\xi w+\eta w^{\prime}+y+\delta r
$$

for some $\xi, \eta, \delta \in \mathbb{F}_{q}$ and $y \in W$. Then it follows from $U=H \oplus\left\langle v_{\alpha_{0}}\right\rangle$ and $K_{\alpha}=H^{\prime} \oplus\left\langle v_{\alpha}\right\rangle$ that

$$
\begin{equation*}
\delta=\xi \alpha=\eta \alpha_{0} \tag{71}
\end{equation*}
$$

Let $w^{\prime \prime}$ be a vector in $U \cap K_{\alpha}$ such that

$$
U \cap K_{\alpha}=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap U=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap K_{\alpha} .
$$

Since $W^{\perp}=\left\langle w, w^{\prime}, r\right\rangle$, it follows from (71) that

$$
\begin{equation*}
w^{\prime \prime}=\alpha_{0} \epsilon w+\alpha \epsilon w^{\prime}+\alpha_{0} \alpha \epsilon r, \tag{72}
\end{equation*}
$$

for an element $\epsilon \in \mathbb{F}_{q}$. Since $w^{\prime \prime} \neq 0$, we have $\epsilon \neq 0$.
Now suppose $\left(U, K_{\alpha}\right) \in S_{i}$, then $Q\left(w^{\prime \prime}\right)$ must not be 0 , so that

$$
\alpha_{0}^{2} \alpha^{2}+\alpha_{0} \alpha \neq 0
$$

which is equivalent to

$$
\alpha \neq \alpha_{0}^{-1}
$$

We may assume $Q\left(w^{\prime \prime}\right)=1$ so that

$$
\epsilon^{2}=\frac{1}{\alpha_{0}^{2} \alpha^{2}+\alpha_{0} \alpha} .
$$

Then we have

$$
\begin{equation*}
\frac{1}{\alpha \epsilon} w+\frac{1}{\alpha_{0} \epsilon} w^{\prime}=\frac{1}{\alpha_{0} \alpha \epsilon^{2}} w^{\prime \prime}+\frac{1}{\epsilon} r=\left(\alpha_{0} \alpha+1\right) w^{\prime \prime}+\frac{1}{\epsilon} r . \tag{73}
\end{equation*}
$$

From $f\left(w, w^{\prime \prime}\right)=\alpha \epsilon, f\left(w^{\prime}, w^{\prime \prime}\right)=\alpha_{0} \epsilon$ and $Q(w)=Q\left(w^{\prime}\right)=0$ it follows that

$$
\frac{\alpha_{0} \alpha+1}{\alpha_{0} \alpha}=\nu^{i-1} \quad \text { or } \quad \frac{\alpha_{0} \alpha+1}{\alpha_{0} \alpha}=\nu^{-(i-1)}
$$

or equivalently

$$
\begin{equation*}
\alpha_{0} \alpha=\lambda_{i} \quad \text { or } \quad \alpha_{0} \alpha=\lambda_{i}+1 \tag{74}
\end{equation*}
$$

Conversely if (74) is satisfied, then from (11) we deduce that $(U, K) \in S_{i}$. Therefore for each 1-dimensional singular subspace $\left\langle w^{\prime}\right\rangle$ in V such that $f\left(w, w^{\prime}\right) \neq 0$, there are exactly 2 elements K in Θ such that $(U, K) \in S_{i},(V, K) \in S_{1}$ and $V \cap K=H^{\prime}:=\left\langle w^{\prime}\right\rangle^{\perp} \cap V$. The number of vectors v in V such that $f(v, w) \neq 0$ is $q^{2 m}-q^{2 m-1}$, and hence the number of 2-dimensional positive-type subspaces of V which include $\langle w\rangle$ is by Proposition 1.1.2 equal to

$$
\begin{equation*}
\frac{q^{2 m}-q^{2 m-1}}{q^{2}-q}=q^{2 m-2}, \tag{75}
\end{equation*}
$$

which is also equal to the number of 1-dimensional singular subspace $\left\langle w^{\prime}\right\rangle$ in V such that $f\left(w, w^{\prime}\right) \neq$ 0 since any 2-dimensional positive-type subspace of \mathbb{V} contains two 1-dimensional singular subspaces. Thus the number m_{1} of elements K in Θ such that $(U, K) \in S_{i},(V, K) \in S_{1}$ and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H, is given by

$$
\begin{equation*}
m_{1}=2 q^{2 m-2} \tag{76}
\end{equation*}
$$

(b) Suppose $f\left(w, w^{\prime}\right)=0$, then $\left\langle w, w^{\prime}\right\rangle=W^{\perp} \cap V$ is a singular subspace of W. Hence if an element K in Θ satisfies $U \cap V \cap K=W$, then $U \cap K$ cannot be non-degenerate, since $(U \cap K)^{\perp} \cap K \subset W^{\perp} \cap K=\left\langle w, w^{\prime}\right\rangle$. This implies that there is no element K in Θ such that $(U, K) \in S_{i},(V, K) \in S_{1}$ and $W=U \cap V \cap K=H \cap K$ is a degenerate hyperplane of H.

Thus by (76)

$$
\begin{equation*}
s_{i 1}^{1}=m_{1}=2 q^{2 m-2} . \tag{77}
\end{equation*}
$$

(iv) Finally suppose $i=j=k=1$. Let U and V be elements in Θ such that $(U, V) \in S_{1}$. We use the same notation as in (iii). In the same way as (iii), fix a vector w^{\prime} in $V \backslash\langle w\rangle$ with $Q\left(w^{\prime}\right)=1$, and define two subspaces of V as

$$
\begin{aligned}
H^{\prime} & :=\left\langle w^{\prime}\right\rangle^{\perp} \cap V \\
W & :=H \cap H^{\prime}=\left\langle w, w^{\prime}\right\rangle^{\perp} \cap V .
\end{aligned}
$$

(a) Suppose $f\left(w, w^{\prime}\right) \neq 0$, that is, W is a non-degenerate hyperplane of H. We may assume $f\left(w, w^{\prime}\right)=1$ without loss of generality, since $Q(w)=Q\left(w^{\prime}\right)=0$. Define

$$
v_{\alpha}:=w+w^{\prime}+\alpha r
$$

for $\alpha \in \mathbb{F}_{q}^{*}$, then as mentioned before, $U=H \oplus\left\langle v_{\alpha_{0}}\right\rangle$ for some $\alpha_{0} \in \mathbb{F}_{q}^{*}$. Also $K_{\alpha}:=H^{\prime} \oplus\left\langle v_{\alpha}\right\rangle$ $\left(\alpha \in \mathbb{F}_{q}^{*}\right)$ are distinct elements in Θ with $K_{\alpha} \cap V=H^{\prime}$, and each element K in Θ such that $K \cap V=H^{\prime}$ is written as $K=K_{\alpha}$ for some $\alpha \in \mathbb{F}_{q}^{*}$.

Fix an element α in \mathbb{F}_{q}^{*} and let $w^{\prime \prime}$ be a vector in $U \cap K_{\alpha}$ such that $U \cap K_{\alpha}=\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap U=$ $\left\langle w^{\prime \prime}\right\rangle^{\perp} \cap K_{\alpha}$. Then $(U, K) \in S_{1}$ if and only if $Q\left(w^{\prime \prime}\right)=0$, which is by (72) equivalent to

$$
\alpha_{0}^{2} \alpha^{2}+\alpha_{0} \alpha=0,
$$

that is, $\alpha=\alpha_{0}^{-1}$. Therefore for each 1-dimensional singular subspace $\left\langle w^{\prime}\right\rangle$ in V such that $f\left(w, w^{\prime}\right) \neq$ 0 , there is exactly one element K in Θ such that $(U, K) \in S_{1},(V, K) \in S_{1}$ and $V \cap K=H^{\prime}:=$ $\left\langle w^{\prime}\right\rangle^{\perp} \cap V$. Hence it follows from (75) that the number m_{1}^{\prime} of elements K in Θ such that $(U, K) \in S_{1}$, $(V, K) \in S_{1}$ and $W=U \cap V \cap K=H \cap K$ is a non-degenerate hyperplane of H, is given by

$$
\begin{equation*}
m_{1}^{\prime}=q^{2 m-2} \tag{78}
\end{equation*}
$$

(b) Suppose $f\left(w, w^{\prime}\right)=0$, that is, W is a degenerate hyperplane of H. In this case any element K in Θ such that $U \cap V \cap K=W$ satisfies $(U, K) \in S_{1}$, since $(U \cap K)^{\perp} \cap K \subset W^{\perp} \cap K=\left\langle w, w^{\prime}\right\rangle$ and $\left\langle w, w^{\prime}\right\rangle$ is a singular subspace.

The number of singular vectors in H is given by

$$
\begin{equation*}
q^{m-1}+q^{m}\left(q^{m-2}-1\right) \tag{79}
\end{equation*}
$$

To show this, let W^{\prime} be a non-degenerate hyperplane of H so that we have $H=W^{\prime} \perp\langle w\rangle$. Since W^{\prime} is negative-type and $Q(w)=0$, it follows from Lemma 1.1.3(iii) that the number of singular vectors in H is equal to

$$
q\left\{q^{m-2}+q^{m-1}\left(q^{m-2}-1\right)\right\}=q^{m-1}+q^{m}\left(q^{m-2}-1\right)
$$

as desired. Thus by (79) the number m_{2}^{\prime} of elements K in Θ such that $(U, K) \in S_{1},(V, K) \in S_{1}$ and $W=U \cap V \cap K=H \cap K$ is a degenerate hyperplane of H, is given by

$$
\begin{equation*}
m_{2}^{\prime}=\frac{q^{m-1}+q^{m}\left(q^{m-2}-1\right)-q}{q-1}(q-1)=q^{m-1}+q^{m}\left(q^{m-2}-1\right)-q \tag{80}
\end{equation*}
$$

(c) We have to count the number m_{3}^{\prime} of the elements K in Θ such that $(U, K) \in S_{1},(V, K) \in S_{1}$ and $U \cap K=H$. Since there are exactly $\frac{q^{2 m+1}-q^{2 m-1}}{q^{2 m}-q^{2 m-1}}-1=q$ elements in Θ which include H, m_{3}^{\prime} is given by

$$
\begin{equation*}
m_{3}^{\prime}=q-2 \tag{81}
\end{equation*}
$$

From (78), (80) and (81) we obtain

$$
\begin{equation*}
s_{11}^{1}=m_{1}^{\prime}+m_{2}^{\prime}+m_{3}^{\prime}=q^{m-1}\left(2 q^{m-1}-q+1\right)-2 . \tag{82}
\end{equation*}
$$

The rest of parameters are directly computed from Proposition 2.1.2
From (77)

$$
\begin{equation*}
s_{11}^{k}=\frac{h_{1}}{h_{k}} s_{k 1}^{1}=2 q^{m-1}\left(q^{m-1}-1\right) \quad \text { for } 2 \leq k \leq \frac{q}{2} \tag{83}
\end{equation*}
$$

Also from (70)

$$
s_{i j}^{1}=\frac{h_{j}}{h_{1}} s_{1 i}^{j}= \begin{cases}q^{m-1}\left(2 q^{m-1}+1\right) & \text { if } 2 \leq i=j \leq \frac{q}{2} \tag{84}\\ 2 q^{2 m-2} & \text { if } 2 \leq i, j \leq \frac{q}{2} \text { and } i \neq j\end{cases}
$$

To summarize:
Lemma 2.2.1. The intersection numbers $s_{i j}^{k}$ of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta\right)$ are given as follows.

$$
\begin{aligned}
& s_{i j}^{1}=s_{j i}^{1}= \begin{cases}q^{m-1}\left(2 q^{m-1}-q+1\right)-2 & \text { if } i=j=1, \\
q^{m-1}\left(2 q^{m-1}+1\right) & \text { if } 2 \leq i=j \leq \frac{q}{2}, \\
2 q^{2 m-2} & \text { if } 1 \leq i<j \leq \frac{q}{2},\end{cases} \\
& s_{1 j}^{k}=s_{j 1}^{k}= \begin{cases}\left(2 q^{m-1}+1\right)\left(q^{m-1}-1\right) & \text { if } 2 \leq j=k \leq \frac{q}{2}, \\
2 q^{m-1}\left(q^{m-1}-1\right) & \text { if } 1 \leq j \leq \frac{q}{2}, 2 \leq k \leq \frac{q}{2}, j \neq k .\end{cases}
\end{aligned}
$$

For other $2 \leq i, j, k \leq \frac{q}{2}$,

$$
s_{i j}^{k}= \begin{cases}q^{m-1}\left(2 q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=1, \\ q^{m-1}\left(2 q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0 \text { and } \phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=0, \\ 2 q^{m-1}\left(q^{m-1}-1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=1, \\ 2 q^{m-1}\left(q^{m-1}+1\right) & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and } \phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=0, \\ 2 q^{2 m-2} & \text { if } \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0 \text { and }\left\{\phi\left(\kappa_{i j k}\right), \phi\left(\kappa_{i j k}^{\prime}\right)\right\}=\{0,1\} .\end{cases}
$$

3 Character Tables

3.1 The Character Tables of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$

In this subsection, we determine the character table of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ explicitly. Our account follows Bannai-Hao-Song [2, §6.] in all essential points. Namely, we prove that the character table of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ is controlled by that of $\mathfrak{X}\left(G O_{3}(q), \Omega_{3}(q)\right)$.

First of all, we prove the following lemma which shows the relation between the sets of parameters of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ and $\mathfrak{X}\left(G O_{3}(q), \Omega_{3}(q)\right)$:

Lemma 3.1.1. Let $\left\{a_{i j}^{k}\right\}$ denotes the set of the intersection numbers of $\mathfrak{X}\left(G O_{3}(q), \Omega_{3}(q)\right)$. Then

$$
\begin{aligned}
& p_{11}^{1}=2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1}\left(a_{11}^{1}+2\right)-2 \\
& p_{1 j}^{j}=p_{j 1}^{j}=2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1}\left(a_{1 j}^{j}+1\right)-1 \quad \text { for } 2 \leq j \leq \frac{q}{2},
\end{aligned}
$$

for other $1 \leq i, j, k \leq \frac{q}{2}$,

$$
p_{i j}^{k}=2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} a_{i j}^{k} .
$$

Proof. For $i=j=k=1$, from $a_{11}^{1}=q-1$ we have

$$
\begin{aligned}
p_{11}^{1} & =q^{m-1}\left(2 q^{m-1}+q-1\right)-2=2 q^{m-1}\left(q^{m-1}-1\right)+q^{m}+q^{m-1}-2 \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1}\left(a_{11}^{1}+2\right)-2
\end{aligned}
$$

For $2 \leq i=j \leq \frac{q}{2}$ and $k=1$, from $a_{i i}^{1}=1$ we have

$$
\begin{aligned}
p_{i i}^{1} & =q^{m-1}\left(2 q^{m-1}-1\right)=2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} a_{i i}^{1}
\end{aligned}
$$

For $1 \leq i<j \leq \frac{q}{2}$ and $k=1$, from $a_{i j}^{1}=a_{j i}^{1}=2$ we have

$$
\begin{aligned}
p_{i j}^{1}=p_{j i}^{1} & =2 q^{2 m-2}=2 q^{m-1}\left(q^{m-1}-1\right)+2 q^{m-1} \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} a_{i j}^{1}
\end{aligned}
$$

For $i=1$ and $2 \leq j=k \leq \frac{q}{2}$, from $a_{1 j}^{j}=a_{j 1}^{j}=2$ we have

$$
\begin{aligned}
p_{1 j}^{j}=p_{j 1}^{j} & =\left(2 q^{m-1}-1\right)\left(q^{m-1}+1\right)=2 q^{m-1}\left(q^{m-1}-1\right)+3 q^{m-1}-1 \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1}\left(a_{1 j}^{j}+1\right)-1
\end{aligned}
$$

For $i=1,1 \leq j \leq \frac{q}{2}, 2 \leq k \leq \frac{q}{2}$ and $j \neq k$, from $a_{1 j}^{k}=a_{j 1}^{k}=4$ we have

$$
\begin{aligned}
p_{1 j}^{k}=p_{j 1}^{k} & =2 q^{m-1}\left(q^{m-1}+1\right)=2 q^{m-1}\left(q^{m-1}-1\right)+4 q^{m-1} \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} a_{1 j}^{k} .
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0$ and $\phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=1$, from $a_{i j}^{k}=3$ we have

$$
\begin{aligned}
p_{i j}^{k} & =q^{m-1}\left(2 q^{m-1}+1\right)=2 q^{m-1}\left(q^{m-1}-1\right)+3 q^{m-1} \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} a_{i j}^{k} .
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0$ and $\phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=0$, from $a_{i j}^{k}=1$ we have

$$
\begin{aligned}
p_{i j}^{k} & =q^{m-1}\left(2 q^{m-1}-1\right)=2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} a_{i j}^{k} .
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0$ and $\phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=1$, from $a_{i j}^{k}=4$ we have

$$
\begin{aligned}
p_{i j}^{k} & =2 q^{m-1}\left(q^{m-1}+1\right)=2 q^{m-1}\left(q^{m-1}-1\right)+4 q^{m-1} \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} a_{i j}^{k} .
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0$ and $\phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=0$, from $a_{i j}^{k}=0$ we have

$$
\begin{aligned}
p_{i j}^{k} & =2 q^{m-1}\left(q^{m-1}-1\right) \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} a_{i j}^{k}
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0$ and $\left\{\phi\left(\kappa_{i j k}\right), \phi\left(\kappa_{i j k}^{\prime}\right)\right\}=\{0,1\}$, from $a_{i j}^{k}=2$ we have

$$
\begin{aligned}
p_{i j}^{k} & =2 q^{2 m-2}=2 q^{m-1}\left(q^{m-1}-1\right)+2 q^{m-1} \\
& =2 q^{m-1}\left(q^{m-1}-1\right)+q^{m-1} a_{i j}^{k} .
\end{aligned}
$$

This proves Lemma 3.1.1.

It is known that the character table $\tilde{P}^{+}=\left(\tilde{p}_{j}(i)\right)$ of $\mathfrak{X}\left(G O_{3}(q), \Omega_{3}(q)\right)$ is given as follows (cf. Tanaka [14]):

$$
\tilde{P}^{+}=\left[\begin{array}{ccccc}
1 & 2(q-1) & (q-1) & \ldots & (q-1) \tag{85}\\
1 & q-3 & -2 & \ldots & -2 \\
1 & -2 & & & \\
\vdots & \vdots & \left(\chi_{i j}\right)_{2 \leq i, j \leq \frac{q}{2}} \\
1 & -2 & &
\end{array}\right]
$$

for suitable $\chi_{i j} \in \mathbb{Q}(\theta)$ with $\theta=\exp \left(\frac{2 \pi i}{q-1}\right)$. The values of the entries $\chi_{i j}$ are slightly complicated. The explicit description of these values are given in [14].

Theorem 3.1.2. The character table $P^{+}=\left(p_{j}(i)\right)$ of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ is described as

$$
P^{+}=\left[\begin{array}{ccccc}
1 & \left(q^{m-1}+1\right)\left(q^{m}-1\right) & q^{m-1}\left(q^{m}-1\right) & \ldots & q^{m-1}\left(q^{m}-1\right) \\
1 & (q-2) q^{m-1}-1 & -2 q^{m-1} & \ldots & -2 q^{m-1} \\
1 & -\left(q^{m-1}+1\right) & & & \\
\vdots & \vdots & \left(q^{m-1} \chi_{i j}\right)_{2 \leq i, j \leq \frac{q}{2}} \\
1 & -\left(q^{m-1}+1\right) &
\end{array}\right]
$$

That is,

$$
\begin{aligned}
p_{0}(i) & =1 \quad \text { for } 0 \leq i \leq \frac{q}{2} \\
p_{j}(0) & =k_{j} \quad \text { for } 0 \leq j \leq \frac{q}{2} \\
p_{1}(i) & =q^{m-1} \tilde{p}_{1}(i)+q^{m-1}-1 \quad \text { for } 1 \leq i \leq \frac{q}{2} \\
p_{j}(i) & =q^{m-1} \tilde{p}_{j}(i) \quad \text { for } 1 \leq i \leq \frac{q}{2}, 2 \leq j \leq \frac{q}{2}
\end{aligned}
$$

Proof. The transposition of each row of the character table of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ is a common right eigenvector of the intersection matrices $B_{0}, B_{1}, \ldots, B_{\frac{q}{2}}$, where B_{i} is the matrix whose (j, k)-entry is $p_{i j}^{k}$ (cf. Bannai-Ito [4, p.91, Proposition 5.3.]). Thus, we have only to show that the following equality:

$$
B_{i}\left(\begin{array}{c}
p_{0}(l) \tag{86}\\
p_{1}(l) \\
\vdots \\
p_{\frac{q}{2}}(l)
\end{array}\right)=p_{i}(l)\left(\begin{array}{c}
p_{0}(l) \\
p_{1}(l) \\
\vdots \\
p_{\frac{q}{2}}(l)
\end{array}\right)
$$

for all i and l.
(i) Suppose first $i=j=1$ and $1 \leq l \leq \frac{q}{2}$, then using the equality (1) and Lemma 3.1.1 we see that

$$
\begin{array}{rlr}
\sum_{\alpha=0}^{\frac{q}{2}} p_{11}^{\alpha} p_{\alpha}(l)= & p_{11}^{0} p_{0}(l)+p_{11}^{1} p_{1}(l)+\sum_{\alpha=2}^{\frac{q}{2}} p_{11}^{\alpha} p_{\alpha}(l) \\
= & \left(q^{m-1}+1\right)\left(q^{m}-1\right) & \\
& +2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l)+q^{2 m-2} a_{11}^{1} \tilde{p}_{1}(l)+2 q^{m-1}\left(q^{m-1}-1\right) \tilde{p}_{1}(l) \\
& +\left\{q^{m-1}\left(2 q^{m-1}+q-1\right)-2\right\}\left(q^{m-1}-1\right) \\
& +2 q^{2 m-2}\left(q^{m-1}-1\right) \sum_{\alpha=0}^{\frac{q}{2}} \tilde{p}_{\alpha}(l)+q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} a_{11}^{\alpha} \tilde{p}_{\alpha}(l) & \\
& -2 q^{2 m-2}\left(q^{m-1}-1\right)-2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l) & \\
& -2 q^{2 m-2}(q-1)-q^{2 m-2} a_{11}^{1} \tilde{p}_{1}(l) & \text { by } a_{11}^{0}=2(q-1), \\
= & q^{2 m-2} \tilde{p}_{1}(l)^{2}+2 q^{m-1}\left(q^{m-1}-1\right) \tilde{p}_{1}(l)+\left(q^{m-1}-1\right)^{2} & \\
= & \left\{q^{m-1} \tilde{p}_{1}(l)+q^{m-1}-1\right\}^{2} &
\end{array}
$$

$$
=p_{1}(l)^{2}
$$

(ii) Suppose $i=1,1<j \leq \frac{q}{2}$ and $1 \leq l \leq \frac{q}{2}$, then

$$
\begin{aligned}
\sum_{\alpha=0}^{\frac{q}{2}} p_{1 j}^{\alpha} p_{\alpha}(l)= & p_{1 j}^{0} p_{0}(l)+p_{1 j}^{1} p_{1}(l)+p_{1 j}^{j} p_{j}(l)+\sum_{\substack{\alpha=2 \\
\alpha \neq j}}^{\frac{q}{2}} p_{1 j}^{\alpha} p_{\alpha}(l) \\
= & 2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l)+q^{2 m-2} a_{1 j}^{1} \tilde{p}_{1}(l)+2 q^{2 m-2}\left(q^{m-1}-1\right) \\
& +2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{j}(l)+q^{2 m-2} a_{1 j}^{j} \tilde{p}_{j}(l)+q^{m-1}\left(q^{m-1}-1\right) \tilde{p}_{j}(l) \\
& +2 q^{2 m-2}\left(q^{m-1}-1\right) \sum_{\alpha=0}^{\frac{q}{2}} \tilde{p}_{\alpha}(l)+q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} a_{1 j}^{\alpha} \tilde{p}_{\alpha}(l) \\
& -2 q^{2 m-2}\left(q^{m-1}-1\right)-2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l)-2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{j}(l) \\
& -q^{2 m-2} a_{1 j}^{0} \tilde{p}_{0}(l)-q^{2 m-2} a_{1 j}^{1} \tilde{p}_{1}(l)-q^{2 m-2} a_{1 j}^{j} \tilde{p}_{j}(l) \\
= & q^{2 m-2} \tilde{p}_{1}(l) \tilde{p}_{j}(l)+q^{m-1}\left(q^{m-1}-1\right) \tilde{p}_{j}(l) \\
= & \left\{q^{m-1} \tilde{p}_{1}(l)+q^{m-1}-1\right\} q^{m-1} \tilde{p}_{j}(l) \\
= & p_{1}(l) p_{j}(l) .
\end{aligned}
$$

(iii) Suppose $1<i \leq \frac{q}{2}, j=1$ and $1 \leq l \leq \frac{q}{2}$, then

$$
\begin{aligned}
\sum_{\alpha=0}^{\frac{q}{2}} p_{i 1}^{\alpha} p_{\alpha}(l)= & p_{i 1}^{0} p_{0}(l)+p_{i 1}^{1} p_{1}(l)+p_{i 1}^{i} p_{i}(l)+\sum_{\substack{\alpha=2 \\
\alpha \neq i}}^{\frac{q}{2}} p_{i 1}^{\alpha} p_{\alpha}(l) \\
= & 2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l)+q^{2 m-2} a_{i 1}^{1} \tilde{p}_{1}(l)+2 q^{2 m-2}\left(q^{m-1}-1\right) \\
& +2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{i}(l)+q^{2 m-2} a_{i 1}^{i} \tilde{p}_{i}(l)+q^{m-1}\left(q^{m-1}-1\right) \tilde{p}_{i}(l) \\
& +2 q^{2 m-2}\left(q^{m-1}-1\right) \sum_{\alpha=0}^{\frac{q}{2}} \tilde{p}_{\alpha}(l)+q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} a_{i 1}^{\alpha} \tilde{p}_{\alpha}(l) \\
& -2 q^{2 m-2}\left(q^{m-1}-1\right)-2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l)-2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{i}(l) \\
& -q^{2 m-2} a_{i 1}^{0} \tilde{p}_{0}(l)-q^{2 m-2} a_{i 1}^{1} \tilde{p}_{1}(l)-q^{2 m-2} a_{i 1}^{i} \tilde{p}_{i}(l) \\
= & q^{2 m-2} \tilde{p}_{i}(l) \tilde{p}_{1}(l)+q^{m-1}\left(q^{m-1}-1\right) \tilde{p}_{i}(l) \\
= & q^{m-1} \tilde{p}_{i}(l)\left\{q^{m-1} \tilde{p}_{1}(l)+q^{m-1}-1\right\} \\
= & p_{i}(l) p_{1}(l) .
\end{aligned}
$$

(iv) Suppose $1<i=j \leq \frac{q}{2}$ and $1 \leq l \leq \frac{q}{2}$, then

$$
\begin{array}{rlr}
\sum_{\alpha=0}^{\frac{q}{2}} p_{i i}^{\alpha} p_{\alpha}(l)= & p_{i i}^{0} p_{0}(l)+p_{i i}^{1} p_{1}(l)+\sum_{\alpha=2}^{\frac{q}{2}} p_{i i}^{\alpha} p_{\alpha}(l) \\
= & q^{m-1}\left(q^{m}-1\right) & \\
& +2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l)+q^{2 m-2} a_{i i}^{1} \tilde{p}_{1}(l)+q^{m-1}\left(2 q^{m-1}-1\right)\left(q^{m-1}-1\right) \\
& +2 q^{2 m-2}\left(q^{m-1}-1\right) \sum_{\alpha=0}^{\frac{q}{2}} \tilde{p}_{\alpha}(l)+q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} a_{i i}^{\alpha} \tilde{p}_{\alpha}(l) \\
& -2 q^{2 m-2}\left(q^{m-1}-1\right)-2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l) & \text { by } a_{i i}^{0}=q-1, \\
& -q^{2 m-2}(q-1)-q^{2 m-2} a_{i i}^{1} \tilde{p}_{1}(l) & \\
= & q^{2 m-2} \tilde{p}_{i}(l)^{2} \\
= & p_{i}(l)^{2} . &
\end{array}
$$

(v)Finally, suppose $1<i, j \leq \frac{q}{2}, i \neq j$ and $1 \leq l \leq \frac{q}{2}$, then

$$
\begin{aligned}
\sum_{\alpha=0}^{\frac{q}{2}} p_{i j}^{\alpha} p_{\alpha}(l)= & p_{i j}^{0} p_{0}(l)+p_{i j}^{1} p_{1}(l)+\sum_{\alpha=2}^{\frac{q}{2}} p_{i j}^{\alpha} p_{\alpha}(l) \\
= & 2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l)+q^{2 m-2} a_{i j}^{1} \tilde{p}_{1}(l)+2 q^{2 m-2}\left(q^{m-1}-1\right) \\
& +2 q^{2 m-2}\left(q^{m-1}-1\right) \sum_{\alpha=0}^{\frac{q}{2}} \tilde{p}_{\alpha}(l)+q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} a_{i j}^{\alpha} \tilde{p}_{\alpha}(l) \\
& -2 q^{2 m-2}\left(q^{m-1}-1\right)-2 q^{2 m-2}\left(q^{m-1}-1\right) \tilde{p}_{1}(l) \\
& -q^{2 m-2} a_{i j}^{0}-q^{2 m-2} a_{i j}^{1} \tilde{p}_{1}(l) \\
= & q^{2 m-2} \tilde{p}_{i}(l) \tilde{p}_{j}(l) \\
= & p_{i}(l) p_{j}(l) .
\end{aligned}
$$

This completes the proof of Theorem 3.1.2.

3.2 The Character Tables of $\mathfrak{X}\left(\mathcal{G O}_{2 m+1}(\boldsymbol{q}), \Theta_{2 m+1}(q)\right)$

We have shown that the character table of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ is essentially controlled by that of a smaller association scheme $\mathfrak{X}\left(G O_{3}(q), \Omega_{3}(q)\right)$, by the replacement $q \rightarrow q^{m-1}$. Although it is possible to calculate the character table of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ in the same way, we observe a similar kind of phenomenon which is called an Ennola type duality (cf. Bannai-Kwok-Song [6]), that is, we will show that the character table of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ is essentially obtained by that of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$, by the replacement $q \rightarrow-q$. Consequently it follows that the charactr table of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ is controlled by that of $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$.

The following lemma shows the relation between the parameters of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ and those of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ for $m \geq 2$, also the relation between the parameters of $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$ and those of $\mathfrak{X}\left(G O_{3}(q), \Omega_{3}(q)\right)$. (Notice that $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$ is of class $\frac{q}{2}-1$ while $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ is of class $\frac{q}{2}$ for $m \geq 2$.)
Lemma 3.2.1. Let $\left\{b_{i j}^{k}\right\}$ denotes the set of the intersection numbers of $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$. Then for $m \geq 2$

$$
\begin{aligned}
& s_{11}^{1}=4 q^{2 m-2}-p_{11}^{1}-4 \\
& s_{1 j}^{j}=s_{j 1}^{j}=4 q^{2 m-2}-p_{1 j}^{j}-2 \quad \text { for } 2 \leq j \leq \frac{q}{2}
\end{aligned}
$$

for other $1 \leq i, j, k \leq \frac{q}{2}$,

$$
s_{i j}^{k}=4 q^{2 m-2}-p_{i j}^{k} .
$$

Also

$$
b_{i j}^{k}=4-a_{i j}^{k},
$$

for $2 \leq i, j, k \leq \frac{q}{2}$.
Proof. For $i=j=k=1$, from $p_{11}^{1}=q^{m-1}\left(2 q^{m-1}+q-1\right)-2$ we have

$$
\begin{aligned}
s_{11}^{1} & =q^{m-1}\left(2 q^{m-1}-q+1\right)-2=4 q^{2 m-2}-q^{m-1}\left(2 q^{m-1}+q-1\right)-2 \\
& =4 q^{2 m-2}-p_{11}^{1}-4
\end{aligned}
$$

For $2 \leq i=j \leq \frac{q}{2}$ and $k=1$, from $p_{i i}^{1}=q^{m-1}\left(2 q^{m-1}-1\right)$ we have

$$
\begin{aligned}
s_{i i}^{1} & =q^{m-1}\left(2 q^{m-1}+1\right)=4 q^{2 m-2}-q^{m-1}\left(2 q^{m-1}-1\right) \\
& =4 q^{2 m-2}-p_{i i}^{1} .
\end{aligned}
$$

For $1 \leq i<j \leq \frac{q}{2}$ and $k=1$, from $p_{i j}^{1}=p_{j i}^{1}=2 q^{2 m-2}$ we have

$$
\begin{aligned}
s_{i j}^{1}=s_{j i}^{1} & =2 q^{2 m-2}=4 q^{2 m-2}-2 q^{2 m-2} \\
& =4 q^{2 m-2}-p_{i j}^{1}
\end{aligned}
$$

For $i=1$ and $2 \leq j=k \leq \frac{q}{2}$, from $p_{1 j}^{j}=p_{j 1}^{j}=\left(2 q^{m-1}-1\right)\left(q^{m-1}+1\right)$ we have

$$
\begin{aligned}
s_{1 j}^{j}=s_{j 1}^{j} & =\left(2 q^{m-1}+1\right)\left(q^{m-1}-1\right)=4 q^{2 m-2}-\left(2 q^{2 m-2}+q^{m-1}-1\right)-2 \\
& =4 q^{2 m-2}-p_{1 j}^{j}-2
\end{aligned}
$$

For $i=1,1 \leq j \leq \frac{q}{2}, 2 \leq k \leq \frac{q}{2}$ and $j \neq k$, from $p_{1 j}^{k}=p_{j 1}^{k}=2 q^{m-1}\left(q^{m-1}+1\right)$ we have

$$
\begin{aligned}
s_{1 j}^{k}=s_{j 1}^{k} & =2 q^{m-1}\left(q^{m-1}-1\right)=4 q^{2 m-2}-2 q^{m-1}\left(q^{m-1}+1\right) \\
& =4 q^{2 m-2}-p_{1 j}^{k}
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0$ and $\phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=1$, from $p_{i j}^{k}=q^{m-1}\left(2 q^{m-1}+1\right)$ we have

$$
\begin{aligned}
s_{i j}^{k} & =q^{m-1}\left(2 q^{m-1}-1\right)=4 q^{2 m-2}-q^{m-1}\left(2 q^{m-1}+1\right) \\
& =4 q^{2 m-2}-p_{i j}^{k} .
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2}=0$ and $\phi\left(\frac{1}{\mu_{j} \mu_{k}}\right)=0$, from $p_{i j}^{k}=q^{m-1}\left(2 q^{m-1}-1\right)$ we have

$$
\begin{aligned}
s_{i j}^{k} & =q^{m-1}\left(2 q^{m-1}+1\right)=4 q^{2 m-2}-q^{m-1}\left(2 q^{m-1}-1\right) \\
& =4 q^{2 m-2}-p_{i j}^{k}
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0$ and $\phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=1$, from $p_{i j}^{k}=2 q^{m-1}\left(q^{m-1}+1\right)$ we have

$$
\begin{aligned}
s_{i j}^{k} & =2 q^{m-1}\left(q^{m-1}-1\right)=4 q^{2 m-2}-2 q^{m-1}\left(q^{m-1}+1\right) \\
& =4 q^{2 m-2}-p_{i j}^{k} .
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0$ and $\phi\left(\kappa_{i j k}\right)=\phi\left(\kappa_{i j k}^{\prime}\right)=0$, from $p_{i j}^{k}=2 q^{m-1}\left(q^{m-1}-1\right)$ we have

$$
\begin{aligned}
s_{i j}^{k} & =2 q^{m-1}\left(q^{m-1}+1\right)=4 q^{2 m-2}-2 q^{m-1}\left(q^{m-1}-1\right) \\
& =4 q^{2 m-2}-p_{i j}^{k} .
\end{aligned}
$$

For $2 \leq i, j, k \leq \frac{q}{2}, \mu_{i}^{2}+\mu_{j}^{2}+\mu_{k}^{2} \neq 0$ and $\left\{\phi\left(\kappa_{i j k}\right), \phi\left(\kappa_{i j k}^{\prime}\right)\right\}=\{0,1\}$, from $p_{i j}^{k}=2 q^{2 m-2}$ we have

$$
\begin{aligned}
s_{i j}^{k} & =2 q^{2 m-2}=4 q^{2 m-2}-2 q^{2 m-2} \\
& =4 q^{2 m-2}-p_{i j}^{k}
\end{aligned}
$$

This proves Lemma 3.2.1.

Theorem 3.2.2. For $m \geq 2$, the character table $P^{-}=\left(s_{j}(i)\right)$ of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta\right)$ is described as

$$
P^{-}=\left[\begin{array}{ccccc}
1 & \left(q^{m-1}-1\right)\left(q^{m}+1\right) & q^{m-1}\left(q^{m}+1\right) & \ldots & q^{m-1}\left(q^{m}+1\right) \\
1 & -(q-2) q^{m-1}-1 & 2 q^{m-1} & \ldots & 2 q^{m-1} \\
1 & \left(q^{m-1}-1\right) & & & \\
\vdots & \vdots & \left(-q^{m-1} \chi_{i j}\right)_{2 \leq i, j \leq \frac{q}{2}} \\
1 & \left(q^{m-1}-1\right) & &
\end{array}\right]
$$

That is,

$$
\begin{aligned}
& s_{0}(i)=1 \quad \text { for } 0 \leq i \leq \frac{q}{2} \\
& s_{j}(0)=h_{j} \quad \text { for } 0 \leq j \leq \frac{q}{2} \\
& s_{1}(i)=-p_{1}(i)-2 \quad \text { for } 1 \leq i \leq \frac{q}{2} \\
& s_{j}(i)=-p_{j}(i) \quad \text { for } 1 \leq i \leq \frac{q}{2}, 2 \leq j \leq \frac{q}{2}
\end{aligned}
$$

Proof. In the same way as the proof of Theorem 3.1.2 we verify the following equality:

$$
\begin{equation*}
\sum_{\alpha=0}^{\frac{q}{2}} s_{i j}^{\alpha} s_{\alpha}(l)=s_{i}(l) s_{j}(l) \tag{87}
\end{equation*}
$$

for all $i, j, l \in\left\{0,1, \ldots, \frac{q}{2}\right\}$.
(i) Suppose first $i=j=1$ and $1 \leq l \leq \frac{q}{2}$, then using the equality (1) and Lemma 3.2.1 we see that

$$
\begin{array}{rlr}
\sum_{\alpha=0}^{\frac{q}{2}} s_{11}^{\alpha} s_{\alpha}(l)= & s_{11}^{0} s_{0}(l)+s_{11}^{1} s_{1}(l)+\sum_{\alpha=2}^{\frac{q}{2}} s_{11}^{\alpha} s_{\alpha}(l) \\
= & \left(q^{m-1}-1\right)\left(q^{m}+1\right) \\
& -4 q^{2 m-2} p_{1}(l)+p_{11}^{1} p_{1}(l)+4 p_{1}(l)-2\left\{q^{m-1}\left(2 q^{m-1}-q+1\right)-2\right\} \\
& -4 q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} p_{\alpha}(l)+\sum_{\alpha=0}^{\frac{q}{2}} p_{11}^{\alpha} p_{\alpha}(l) \\
& +4 q^{2 m-2}+4 q^{2 m-2} p_{1}(l) & \\
& -\left(q^{m-1}+1\right)\left(q^{m}-1\right)-p_{11}^{1} p_{1}(l) & \\
= & p_{1}(l)^{2}+4 p_{1}(l)+4 \\
= & \left(p_{1}(l)+2\right)^{2} \\
= & s_{1}(l)^{2}
\end{array}
$$

(ii) Suppose $i=1,1<j \leq \frac{q}{2}$ and $1 \leq l \leq \frac{q}{2}$, then

$$
\begin{aligned}
\sum_{\alpha=0}^{\frac{q}{2}} s_{1 j}^{\alpha} s_{\alpha}(l)= & s_{1 j}^{0} s_{0}(l)+s_{1 j}^{1} s_{1}(l)+s_{1 j}^{j} s_{j}(l)+\sum_{\substack{\alpha=2 \\
\alpha \neq j}}^{\frac{q}{2}} s_{1 j}^{\alpha} s_{\alpha}(l) \\
= & -4 q^{2 m-2} p_{1}(l)+p_{1 j}^{1} p_{1}(l)-4 q^{2 m-2} \\
& -4 q^{2 m-2} p_{j}(l)+p_{1 j}^{j} p_{j}(l)+2 p_{j}(l) \\
& -4 q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} p_{\alpha}(l)+\sum_{\alpha=0}^{\frac{q}{2}} p_{1 j}^{\alpha} p_{\alpha}(l) \\
& +4 q^{2 m-2}+4 q^{2 m-2} p_{1}(l)+4 q^{2 m-2} p_{j}(l) \\
& -p_{1 j}^{0} p_{0}(l)-p_{1 j}^{1} p_{1}(l)-p_{1 j}^{j} p_{j}(l) \\
= & p_{1}(l) p_{j}(l)+2 p_{j}(l) \\
= & \left(p_{1}(l)+2\right) p_{j}(l) \\
= & s_{1}(l) s_{j}(l)
\end{aligned}
$$

(iii) Suppose $1<i \leq \frac{q}{2}, j=1$ and $1 \leq l \leq \frac{q}{2}$, then

$$
\begin{aligned}
\sum_{\alpha=0}^{\frac{q}{2}} s_{i 1}^{\alpha} s_{\alpha}(l)= & s_{i 1}^{0} s_{0}(l)+s_{i 1}^{1} s_{1}(l)+s_{i 1}^{i} s_{i}(l)+\sum_{\substack{\alpha=2 \\
\alpha \neq i}}^{\frac{q}{2}} s_{i 1}^{\alpha} s_{\alpha}(l) \\
= & -4 q^{2 m-2} p_{1}(l)+p_{i 1}^{1} p_{1}(l)-4 q^{2 m-2} \\
& -4 q^{2 m-2} p_{i}(l)+p_{i 1}^{i} p_{i}(l)+2 p_{i}(l) \\
& -4 q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} p_{\alpha}(l)+\sum_{\alpha=0}^{\frac{q}{2}} p_{i 1}^{\alpha} p_{\alpha}(l)
\end{aligned}
$$

$$
\begin{aligned}
& +4 q^{2 m-2}+4 q^{2 m-2} p_{1}(l)+4 q^{2 m-2} p_{i}(l) \\
& -p_{i 1}^{0} p_{0}(l)-p_{i 1}^{1} p_{1}(l)-p_{i 1}^{i} p_{i}(l) \\
= & p_{i}(l) p_{1}(l)+2 p_{i}(l) \\
= & p_{i}(l)\left(p_{1}(l)+2\right) \\
= & s_{i}(l) s_{1}(l) .
\end{aligned}
$$

(iv) Suppose $1<i=j \leq \frac{q}{2}$ and $1 \leq l \leq \frac{q}{2}$, then

$$
\begin{array}{rlr}
\sum_{\alpha=0}^{\frac{q}{2}} s_{i i}^{\alpha} s_{\alpha}(l)= & s_{i i}^{0} s_{0}(l)+s_{i i}^{1} s_{1}(l)+\sum_{\alpha=2}^{\frac{q}{2}} s_{i i}^{\alpha} s_{\alpha}(l) \\
= & q^{m-1}\left(q^{m}+1\right) & \\
& -4 q^{2 m-2} p_{1}(l)+p_{i i}^{1} p_{1}(l)-2 q^{m-1}\left(2 q^{m-1}+1\right) \\
& -4 q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} p_{\alpha}(l)+\sum_{\alpha=0}^{\frac{q}{2}} p_{i i}^{\alpha} p_{\alpha}(l) & \\
& +4 q^{2 m-2}+4 q^{2 m-2} p_{1}(l) & \\
& -q^{m-1}\left(q^{m}-1\right)-p_{i i}^{1} p_{1}(l) & \text { by } p_{i i}^{0}=q^{m-1}\left(q^{m}-1\right), \\
= & p_{i}(l)^{2} & \\
= & s_{i}(l)^{2} &
\end{array}
$$

(v)Finally, suppose $1<i, j \leq \frac{q}{2}, i \neq j$ and $1 \leq l \leq \frac{q}{2}$, then

$$
\begin{aligned}
\sum_{\alpha=0}^{\frac{q}{2}} s_{i j}^{\alpha} s_{\alpha}(l)= & s_{i j}^{0} s_{0}(l)+s_{i j}^{1} s_{1}(l)+\sum_{\alpha=2}^{\frac{q}{2}} s_{i j}^{\alpha} s_{\alpha}(l) \\
= & -4 q^{2 m-2} p_{1}(l)+p_{i j}^{1} p_{1}(l)-4 q^{2 m-2} \\
& -4 q^{2 m-2} \sum_{\alpha=0}^{\frac{q}{2}} p_{\alpha}(l)+\sum_{\alpha=0}^{\frac{q}{2}} p_{i j}^{\alpha} p_{\alpha}(l) \\
& +4 q^{2 m-2}+4 q^{2 m-2} p_{1}(l) \\
& -p_{i j}^{0}-p_{i j}^{1} p_{1}(l) \\
= & p_{i}(l) p_{j}(l) \\
= & s_{i}(l) s_{j}(l)
\end{aligned}
$$

This completes the proof of Theorem 3.2.2,
It is known that the character table $\tilde{P}^{-}=\left(\tilde{s}_{j}(i)\right)$ of $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$ is described as follows (cf. Bannai-Kwok-Song [6, p.139, Remark 1.]):

$$
\tilde{P}^{-}=\left[\begin{array}{cccc}
1 & (q+1) & \ldots & (q+1) \tag{88}\\
1 & & \\
\vdots & \left(-\chi_{i j}\right)_{2 \leq i, j \leq \frac{q}{2}} \\
1 & &
\end{array}\right]
$$

Thus it follows from Theorem 3.2.2 that the character table of $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ is controlled by that of $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$, by replacing $q \rightarrow q^{m-1}$.

4 Subschemes

4.1 Subschemes of $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$

First of all, we prove the following theorem:

Theorem 4.1.1. $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$ is a subscheme of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Omega_{3}\left(q^{m}\right)\right)$.

The underlying vector space \mathbb{V} is decomposed as

$$
\mathbb{V}=\left\langle e_{11}, e_{21}\right\rangle \perp \ldots \perp\left\langle e_{1 m}, e_{2 m}\right\rangle \perp\langle r\rangle
$$

where $\left\{e_{1 i}, e_{2 i}\right\}(1 \leq i \leq m)$ are hyperbolic pairs and as usual $Q(r)=1$. Let

$$
U:=\left\langle e_{11}, e_{21}\right\rangle \perp \ldots \perp\left\langle e_{1 m}, e_{2 m}\right\rangle
$$

be an element in $\Omega_{2 m+1}(q)$, then $\left.f\right|_{U}$ is a non-degenerate alternating bilinear form on U. The symplectic group $S p_{2 m}(q)$ is the group of all elements of $G L_{2 m}(q)=G L(U)$ which preserve the non-degenerate alternating bilinear form $\left.f\right|_{U}$. More precisely,

$$
S p_{2 m}(q):=\left\{\tau \in G L(U)|f|_{U}(\tau(u), \tau(v))=\left.f\right|_{U}(u, v) \text { for all } u, v \in U\right\}
$$

It is well known that the orthogonal group $G O_{2 m+1}(q)$ is isomorphic to the symplectic group $S p_{2 m}(q)$ for even q, but we review this again in a form convenient for our purpose.

Let $E^{(1)}: \mathbb{V} \longrightarrow U, E^{(2)}: \mathbb{V} \longrightarrow\langle r\rangle$ be the orthogonal projections, and define a mapping $\Phi: G O_{2 m+1}(q) \longrightarrow S p_{2 m}(q)$ by

$$
\Phi(A):=\left.A^{(1)}\right|_{U}
$$

for $A \in G O_{2 m+1}(q)$, where

$$
A^{(i)}:=E^{(i)} A(i=1,2) .
$$

Then we have the following:
Proposition 4.1.2. The mapping $\Phi: G O_{2 m+1}(q) \longrightarrow S p_{2 m}(q)$ is well-defined. Moreover, Φ is an isomorphism of $G O_{2 m+1}(q)$ onto $\operatorname{Sp}_{2 m}(q)$.

Proof. Let A be an element in $G O_{2 m+1}(q)$. Then since A does not move the vector r we have $\left(A^{(1)}\right)^{-1}(0)=\langle r\rangle$, so that

$$
\left.\operatorname{rank} A^{(1)}\right|_{U}=\operatorname{dim} A^{(1)} U=\operatorname{dim} U-\operatorname{dim} U \cap\langle r\rangle=\operatorname{dim} U=2 m
$$

Thus $\Phi(A)$ is an element in $G L(U)$. Also since $A^{(2)} \mathbb{V}$ is equal to the radical $\langle r\rangle$ of f, we obtain

$$
f\left(A^{(1)} u, A^{(1)} v\right)=f\left(A^{(1)} u+A^{(2)} u, A^{(1)} v+A^{(2)} v\right)=f(A u, A v)=f(u, v)
$$

for all $u, v \in U$, which implies that $\Phi(A)$ belongs to $S p_{2 m}(q)$, namely, the mapping Φ is welldefined. This mapping Φ is also a homomorphism. To show this, let A and A^{\prime} be two elements in $G O_{2 m+1}(q)$. Then since $\left(E^{(1)} A E^{(2)} A^{\prime}\right) \mathbb{V}=E^{(1)}\langle r\rangle=0$, we have

$$
E^{(1)} A A^{\prime}=E^{(1)} A\left(E^{(1)}+E^{(2)}\right) A^{\prime}=E^{(1)} A E^{(1)} A^{\prime}+E^{(1)} A E^{(2)} A^{\prime}=E^{(1)} A E^{(1)} A^{\prime},
$$

so that $\Phi\left(A A^{\prime}\right)=\Phi(A) \Phi\left(A^{\prime}\right)$.
It remains to show that Φ is a bijection. Suppose $\Phi(A)=i d_{U}$. Then for any vector u in U we have

$$
Q(u)=Q(A u)=Q\left(u+A^{(2)} u\right)=Q(u)+Q\left(A^{(2)} u\right),
$$

from which it follows that $A^{(2)} u=0$, since otherwise $Q\left(A^{(2)} u\right)$ cannot be zero by $Q(r)=1$. Consequently $A u=u$ for all $u \in U$, that is $\left.A\right|_{U}=i d_{U}$. This implies $A=i d_{\mathbb{V}}$ since $\mathbb{V}=U \perp\langle r\rangle$. Thus Φ is injective. Finally let B be an element in $S p_{2 m}(q)$ and define an element A in $G L(\mathbb{V})$ by

$$
\begin{align*}
A e_{i j} & :=B e_{i j}+\sqrt{Q\left(B e_{i j}\right)} r, \quad \text { for } i=1,2 \text { and } 1 \leq j \leq m, \tag{89}\\
A r & :=r .
\end{align*}
$$

Then we have $Q\left(A e_{i j}\right)=0$ for $i=1,2$ and $1 \leq j \leq m$, and for any vector $v=\sum_{i, j} \xi_{i j} e_{i j}+\xi r$ in \mathbb{V} we have

$$
\begin{aligned}
Q(A v) & =\sum_{i, j, k, l} \xi_{i j} \xi_{k l} f\left(A e_{i j}, A e_{k l}\right)+\xi^{2} \\
& =\sum_{i, j, k, l} \xi_{i j} \xi_{k l} f\left(B e_{i j}, B e_{k l}\right)+\xi^{2} \\
& =\sum_{i, j, k, l} \xi_{i j} \xi_{k l} f\left(e_{i j}, e_{k l}\right)+\xi^{2} \\
& =Q(v),
\end{aligned}
$$

which implies that A is an element in $G O_{2 m+1}(q)$, and clearly we have $\Phi(A)=B$. Thus Φ is surjective. This completes the proof of Proposition 4.1.2,

Let L be the stabilizer of U in $G O_{2 m+1}(q)$, then L is isomorphic to $G O_{2 m}^{+}(q)$. From (89) we have the following:

Corollary 4.1.3. Let B be an element in $S p p_{2 m}(q)$. Then $\Phi^{-1}(B)$ is contained in L if and only if $Q\left(B e_{i j}\right)=0$ for all $i=1,2$ and $1 \leq j \leq m$.

Next, let \mathbb{V}_{0} be a 3-dimensional vector space over $\mathbb{F}_{q^{m}}$, and let $Q_{0}: \mathbb{V}_{0} \longrightarrow \mathbb{F}_{q^{m}}$ be a nondegenerate quadratic form on \mathbb{V}_{0} with associated alternating bilinear form $f_{0}: \mathbb{V}_{0} \times \mathbb{V}_{0} \longrightarrow \mathbb{F}_{q^{m}}$. Then \mathbb{V}_{0} is decomposed as

$$
\mathbb{V}_{0}=\left\langle e_{1}, e_{2}\right\rangle \perp\left\langle r_{0}\right\rangle
$$

where $\left\{e_{1}, e_{2}\right\}$ is a hyperbolic pair and $Q_{0}\left(r_{0}\right)=1$. Let

$$
U_{0}:=\left\langle e_{1}, e_{2}\right\rangle
$$

be an element in $\Omega_{3}\left(q^{m}\right)$, then $\left.f_{0}\right|_{U_{0}}$ is a non-degenerate alternating bilinear form on U_{0}. SeroussiLempel [13] proved that for even q there exists a trace-orthonormal basis $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$ of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}, that is,

$$
\begin{equation*}
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\omega_{i} \omega_{j}\right)=\delta_{i j} \tag{90}
\end{equation*}
$$

where $\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}: \mathbb{F}_{q^{m}} \longrightarrow \mathbb{F}_{q}$ is the trace map from $\mathbb{F}_{q^{m}}$ onto \mathbb{F}_{q}. Since U and U_{0} are both $2 m$ dimensional vector space over \mathbb{F}_{q}, we may identify $e_{i j}$ with $\omega_{j} e_{i}$ for $i=1,2$ and $1 \leq j \leq m$, and U with U_{0}. Under this identification, $G L_{2}\left(q^{m}\right)$ is naturally embedded in $G L_{2 m}(q)$.
Proposition 4.1.4. $S p_{2}\left(q^{m}\right)$ is a subgroup of $S p_{2 m}(q)$.
Proof. Let $u=\sum_{i, j} \xi_{i j} e_{i j}$ and $v=\sum_{i, j} \eta_{i j} e_{i j}$ be two vectors in U, and let $\xi_{i}:=\xi_{i 1} \omega_{1}+\cdots+\xi_{i m} \omega_{m}$ and $\eta_{i}:=\eta_{i 1} \omega_{1}+\cdots+\eta_{i m} \omega_{m}$ for $i=1,2$. Then by (90) we have

$$
\begin{aligned}
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left.f_{0}\right|_{U_{0}}(u, v)\right)= & \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left.f_{0}\right|_{U_{0}}\left(\xi_{1} e_{1}+\xi_{2} e_{2}, \eta_{1} e_{1}+\eta_{2} e_{2}\right)\right) \\
= & \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\xi_{1} \eta_{2}+\xi_{2} \eta_{1}\right) \\
= & \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left(\xi_{11} \omega_{1}+\cdots+\xi_{1 m} \omega_{m}\right)\left(\eta_{21} \omega_{1}+\cdots+\eta_{2 m} \omega_{m}\right)\right. \\
& \left.\quad+\left(\xi_{21} \omega_{1}+\cdots+\xi_{2 m} \omega_{m}\right)\left(\eta_{11} \omega_{1}+\cdots+\eta_{1 m} \omega_{m}\right)\right) \\
= & \xi_{11} \eta_{21}+\cdots+\xi_{1 m} \eta_{2 m}+\xi_{21} \eta_{11}+\cdots+\xi_{2 m} \eta_{1 m} \\
= & \left.f\right|_{U}(u, v) .
\end{aligned}
$$

Hence any element in $S p_{2}\left(q^{m}\right)$ also preserves the alternating form $\left.f\right|_{U}$, which proves Proposition 4.1.4

It follows immediately from Proposition 4.1.2 and Proposition4.1.4 that $G O_{3}\left(q^{m}\right)$ is a subgroup of $G O_{2 m+1}(q)$. Furthermore we have the following:

Proposition 4.1.5. Let L_{0} be the stabilizer of U_{0} in $G O_{3}\left(q^{m}\right)$, then $G O_{3}\left(q^{m}\right) \cap L=L_{0}$.

Proof. For any element $B_{0}=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ in $S p_{2}\left(q^{m}\right)$, let B be the corresponding element in $S p_{2 m}(q)$, that is, B is the mapping obtained by regarding B_{0} as a linear mapping over \mathbb{F}_{q}. Then for $1 \leq j \leq m$ we have

$$
\begin{aligned}
B e_{1 j} & =B_{0}\left(\omega_{j} e_{1}\right)=\alpha \omega_{j} e_{1}+\gamma \omega_{j} e_{2} \\
& =\alpha_{j 1} e_{11}+\cdots+\alpha_{j m} e_{1 m}+\gamma_{j 1} e_{21}+\cdots+\gamma_{j m} e_{2 m}
\end{aligned}
$$

where $\alpha \omega_{j}=\alpha_{j 1} \omega_{1}+\cdots+\alpha_{j m} \omega_{m}, \gamma \omega_{j}=\gamma_{j 1} \omega_{1}+\cdots+\gamma_{j m} \omega_{m}$ for some $\alpha_{j k}, \gamma_{j k} \in \mathbb{F}_{q}(1 \leq k \leq m)$, from which it follows that

$$
Q\left(B e_{1 j}\right)=\alpha_{j 1} \gamma_{j 1}+\cdots+\alpha_{j m} \gamma_{j m}=\operatorname{Tr}_{\mathbb{F}_{q} / / \mathbb{F}_{q}}\left(\alpha \gamma \omega_{j}^{2}\right)
$$

Similarly for $1 \leq j \leq m$ we have

$$
\begin{aligned}
B e_{2 j} & =B_{0}\left(\omega_{j} e_{2}\right)=\beta \omega_{j} e_{1}+\delta \omega_{j} e_{2} \\
& =\beta_{j 1} e_{11}+\cdots+\beta_{j m} e_{1 m}+\delta_{j 1} e_{21}+\cdots+\delta_{j m} e_{2 m}
\end{aligned}
$$

where $\beta \omega_{j}=\beta_{j 1} \omega_{1}+\cdots+\beta_{j m} \omega_{m}, \delta \omega_{j}=\delta_{j 1} \omega_{1}+\cdots+\delta_{j m} \omega_{m}$ for some $\beta_{j k}, \delta_{j k} \in \mathbb{F}_{q}(1 \leq k \leq m)$, from which it follows that

$$
Q\left(B e_{2 j}\right)=\beta_{j 1} \delta_{j 1}+\cdots+\beta_{j m} \delta_{j m}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\beta \delta \omega_{j}^{2}\right)
$$

If $\alpha \gamma=\beta \delta=0$ then clearly $\operatorname{Tr}_{\mathbb{F}_{q} m / \mathbb{F}_{q}}\left(\alpha \gamma \omega_{j}^{2}\right)=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\beta \delta \omega_{j}^{2}\right)=0$ for all $1 \leq j \leq m$. The converse is also true. To show this, suppose contrary. Since $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$ is a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}, so is $\left\{\omega_{1}^{2}, \omega_{2}^{2}, \ldots, \omega_{m}^{2}\right\}$. Thus it follows that for all $\xi \in \mathbb{F}_{q^{m}}$ we have $\operatorname{Tr}_{\mathbb{T}_{q^{m}} / \mathbb{F}_{q}}(\xi)=0$ since $\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}$ is a linear mapping, which is a contradiction. Therefore by Corollary 4.1.3, $\Phi^{-1}(B)$ is contained in L if and only if $\alpha \gamma=\beta \delta=0$. In the same way as before let $E_{0}^{(1)}: \mathbb{V}_{0} \longrightarrow U_{0}, E_{0}^{(2)}: \mathbb{V}_{0} \longrightarrow\left\langle r_{0}\right\rangle$ be the orthogonal projections, and define a mapping $\Phi_{0}: G O_{3}\left(q^{m}\right) \longrightarrow S p_{2}\left(q^{m}\right)$ by

$$
\Phi_{0}\left(A_{0}\right):=\left.A_{0}^{(1)}\right|_{U_{0}}
$$

for $A_{0} \in G O_{3}\left(q^{m}\right)$, where

$$
A_{0}^{(i)}:=E_{0}^{(i)} A_{0} \quad(i=1,2) .
$$

Since actually we chose m arbitrarily, it also follows that $\Phi_{0}^{-1}\left(B_{0}\right)$ is contained in L_{0} if and only if $\alpha \gamma=\beta \delta=0$, which proves Proposition 4.1.5,

Remark. As is in the proof of Proposition 4.1.5, $G O_{2}^{+}(q)$ is isomorphic to

$$
\left\{\left(\begin{array}{cc}
z & \\
& z^{-1}
\end{array}\right), \left.\left(\begin{array}{ll}
z^{-1} & z
\end{array}\right) \right\rvert\, z \in \mathbb{F}_{q}^{*}\right\}
$$

which is in turn isomorphic to the dihedral group $D_{2(q-1)}$ of order $2(q-1)$.
By Proposition 4.1.5 the containment relations among $G O_{2 m+1}(q), G O_{2 m}^{+}(q), G O_{3}\left(q^{m}\right)$ and $G O_{2}^{+}\left(q^{m}\right)$ are displayed in the following diagram:

$$
\begin{array}{ccc}
G O_{2 m+1}(q) & \supset & G O_{2 m}^{+}(q) \\
\cup & & \cup \\
G O_{3}\left(q^{m}\right) & \supset & G O_{2}^{+}\left(q^{m}\right)
\end{array}
$$

where $G O_{3}\left(q^{m}\right) \cap G O_{2 m}^{+}(q)=G O_{2}^{+}\left(q^{m}\right)$.
Proof of Theorem 4.1.1. It follows from the above diagram that each left coset of $G O_{2 m+1}(q)$ by $G O_{2 m}^{+}(q)$ contains at most one left coset of $G O_{3}\left(q^{m}\right)$ by $G O_{2}^{+}\left(q^{m}\right)$, since for any two elements A_{0}, A_{0}^{\prime} in $G O_{3}\left(q^{m}\right)$, we have $A_{0}^{-1} A_{0}^{\prime} \in G O_{2}^{+}\left(q^{m}\right)$ if and only if $A_{0}^{-1} A_{0}^{\prime} \in G O_{2 m}^{+}(q)$. Moreover from (2) it follows that

$$
\left|G O_{2 m+1}(q): G O_{2 m}^{+}(q)\right|=\left|G O_{3}\left(q^{m}\right): G O_{2}^{+}\left(q^{m}\right)\right|=\frac{q^{m}\left(q^{m}+1\right)}{2}
$$

so that each left coset of $G O_{2 m+1}(q)$ by $G O_{2 m}^{+}(q)$ contains exactly one left coset of $G O_{3}\left(q^{m}\right)$ by $G O_{2}^{+}\left(q^{m}\right)$. Therefore the action of $G O_{3}\left(q^{m}\right)$ on $G O_{2 m+1}(q) / G O_{2 m}^{+}(q)$ is equivalent to the action on $G O_{3}\left(q^{m}\right) / G O_{2}^{+}\left(q^{m}\right)$, which completes the proof of Theorem 4.1.1

From now on, we determine how to merge the relations of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Omega_{3}\left(q^{m}\right)\right)$ to get the subscheme $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$. We use the notation in the proof of Proposition 4.1.5, and also we mainly use the symbol " ~" to stand for $G O_{3}\left(q^{m}\right)$ case. Namely we let $\tilde{\nu}$ be a primitive element of $\mathbb{F}_{q^{m}}$, and define

$$
\tilde{\lambda}_{i}:=\frac{\tilde{\nu}^{i-1}}{1+\tilde{\nu}^{i-1}} \quad \text { for } 2 \leq i \leq \frac{q^{m}}{2}
$$

and

$$
\tilde{\mu}_{i}:=\sqrt{\tilde{\lambda}_{i}^{2}+\tilde{\lambda}_{i}} .
$$

Also we let $\left\{\tilde{R}_{i}\right\}_{0 \leq i \leq \frac{q^{m}}{2}}$ denotes the set of relations of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Omega_{3}\left(q^{m}\right)\right)$.
(i) Define a mapping $A_{0}: \mathbb{V}_{0} \longrightarrow \mathbb{V}_{0}$ by

$$
\begin{aligned}
& A_{0} e_{1}:=e_{1}+e_{2}+r_{0} \\
& A_{0} e_{2}:=e_{2} \\
& A_{0} r_{0}:=r_{0}
\end{aligned}
$$

Then we have $Q_{0}\left(A_{0} e_{1}\right)=Q_{0}\left(A_{0} e_{2}\right)=0$ and $f_{0}\left(A_{0} e_{1}, A_{0} e_{2}\right)=1$ so that A_{0} is an element in $G O_{3}\left(q^{m}\right)$. Let $V_{0}:=A_{0} U_{0} \in \Omega_{3}\left(q^{m}\right)$, then we have

$$
U_{0} \cap V_{0}=\left\langle e_{2}\right\rangle^{\perp} \cap U_{0}=\left\langle e_{2}\right\rangle^{\perp} \cap V_{0}
$$

from which it follows that $\left(U_{0}, V_{0}\right) \in \tilde{R}_{1}$. By definition, the mapping $B_{0}:=\Phi_{0}\left(A_{0}\right) \in S p_{2}\left(q^{m}\right)$ is defined by

$$
\begin{aligned}
& B_{0} e_{1}=e_{1}+e_{2} \\
& B_{0} e_{2}=e_{2}
\end{aligned}
$$

Let B denotes the element in $S p_{2 m}(q)$ corresponding to B_{0}, then B is given by

$$
\begin{aligned}
& B e_{1 j}=B_{0}\left(\omega_{j} e_{1}\right)=\omega_{j} e_{1}+\omega_{j} e_{2}=e_{1 j}+e_{2 j}, \\
& B e_{2 j}=B_{0}\left(\omega_{j} e_{2}\right)=\omega_{j} e_{2}=e_{2 j}
\end{aligned}
$$

Since $Q\left(B e_{1 j}\right)=1$ and $Q\left(B e_{2 j}\right)=0$, it follows from (89) that $A:=\Phi^{-1}(B)$ is obtained as

$$
\begin{aligned}
A e_{1 j} & =e_{1 j}^{\prime}:=e_{1 j}+e_{2 j}+r \quad \text { for } 1 \leq j \leq m, \\
A e_{2 j} & =e_{2 j}^{\prime}:=e_{2 j} \quad \text { for } 1 \leq j \leq m \\
A r & =r
\end{aligned}
$$

Let $V:=A U$ be an element in $\Omega_{2 m+1}(q)$, and define a vector w in $U \cap V$ by

$$
w:=e_{21}+e_{22}+\cdots+e_{2 m}=e_{21}^{\prime}+e_{22}^{\prime}+\cdots+e_{2 m}^{\prime}
$$

Then $w \neq 0$ and it follows that

$$
U \cap V=\langle w\rangle^{\perp} \cap U=\langle w\rangle^{\perp} \cap V
$$

To show this, let $y=\sum_{i, j} \xi_{i j} e_{i j}^{\prime}$ be a vector in V orthogonal to w, then the r-component of y with respect to the basis $\left\{e_{i j}\right\}_{i, j} \cup\{r\}$ is equal to

$$
\xi_{11}+\xi_{12}+\cdots+\xi_{1 m}=f(w, y)=0
$$

so that y belongs to $U \cap V$, as desired. Since $Q(w)=0$ we have $(U, V) \in R_{1}$. That is, the relation \tilde{R}_{1} is merged into the relation R_{1}.
(ii) Next, for $2 \leq l \leq \frac{q^{m}}{2}$ define a mapping $A_{0}: \mathbb{V}_{0} \longrightarrow \mathbb{V}_{0}$ by

$$
\begin{aligned}
& A_{0} e_{1}=e_{1}^{\prime}:=\left(\tilde{\lambda}_{l}+1\right) e_{1}+\tilde{\lambda}_{l} e_{2}+\tilde{\mu}_{l} r_{0} \\
& A_{0} e_{2}=e_{2}^{\prime}:=\tilde{\lambda}_{l} e_{1}+\left(\tilde{\lambda}_{l}+1\right) e_{2}+\tilde{\mu}_{l} r_{0} \\
& A_{0} r_{0}:=r_{0}
\end{aligned}
$$

Then we have $Q_{0}\left(e_{1}^{\prime}\right)=Q_{0}\left(e_{2}^{\prime}\right)=0$ and $f_{0}\left(e_{1}^{\prime}, e_{2}^{\prime}\right)=1$ so that A_{0} is an element in $G O_{3}\left(q^{m}\right)$. Let $V_{0}:=A_{0} U_{0} \in \Omega_{3}\left(q^{m}\right)$, and let $w_{0}:=e_{1}+e_{2}=e_{1}^{\prime}+e_{2}^{\prime}$ be a vector in $U_{0} \cap V_{0}$, then we have

$$
U_{0} \cap V_{0}=\left\langle w_{0}\right\rangle^{\perp} \cap U_{0}=\left\langle w_{0}\right\rangle^{\perp} \cap V_{0}
$$

Since $Q_{0}\left(w_{0}\right)=1, f_{0}\left(e_{1}, w_{0}\right)=f_{0}\left(e_{1}^{\prime}, w_{0}\right)=1$ and $e_{1}+e_{1}^{\prime}=\tilde{\lambda}_{l} w_{0}+\tilde{\mu}_{l} r_{0}$, it follows that $\left(U_{0}, V_{0}\right) \in$ \tilde{R}_{l}. The mapping $B_{0}:=\Phi_{0}\left(A_{0}\right) \in S p_{2}\left(q^{m}\right)$ is defined by

$$
\begin{aligned}
& B_{0} e_{1}=\left(\tilde{\lambda}_{l}+1\right) e_{1}+\tilde{\lambda}_{l} e_{2} \\
& B_{0} e_{2}=\tilde{\lambda}_{l} e_{1}+\left(\tilde{\lambda}_{l}+1\right) e_{2}
\end{aligned}
$$

Let

$$
\tilde{\lambda}_{l} \omega_{j}=\lambda_{l j 1} \omega_{1}+\cdots+\lambda_{l j m} \omega_{m} \quad \text { for } 1 \leq j \leq m,
$$

and

$$
\tilde{\mu}_{l}=\mu_{l 1} \omega_{1}+\cdots+\mu_{l m} \omega_{m}
$$

for some $\lambda_{l j k}, \mu_{l k} \in \mathbb{F}_{q}$. Notice that the coefficients $\lambda_{l j k}, \mu_{l k}$ are given by

$$
\begin{equation*}
\lambda_{l j k}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l} \omega_{j} \omega_{k}\right) \quad \text { and } \mu_{l k}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l} \omega_{k}\right) \tag{91}
\end{equation*}
$$

for $1 \leq j, k \leq m$. Let B be the element in $S p_{2 m}(q)$ corresponding to B_{0}. Then we have

$$
\begin{array}{rlr}
B e_{1 j} & =\left(\tilde{\lambda}_{l}+1\right) \omega_{j} e_{1}+\tilde{\lambda}_{l} \omega_{j} e_{2} \\
& =\lambda_{l j 1}\left(e_{11}+e_{21}\right)+\cdots+\lambda_{l j m}\left(e_{1 m}+e_{2 m}\right)+e_{1 j}, \quad \text { for } 1 \leq j \leq m \\
B e_{2 j} & =\tilde{\lambda}_{l} \omega_{j} e_{1}+\left(\tilde{\lambda}_{l}+1\right) \omega_{j} e_{2} \\
& =\lambda_{l j 1}\left(e_{11}+e_{21}\right)+\cdots+\lambda_{l j m}\left(e_{1 m}+e_{2 m}\right)+e_{2 j}, \quad \text { for } 1 \leq j \leq m
\end{array}
$$

Since from (91)

$$
\begin{aligned}
Q\left(B e_{1 j}\right)=Q\left(B e_{2 j}\right) & =\lambda_{l j 1}^{2}+\cdots+\lambda_{l j m}^{2}+\lambda_{l j j} \\
& =\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}^{2} \omega_{j}^{2}\right)+\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l} \omega_{j}^{2}\right) \\
& =\operatorname{Tr}_{\mathbb{F}_{q} m / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}^{2} \omega_{j}^{2}\right) \\
& =\mu_{l j}^{2},
\end{aligned}
$$

it follows from (89) that the mapping $A:=\Phi^{-1}(B) \in G O_{2 m+1}(q)$ is given by

$$
\begin{aligned}
A e_{1 j} & =e_{1 j}^{\prime}:=\lambda_{l j 1}\left(e_{11}+e_{21}\right)+\cdots+\lambda_{l j m}\left(e_{1 m}+e_{2 m}\right)+e_{1 j}+\mu_{l j} r, \quad \text { for } 1 \leq j \leq m, \\
A e_{2 j} & =e_{2 j}^{\prime}:=\lambda_{l j 1}\left(e_{11}+e_{21}\right)+\cdots+\lambda_{l j m}\left(e_{1 m}+e_{2 m}\right)+e_{2 j}+\mu_{l j} r, \quad \text { for } 1 \leq j \leq m, \\
A r & =r .
\end{aligned}
$$

Let $V:=A U$ be an element in $\Omega_{2 m+1}(q)$. Notice that since $\tilde{\mu}_{l} \neq 0$ the number of $\mu_{l j}$ equal to 0 is at most $m-1$. Define a vector w^{\prime} in $U \cap V$ by

$$
\begin{aligned}
w^{\prime}: & =\mu_{l 1}\left(e_{11}+e_{21}\right)+\cdots+\mu_{l m}\left(e_{1 m}+e_{2 m}\right) \\
& =\mu_{l 1}\left(e_{11}^{\prime}+e_{21}^{\prime}\right)+\cdots+\mu_{l m}\left(e_{1 m}^{\prime}+e_{2 m}^{\prime}\right)
\end{aligned}
$$

Then $w^{\prime} \neq 0$ and it follows that

$$
U \cap V=\left\langle w^{\prime}\right\rangle^{\perp} \cap U=\left\langle w^{\prime}\right\rangle^{\perp} \cap V
$$

To show this, let $y=\sum_{i, j} \xi_{i j} e_{i j}^{\prime}$ be a vector in V orthogonal to w^{\prime}, then the r-component of y with respect to the basis $\left\{e_{i j}\right\}_{i, j} \cup\{r\}$ is equal to

$$
\left(\xi_{11}+\xi_{21}\right) \mu_{l 1}+\cdots+\left(\xi_{1 m}+\xi_{2 m}\right) \mu_{l m}=f\left(w^{\prime}, y\right)=0
$$

so that y is contained in $U \cap V$, as desired. Also we have

$$
\begin{equation*}
Q\left(w^{\prime}\right)=\mu_{l 1}^{2}+\cdots+\mu_{l m}^{2}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}^{2}\right) \tag{92}
\end{equation*}
$$

from which it follows that $(U, V) \in R_{1}$ if and only if

$$
\begin{equation*}
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}^{2}\right)=0 \tag{93}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)=0 \quad \text { or } \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)=1 \tag{94}
\end{equation*}
$$

Suppose $\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}^{2}\right) \neq 0$, so that $(U, V) \notin R_{1}$. Let

$$
\frac{\tilde{\mu}_{l}}{\tilde{\lambda}_{l}}=\chi_{l 1} \omega_{1}+\cdots+\chi_{l m} \omega_{m}
$$

for $\chi_{l k} \in \mathbb{F}_{q}(1 \leq k \leq m)$, that is,

$$
\chi_{l k}=\operatorname{Tr}_{\mathbb{F}_{q} m / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l}}{\tilde{\lambda}_{l}} \omega_{k}\right) \quad(1 \leq k \leq m)
$$

and define two vector $u^{\prime} \in U$ and $v^{\prime} \in V$ by

$$
\begin{aligned}
u^{\prime} & :=\chi_{l 1} e_{11}+\cdots+\chi_{l m} e_{1 m}, \\
v^{\prime} & :=\chi_{l 1} e_{11}^{\prime}+\cdots+\chi_{l m} e_{1 m}^{\prime} .
\end{aligned}
$$

Then we have $Q\left(u^{\prime}\right)=Q\left(v^{\prime}\right)=0$, and

$$
\begin{aligned}
u^{\prime}+v^{\prime} & =\chi_{l 1}\left(e_{11}+e_{11}^{\prime}\right)+\cdots+\chi_{l m}\left(e_{1 m}+e_{1 m}^{\prime}\right) \\
& =\sum_{j=1}^{m} \chi_{l j}\left(\sum_{k=1}^{m} \lambda_{l j k}\left(e_{1 k}+e_{2 k}\right)+\mu_{l j} r\right) \\
& =\sum_{k=1}^{m}\left(\sum_{j=1}^{m} \chi_{l j} \lambda_{l j k}\right)\left(e_{1 k}+e_{2 k}\right)+\left(\sum_{j=1}^{m} \chi_{l j} \mu_{l j}\right) r .
\end{aligned}
$$

Now it follows from (91) that

$$
\sum_{j=1}^{m} \chi_{l j} \lambda_{l j k}=\sum_{j=1}^{m} \chi_{l j} \lambda_{l k j}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l}}{\tilde{\lambda}_{l}} \tilde{\lambda}_{l} \omega_{k}\right)=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l} \omega_{k}\right)=\mu_{l k}
$$

for $1 \leq k \leq m$. Also

$$
\begin{equation*}
\sum_{j=1}^{m} \chi_{l j} \mu_{l j}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l}}{\tilde{\lambda}_{l}} \tilde{\mu}_{l}\right)=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right) . \tag{95}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
u^{\prime}+v^{\prime} & =\sum_{k=1}^{m} \mu_{l k}\left(e_{1 k}+e_{2 k}\right)+\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)\right) r \\
& =w^{\prime}+\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)\right) r, \tag{96}
\end{align*}
$$

so that

$$
\begin{equation*}
U=\left\langle u^{\prime}, w^{\prime}\right\rangle \perp W, \quad V=\left\langle v^{\prime}, w^{\prime}\right\rangle \perp W, \tag{97}
\end{equation*}
$$

where $W:=\left\langle u^{\prime}, w^{\prime}\right\rangle^{\perp} \cap U \subset U \cap V$. It also follows from (95) and (96) that

$$
\begin{equation*}
f\left(u^{\prime}, v^{\prime}\right)=f\left(u^{\prime}, w^{\prime}\right)=f\left(v^{\prime}, w^{\prime}\right)=\sum_{j=1}^{m} \chi_{l j} \mu_{l j}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right) \tag{98}
\end{equation*}
$$

Here $\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right) \neq 0$ by assumption. Define

$$
w:=\frac{1}{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}\right)} w^{\prime}
$$

and

$$
u:=\frac{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}\right)}{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)} u^{\prime}, \quad v:=\frac{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}\right)}{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)} v^{\prime}
$$

Then $Q(u)=Q(v)=0$, and it follows from (92), (98), (97) that $Q(w)=1, f(u, w)=f(v, w)=1$, and

$$
U=\langle u, w\rangle \perp W, \quad V=\langle v, w\rangle \perp W .
$$

Also by (98) we have

$$
\begin{aligned}
& f(u, v)\left.=\frac{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}^{2}\right)}{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)}=\frac{\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)\right)\left(\operatorname{Tr}_{\mathbb{F}_{q} m} / \mathbb{F}_{q}\right.}{}\left(\tilde{\lambda}_{l}\right)+1\right) \\
& \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right) \\
&= \begin{cases}\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right) & \text { if } m: \text { odd, } \\
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)+1 & \text { if } m: \text { even } .\end{cases}
\end{aligned}
$$

Thus (U, V) belongs to R_{k} for some $k \in\left\{2,3, \ldots, \frac{q}{2}\right\}$ such that

$$
\begin{equation*}
\lambda_{k}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right), \quad \text { or } \lambda_{k}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)+1, \tag{99}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\mu_{k}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}\right) . \tag{100}
\end{equation*}
$$

To summarize we have the following:
Proposition 4.1.6. Define $\left(\frac{q}{2}-1\right)$ relations $R_{1}, R_{2}, \ldots, R_{\frac{q}{2}}$ on $\Omega_{3}\left(q^{m}\right)$ by

$$
R_{j}:=\bigcup_{i \in \Xi_{j}} \tilde{R}_{i} \quad\left(1 \leq j \leq \frac{q}{2}\right)
$$

where

$$
\begin{aligned}
& \Xi_{1}:=\left\{\left.i \in\left\{2,3, \ldots, \frac{q}{2}\right\} \right\rvert\, \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{i}\right)=0\right\} \cup\{1\}, \\
& \Xi_{j}:=\left\{\left.i \in\left\{2,3, \ldots, \frac{q}{2}\right\} \right\rvert\, \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{i}\right)=\mu_{j}\right\} \quad\left(2 \leq j \leq \frac{q}{2}\right) .
\end{aligned}
$$

Then these $\left(\frac{q}{2}-1\right)$ relations, together with $R_{0}:=\tilde{R}_{0}$, form the subscheme of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Omega_{3}\left(q^{m}\right)\right)$ isomorphic to $\mathfrak{X}\left(G O_{2 m+1}(q), \Omega_{2 m+1}(q)\right)$.

Corollary 4.1.7. $\mathfrak{X}\left(G O_{2 n+1}(q), \Omega_{2 n+1}(q)\right)$ is a subscheme of $\mathfrak{X}\left(G O_{2 m+1}\left(q^{\frac{n}{m}}\right), \Omega_{2 m+1}\left(q^{\frac{n}{m}}\right)\right)$ whenever m devides n.

Proof. This is an immediate consequence of Proposition 4.1.6 and Lemma 4.1.8 below (cf. LidlNiederreiter [10, p.56, Theorem 2.26]). In fact, these two association schemes are both subschemes of $\mathfrak{X}\left(G O_{3}\left(q^{n}\right), \Omega_{3}\left(q^{n}\right)\right)$ by Theorem 4.1.1,

Lemma 4.1.8. If m devides n, then

$$
\operatorname{Tr}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}} \circ \operatorname{Tr}_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q^{m}}} .
$$

4.2 Subschemes of $\mathfrak{X}\left({G O_{2 m+1}}^{(q)}, \Theta_{2 m+1}(q)\right)$

First of all, we prove the following theorem.
Theorem 4.2.1. $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ is a subscheme of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Theta_{3}\left(q^{m}\right)\right)$.

Let $t^{2}+t+\pi$ be an irreducible polynomial over \mathbb{F}_{q}. Then the underlying vector space \mathbb{V} is decomposed as

$$
\mathbb{V}=\left\langle e_{11}, e_{21}\right\rangle \perp \ldots \perp\left\langle e_{1 m}, e_{2 m}\right\rangle \perp\langle r\rangle
$$

where $\left\{e_{1 i}, e_{2 i}\right\}(1 \leq i \leq m-1)$ are hyperbolic pairs, $Q\left(e_{1 m}\right)=1, Q\left(e_{2 m}\right)=\pi, f\left(e_{1 m}, e_{2 m}\right)=1$ and as usual $Q(r)=1$. Let

$$
U:=\left\langle e_{11}, e_{21}\right\rangle \perp \ldots \perp\left\langle e_{1 m}, e_{2 m}\right\rangle
$$

be an element in $\Theta_{2 m+1}(q)$, then $\left.f\right|_{U}$ is a non-degenerate alternating bilinear form on U. This time, we consider the symplectic group $S p_{2 m}(q)$ with respect to $\left.f\right|_{U}$, that is,

$$
S p_{2 m}(q):=\left\{\tau \in G L(U)|f|_{U}(\tau(u), \tau(v))=\left.f\right|_{U}(u, v) \text { for all } u, v \in U\right\}
$$

Let $E^{(1)}: \mathbb{V} \longrightarrow U, E^{(2)}: \mathbb{V} \longrightarrow\langle r\rangle$ be the orthogonal projections, and define a mapping $\Psi: G O_{2 m+1}(q) \longrightarrow S p_{2 m}(q)$ by

$$
\Psi(A):=\left.A^{(1)}\right|_{U}
$$

for $A \in G O_{2 m+1}(q)$, where

$$
A^{(i)}:=E^{(i)} A(i=1,2) .
$$

Then we have the following:
Proposition 4.2.2. The mapping $\Psi: G O_{2 m+1}(q) \longrightarrow S p_{2 m}(q)$ is well-defined. Moreover, Ψ is an isomorphism of $G O_{2 m+1}(q)$ onto $S p_{2 m}(q)$.

Proof. Let A be an element in $G O_{2 m+1}(q)$. Then since A does not move the vector r we have $\left(A^{(1)}\right)^{-1}(0)=\langle r\rangle$, so that

$$
\left.\operatorname{rank} A^{(1)}\right|_{U}=\operatorname{dim} A^{(1)} U=\operatorname{dim} U-\operatorname{dim} U \cap\langle r\rangle=\operatorname{dim} U=2 m
$$

Thus $\Psi(A)$ is an element in $G L(U)$. Also since $A^{(2)} \mathbb{V}$ is equal to the radical $\langle r\rangle$ of f, we obtain

$$
f\left(A^{(1)} u, A^{(1)} v\right)=f\left(A^{(1)} u+A^{(2)} u, A^{(1)} v+A^{(2)} v\right)=f(A u, A v)=f(u, v)
$$

for all $u, v \in U$, which implies that $\Psi(A)$ belongs to $S p_{2 m}(q)$, namely, the mapping Ψ is welldefined. This mapping Ψ is also a homomorphism. To show this, let A and A^{\prime} be two elements in $G O_{2 m+1}(q)$. Then since $\left(E^{(1)} A E^{(2)} A^{\prime}\right) \mathbb{V}=E^{(1)}\langle r\rangle=0$, we have

$$
E^{(1)} A A^{\prime}=E^{(1)} A\left(E^{(1)}+E^{(2)}\right) A^{\prime}=E^{(1)} A E^{(1)} A^{\prime}+E^{(1)} A E^{(2)} A^{\prime}=E^{(1)} A E^{(1)} A^{\prime},
$$

so that $\Psi\left(A A^{\prime}\right)=\Psi(A) \Psi\left(A^{\prime}\right)$.
It remains to show that Ψ is a bijection. Suppose $\Psi(A)=i d_{U}$. Then for any vector u in U we have

$$
Q(u)=Q(A u)=Q\left(u+A^{(2)} u\right)=Q(u)+Q\left(A^{(2)} u\right)
$$

from which it follows that $A^{(2)} u=0$, since otherwise $Q\left(A^{(2)} u\right)$ cannot be zero by $Q(r)=1$. Consequently $A u=u$ for all $u \in U$, that is $\left.A\right|_{U}=i d_{U}$. This implies $A=i d_{\mathbb{V}}$ since $\mathbb{V}=U \perp\langle r\rangle$. Thus Ψ is injective. Finally let B be an element in $S p_{2 m}(q)$ and define an element A in $G L(\mathbb{V})$ by

$$
\begin{align*}
A e_{i j} & :=B e_{i j}+\sqrt{Q\left(B e_{i j}\right)} r, \quad \text { for } i=1,2 \text { and } 1 \leq j \leq m-1, \\
A e_{1 m} & :=B e_{1 m}+\left(\sqrt{Q\left(B e_{1 m}\right)}+1\right) r, \tag{101}\\
A e_{2 m} & :=B e_{2 m}+\left(\sqrt{Q\left(B e_{2 m}\right)}+\sqrt{\pi}\right) r, \\
A r & :=r .
\end{align*}
$$

Then we have $Q\left(A e_{i j}\right)=0$ for $i=1,2$ and $1 \leq j \leq m-1, Q\left(A e_{1 m}\right)=1, Q\left(A e_{2 m}\right)=\pi$ and for any vector $v=\sum_{i, j} \xi_{i j} e_{i j}+\xi r$ in \mathbb{V} we have

$$
\begin{aligned}
Q(A v) & =\sum_{i, j, k, l} \xi_{i j} \xi_{k l} f\left(A e_{i j}, A e_{k l}\right)+\xi_{1 m}^{2}+\pi \xi_{2 m}^{2}+\xi^{2} \\
& =\sum_{i, j, k, l} \xi_{i j} \xi_{k l} f\left(B e_{i j}, B e_{k l}\right)+\xi_{1 m}^{2}+\pi \xi_{2 m}^{2}+\xi^{2} \\
& =\sum_{i, j, k, l} \xi_{i j} \xi_{k l} f\left(e_{i j}, e_{k l}\right)+\xi_{1 m}^{2}+\pi \xi_{2 m}^{2}+\xi^{2} \\
& =Q(v),
\end{aligned}
$$

which implies that A is an element in $G O_{2 m+1}(q)$, and clearly we have $\Psi(A)=B$. Thus Ψ is surjective. This completes the proof of Proposition 4.2.2,

Let L be the stabilizer of U in $G O_{2 m+1}(q)$, then L is isomorphic to $G O_{2 m}^{-}(q)$. From (101) we have the following:

Corollary 4.2.3. Let B be an element in $S p_{2 m}(q)$. Then $\Psi^{-1}(B)$ is contained in L if and only if $Q\left(B e_{i j}\right)=0$ for all $i=1,2$ and $1 \leq j \leq m-1, Q\left(B e_{1 m}\right)=1$ and $Q\left(B e_{2 m}\right)=\pi$.

Next, let \mathbb{V}_{0} be a 3 -dimensional vector space over $\mathbb{F}_{q^{m}}$, and let $Q_{0}: \mathbb{V}_{0} \longrightarrow \mathbb{F}_{q^{m}}$ be a nondegenerate quadratic form on \mathbb{V}_{0} with associated alternating bilinear form $f_{0}: \mathbb{V}_{0} \times \mathbb{V}_{0} \longrightarrow \mathbb{F}_{q^{m}}$. As mentioned before, there exists a trace-orthonormal basis $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$ of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}, that is,

$$
\begin{equation*}
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\omega_{i} \omega_{j}\right)=\delta_{i j} \tag{102}
\end{equation*}
$$

where $\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}: \mathbb{F}_{q^{m}} \longrightarrow \mathbb{F}_{q}$ is the trace map from $\mathbb{F}_{q^{m}}$ onto \mathbb{F}_{q} (cf. (90)). Then the polynomial $\omega_{m}^{2} t^{2}+t+\pi \omega_{m}^{2} \in \mathbb{F}_{q^{m}}[t]$ is irreducible over $\mathbb{F}_{q^{m}}$. In order to show this, we make use of the following lemma (cf. Lidl-Niederreiter [10, p.56, Theorem 2.25]):

Lemma 4.2.4. A polynomial $t^{2}+t+\alpha$ in $\mathbb{F}_{q}[t]$ is irreducible over \mathbb{F}_{q} if and only if $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}(\alpha)=1$.
Since $t^{2}+t+\pi$ is irreducible over \mathbb{F}_{q}, it follows from Lemma 4.1.8 that

$$
\begin{aligned}
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{2}}\left(\pi \omega_{m}^{4}\right) & =\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\pi \omega_{m}^{4}\right)\right) \\
& =\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}\left(\pi\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\omega_{m}^{2}\right)\right)^{2}\right) \\
& =\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}(\pi) \\
& =1,
\end{aligned}
$$

so that $\left(t^{\prime}\right)^{2}+t^{\prime}+\pi \omega_{m}^{4} \in \mathbb{F}_{q^{m}}\left[t^{\prime}\right]$ is an irreducible polynomial over $\mathbb{F}_{q^{m}}$. By putting $t^{\prime}:=\omega_{m}^{2} t$, this also implies that $\omega_{m}^{2} t^{2}+t+\pi \omega_{m}^{2} \in \mathbb{F}_{q^{m}}[t]$ is irreducible over $\mathbb{F}_{q^{m}}$, as desired.

Therefore \mathbb{V}_{0} is decomposed as

$$
\mathbb{V}_{0}=\left\langle e_{1}, e_{2}\right\rangle \perp\left\langle r_{0}\right\rangle
$$

where $Q_{0}\left(e_{1}\right)=\omega_{m}^{2}, Q_{0}\left(e_{2}\right)=\pi \omega_{m}^{2}, f_{0}\left(e_{1}, e_{2}\right)=1$ and $Q_{0}\left(r_{0}\right)=1$. Let

$$
U_{0}:=\left\langle e_{1}, e_{2}\right\rangle
$$

be an element in $\Theta_{3}\left(q^{m}\right)$, then $\left.f_{0}\right|_{U_{0}}$ is a non-degenerate alternating bilinear form on U_{0}. Since U and U_{0} are both $2 m$-dimensional vector space over \mathbb{F}_{q}, we may identify $e_{i j}$ with $\omega_{j} e_{i}$ for $i=1,2$ and $1 \leq j \leq m$, and U with U_{0}. Under this identification, $G L_{2}\left(q^{m}\right)$ is naturally embedded in $G L_{2 m}(q)$.

Proposition 4.2.5. $S p_{2}\left(q^{m}\right)$ is a subgroup of $S p_{2 m}(q)$.

Proof. Let $u=\sum_{i, j} \xi_{i j} e_{i j}$ and $v=\sum_{i, j} \eta_{i j} e_{i j}$ be two vectors in U, and let $\xi_{i}:=\xi_{i 1} \omega_{1}+\cdots+\xi_{i m} \omega_{m}$ and $\eta_{i}:=\eta_{i 1} \omega_{1}+\cdots+\eta_{i m} \omega_{m}$ for $i=1,2$. Then by (102) we have

$$
\begin{aligned}
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left.f_{0}\right|_{U_{0}}(u, v)\right)= & \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left.f_{0}\right|_{U_{0}}\left(\xi_{1} e_{1}+\xi_{2} e_{2}, \eta_{1} e_{1}+\eta_{2} e_{2}\right)\right) \\
& =\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\xi_{1} \eta_{2}+\xi_{2} \eta_{1}\right) \\
& =\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left(\xi_{11} \omega_{1}+\cdots+\xi_{1 m} \omega_{m}\right)\left(\eta_{21} \omega_{1}+\cdots+\eta_{2 m} \omega_{m}\right)\right. \\
& \left.\quad \quad+\left(\xi_{21} \omega_{1}+\cdots+\xi_{2 m} \omega_{m}\right)\left(\eta_{11} \omega_{1}+\cdots+\eta_{1 m} \omega_{m}\right)\right) \\
& =\xi_{11} \eta_{21}+\cdots+\xi_{1 m} \eta_{2 m}+\xi_{21} \eta_{11}+\cdots+\xi_{2 m} \eta_{1 m} \\
& =\left.f\right|_{U}(u, v) .
\end{aligned}
$$

Hence any element in $S p_{2}\left(q^{m}\right)$ also preserves the alternating form $\left.f\right|_{U}$, which proves Proposition 4.2.5

It follows immediately from Proposition 4.2.2 and Proposition 4.2.5 that $\mathrm{GO}_{3}\left(q^{m}\right)$ is a subgroup of $G O_{2 m+1}(q)$. Furthermore we have the following:

Proposition 4.2.6. Let L_{0} be the stabilizer of U_{0} in $G O_{3}\left(q^{m}\right)$, then $G O_{3}\left(q^{m}\right) \cap L=L_{0}$.
Proof. For any element $B_{0}=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ in $S p_{2}\left(q^{m}\right)$, let B be the corresponding element in $S p_{2 m}(q)$, that is, B is the mapping obtained by regarding B_{0} as a linear mapping over \mathbb{F}_{q}. Then for $1 \leq j \leq m$ we have

$$
\begin{aligned}
B e_{1 j} & =B_{0}\left(\omega_{j} e_{1}\right)=\alpha \omega_{j} e_{1}+\gamma \omega_{j} e_{2} \\
& =\alpha_{j 1} e_{11}+\cdots+\alpha_{j m} e_{1 m}+\gamma_{j 1} e_{21}+\cdots+\gamma_{j m} e_{2 m}
\end{aligned}
$$

where $\alpha \omega_{j}=\alpha_{j 1} \omega_{1}+\cdots+\alpha_{j m} \omega_{m}, \gamma \omega_{j}=\gamma_{j 1} \omega_{1}+\cdots+\gamma_{j m} \omega_{m}$ for some $\alpha_{j k}, \gamma_{j k} \in \mathbb{F}_{q}(1 \leq k \leq m)$, from which it follows that

$$
\begin{aligned}
Q\left(B e_{1 j}\right) & =\alpha_{j 1} \gamma_{j 1}+\cdots+\alpha_{j m} \gamma_{j m}+\alpha_{j m}^{2}+\pi \gamma_{j m}^{2} \\
& =\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\alpha \gamma \omega_{j}^{2}\right)+\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\alpha \omega_{j} \omega_{m}\right)\right)^{2}+\pi\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\gamma \omega_{j} \omega_{m}\right)\right)^{2} \\
& =\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left(\alpha^{2} \omega_{m}^{2}+\alpha \gamma+\pi \gamma^{2} \omega_{m}^{2}\right) \omega_{j}^{2}\right)
\end{aligned}
$$

Similarly for $1 \leq j \leq m$ we have

$$
\begin{aligned}
B e_{2 j} & =B_{0}\left(\omega_{j} e_{2}\right)=\beta \omega_{j} e_{1}+\delta \omega_{j} e_{2} \\
& =\beta_{j 1} e_{11}+\cdots+\beta_{j m} e_{1 m}+\delta_{j 1} e_{21}+\cdots+\delta_{j m} e_{2 m}
\end{aligned}
$$

where $\beta \omega_{j}=\beta_{j 1} \omega_{1}+\cdots+\beta_{j m} \omega_{m}, \delta \omega_{j}=\delta_{j 1} \omega_{1}+\cdots+\delta_{j m} \omega_{m}$ for some $\beta_{j k}, \delta_{j k} \in \mathbb{F}_{q}(1 \leq k \leq m)$, from which it follows that

$$
\begin{aligned}
Q\left(B e_{2 j}\right) & =\beta_{j 1} \delta_{j 1}+\cdots+\beta_{j m} \delta_{j m}+\beta_{j m}^{2}+\pi \delta_{j m}^{2} \\
& =\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\beta \delta \omega_{j}^{2}\right)+\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\beta \omega_{j} \omega_{m}\right)\right)^{2}+\pi\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\delta \omega_{j} \omega_{m}\right)\right)^{2} \\
& =\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left(\beta^{2} \omega_{m}^{2}+\beta \delta+\pi \delta^{2} \omega_{m}^{2}\right) \omega_{j}^{2}\right) .
\end{aligned}
$$

Therefore by Corollary 4.2.3, $\Psi^{-1}(B)$ is contained in L if and only if

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left(\alpha^{2} \omega_{m}^{2}+\alpha \gamma+\pi \gamma^{2} \omega_{m}^{2}\right) \omega_{j}^{2}\right)= \begin{cases}1 & \text { if } j=m \\ 0 & \text { if } j \neq m\end{cases}
$$

and

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\left(\beta^{2} \omega_{m}^{2}+\beta \delta+\pi \delta^{2} \omega_{m}^{2}\right) \omega_{j}^{2}\right)= \begin{cases}\pi & \text { if } j=m, \\ 0 & \text { if } j \neq m,\end{cases}
$$

which is equivalent to

$$
\begin{equation*}
\alpha^{2} \omega_{m}^{2}+\alpha \gamma+\pi \gamma^{2} \omega_{m}^{2}=\omega_{m}^{2} \tag{103}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta^{2} \omega_{m}^{2}+\beta \delta+\pi \delta^{2} \omega_{m}^{2}=\pi \omega_{m}^{2} \tag{104}
\end{equation*}
$$

since $\left\{\omega_{1}^{2}, \omega_{2}^{2}, \ldots, \omega_{m}^{2}\right\}$ is also a trace-orthonormal basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}. In the same way as before let $E_{0}^{(1)}: \mathbb{V}_{0} \longrightarrow U_{0}, E_{0}^{(2)}: \mathbb{V}_{0} \longrightarrow\left\langle r_{0}\right\rangle$ be the orthogonal projections, and define a mapping $\Psi_{0}: G O_{3}\left(q^{m}\right) \longrightarrow S p_{2}\left(q^{m}\right)$ by

$$
\Psi_{0}\left(A_{0}\right):=\left.A_{0}^{(1)}\right|_{U_{0}}
$$

for $A_{0} \in G O_{3}\left(q^{m}\right)$, where

$$
A_{0}^{(i)}:=E_{0}^{(i)} A_{0} \quad(i=1,2) .
$$

Then in this case $A_{0}=\Psi_{0}^{-1}\left(B_{0}\right)$ is given by

$$
\begin{aligned}
& A_{0} e_{1}:=B_{0} e_{1}+\left(\sqrt{Q_{0}\left(B_{0} e_{1}\right)}+\omega_{m}\right) r_{0} \\
& A_{0} e_{2}:=B_{0} e_{2}+\left(\sqrt{Q_{0}\left(B_{0} e_{2}\right)}+\sqrt{\pi} \omega_{m}\right) r_{0} \\
& A_{0} r_{0}:=r_{0}
\end{aligned}
$$

Thus it follows that $A_{0}=\Psi_{0}^{-1}\left(B_{0}\right)$ is contained in L_{0} if and only if (103) and (104) are satisfied, which proves Proposition 4.2.6.

By Proposition 4.2.6 the containment relations among $G O_{2 m+1}(q), G O_{2 m}^{-}(q), G O_{3}\left(q^{m}\right)$ and $G O_{2}^{-}\left(q^{m}\right)$ are displayed in the following diagram:

$$
\begin{array}{ccc}
G O_{2 m+1}(q) & \supset & G O_{2 m}^{-}(q) \\
\cup & & \cup \\
G O_{3}\left(q^{m}\right) & \supset & G O_{2}^{-}\left(q^{m}\right)
\end{array}
$$

where $G O_{3}\left(q^{m}\right) \cap G O_{2 m}^{-}(q)=G O_{2}^{-}\left(q^{m}\right)$.
Proof of Theorem 4.2.1. It follows from the above diagram that each left coset of $G O_{2 m+1}(q)$ by $G O_{2 m}^{-}(q)$ contains at most one left coset of $G O_{3}\left(q^{m}\right)$ by $G O_{2}^{-}\left(q^{m}\right)$, since for any two elements A_{0}, A_{0}^{\prime} in $G O_{3}\left(q^{m}\right)$, we have $A_{0}^{-1} A_{0}^{\prime} \in G O_{2}^{-}\left(q^{m}\right)$ if and only if $A_{0}^{-1} A_{0}^{\prime} \in G O_{2 m}^{-}(q)$. Moreover from (3) it follows that

$$
\left|G O_{2 m+1}(q): G O_{2 m}^{-}(q)\right|=\left|G O_{3}\left(q^{m}\right): G O_{2}^{-}\left(q^{m}\right)\right|=\frac{q^{m}\left(q^{m}-1\right)}{2}
$$

so that each left coset of $G O_{2 m+1}(q)$ by $G O_{2 m}^{-}(q)$ contains exactly one left coset of $G O_{3}\left(q^{m}\right)$ by $G O_{2}^{-}\left(q^{m}\right)$. Therefore the action of $G O_{3}\left(q^{m}\right)$ on $G O_{2 m+1}(q) / G O_{2 m}^{-}(q)$ is equivalent to the action on $G O_{3}\left(q^{m}\right) / G O_{2}^{-}\left(q^{m}\right)$, which completes the proof of Theorem 4.2.1.

From now on, we determine how to merge the relations of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Theta_{3}\left(q^{m}\right)\right)$ to get the subscheme $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$. We use the notation in the proof of Proposition 4.2.6, and in the same manner as previous subsection, we mainly use the symbol " ~ " to stand for $G O_{3}\left(q^{m}\right)$ case. Namely we let $\tilde{\nu}$ be a primitive element of $\mathbb{F}_{q^{m}}$, and define

$$
\tilde{\lambda}_{i}:=\frac{\tilde{\nu}^{i-1}}{1+\tilde{\nu}^{i-1}} \quad \text { for } 2 \leq i \leq \frac{q^{m}}{2}
$$

and

$$
\tilde{\mu}_{i}:=\sqrt{\tilde{\lambda}_{i}^{2}+\tilde{\lambda}_{i}} .
$$

Also we let $\tilde{S}_{0}, \tilde{S}_{2}, \tilde{S}_{3}, \ldots, \tilde{S}_{\frac{q^{m}}{2}}$ denotes the relations of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Theta_{3}\left(q^{m}\right)\right)$.
For $2 \leq l \leq \frac{q^{m}}{2}$ define a mapping $A_{0}: \mathbb{V}_{0} \longrightarrow \mathbb{V}_{0}$ by

$$
\begin{aligned}
& A_{0} e_{1}=e_{1}^{\prime}:=e_{1} \\
& A_{0} e_{2}=e_{2}^{\prime}:=\frac{\tilde{\lambda}_{l}}{\omega_{m}^{2}} e_{1}+e_{2}+\frac{\tilde{\mu}_{l}}{\omega_{m}} r_{0} \\
& A_{0} r_{0}:=r_{0}
\end{aligned}
$$

Then we have $Q_{0}\left(e_{1}^{\prime}\right)=\omega_{m}^{2}, Q_{0}\left(e_{2}^{\prime}\right)=\pi \omega_{m}^{2}$ and $f_{0}\left(e_{1}^{\prime}, e_{2}^{\prime}\right)=1$ so that A_{0} is an element in $G O_{3}\left(q^{m}\right)$. Let $V_{0}:=A_{0} U_{0} \in \Theta_{3}\left(q^{m}\right)$, and define three vectors w_{0}, u_{0}, v_{0} by

$$
w_{0}:=\frac{1}{\omega_{m}} e_{1}=\frac{1}{\omega_{m}} e_{1}^{\prime}, \quad u_{0}:=\omega_{m} e_{2}, \quad v_{0}:=\omega_{m} e_{2}^{\prime},
$$

then we have $Q_{0}\left(w_{0}\right)=1, Q_{0}\left(u_{0}\right)=Q_{0}\left(v_{0}\right), f_{0}\left(u_{0}, w_{0}\right)=f_{0}\left(v_{0}, w_{0}\right)=1$, and $f_{0}\left(u_{0}, v_{0}\right)=\tilde{\lambda}_{l}$. Hence it follows that $\left(U_{0}, V_{0}\right) \in \tilde{S}_{l}$. The mapping $B_{0}:=\Psi_{0}\left(A_{0}\right) \in S p_{2}\left(q^{m}\right)$ is defined by

$$
\begin{aligned}
& B_{0} e_{1}=e_{1}, \\
& B_{0} e_{2}=\frac{\tilde{\lambda}_{l}}{\omega_{m}^{2}} e_{1}+e_{2} .
\end{aligned}
$$

Let

$$
\frac{\tilde{\lambda}_{l} \omega_{j}}{\omega_{m}^{2}}=\lambda_{l j 1}^{\prime} \omega_{1}+\cdots+\lambda_{l j m}^{\prime} \omega_{m} \quad \text { for } 1 \leq j \leq m
$$

and

$$
\frac{\tilde{\mu}_{l}}{\omega_{m}}=\mu_{l 1}^{\prime} \omega_{1}+\cdots+\mu_{l m}^{\prime} \omega_{m}
$$

for some $\lambda_{l j k}^{\prime}, \mu_{l k}^{\prime} \in \mathbb{F}_{q}$. Notice that the coefficients $\lambda_{l j k}^{\prime}, \mu_{l k}^{\prime}$ are given by

$$
\begin{equation*}
\lambda_{l j k}^{\prime}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\lambda}_{l} \omega_{j}}{\omega_{m}^{2}} \omega_{k}\right) \quad \text { and } \mu_{l k}^{\prime}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l}}{\omega_{m}} \omega_{k}\right) \tag{105}
\end{equation*}
$$

for $1 \leq j, k \leq m$. Let B be the element in $S p_{2 m}(q)$ corresponding to B_{0}. Then we have

$$
\begin{aligned}
B e_{1 j} & =\omega_{j} e_{1}=e_{1 j}, \quad \text { for } 1 \leq j \leq m \\
B e_{2 j} & =\frac{\tilde{\lambda}_{l}}{\omega_{m}^{2}} \omega_{j} e_{1}+\omega_{j} e_{2} \\
& =\lambda_{l j 1}^{\prime} e_{11}+\cdots+\lambda_{l j m}^{\prime} e_{1 m}+e_{2 j}, \quad \text { for } 1 \leq j \leq m
\end{aligned}
$$

Since from (105)

$$
\begin{aligned}
Q\left(B e_{2 j}\right) & =\left(\lambda_{l j m}^{\prime}\right)^{2}+\lambda_{l j j}^{\prime} \\
& =\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\lambda}_{l}^{2} \omega_{j}^{2}}{\omega_{m}^{2}}\right)+\operatorname{Tr}_{\mathbb{F}_{q} m / \mathbb{F}_{q}}\left(\frac{\tilde{\lambda}_{l} \omega_{j}^{2}}{\omega_{m}^{2}}\right) \\
& =\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l}^{2} \omega_{j}^{2}}{\omega_{m}^{2}}\right) \\
& =\left(\mu_{l j}^{\prime}\right)^{2},
\end{aligned}
$$

for $1 \leq j \leq m-1$, and

$$
\begin{aligned}
Q\left(B e_{2 m}\right) & =\left(\lambda_{l m m}^{\prime}\right)^{2}+\lambda_{l m m}^{\prime}+\pi \\
& =\left(\mu_{l m}^{\prime}\right)^{2}+\pi,
\end{aligned}
$$

it follows from (101) that the mapping $A:=\Psi^{-1}(B) \in G O_{2 m+1}(q)$ is given by

$$
\begin{aligned}
A e_{1 j} & =e_{1 j}^{\prime}:=e_{1 j}, \quad \text { for } 1 \leq j \leq m, \\
A e_{2 j} & =e_{2 j}^{\prime}:=\lambda_{l j 1}^{\prime} e_{11}+\cdots+\lambda_{l j m}^{\prime} e_{1 m}+e_{2 j}+\mu_{l j}^{\prime} r, \quad \text { for } 1 \leq j \leq m, \\
A r & =r
\end{aligned}
$$

Let $V:=A U$ be an element in $\Theta_{2 m+1}(q)$. Notice that since $\tilde{\mu}_{l} \neq 0$ the number of $\mu_{l j}^{\prime}$ equal to 0 is at most $m-1$. Define a vector w^{\prime} in $U \cap V$ by

$$
\begin{aligned}
w^{\prime}: & =\mu_{l 1}^{\prime} e_{11}+\cdots+\mu_{l m}^{\prime} e_{1 m} \\
& =\mu_{l 1}^{\prime} e_{11}^{\prime}+\cdots+\mu_{l m}^{\prime} e_{1 m}^{\prime}
\end{aligned}
$$

then $w^{\prime} \neq 0$ and it follows that

$$
U \cap V=\left\langle w^{\prime}\right\rangle^{\perp} \cap U=\left\langle w^{\prime}\right\rangle^{\perp} \cap V
$$

To show this, let $y=\sum_{i, j} \xi_{i j} e_{i j}^{\prime}$ be a vector in V orthogonal to w^{\prime}, then the r-component of y with respect to the basis $\left\{e_{i j}\right\}_{i, j} \cup\{r\}$ is equal to

$$
\xi_{21} \mu_{l 1}^{\prime}+\cdots+\xi_{2 m} \mu_{l m}^{\prime}=f\left(w^{\prime}, y\right)=0
$$

so that y is contained in $U \cap V$, as desired. Also by (105) we have

$$
\begin{equation*}
Q\left(w^{\prime}\right)=\left(\mu_{l m}^{\prime}\right)^{2}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}^{2}\right), \tag{106}
\end{equation*}
$$

from which it follows that $(U, V) \in S_{1}$ if and only if

$$
\begin{equation*}
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}^{2}\right)=0, \tag{107}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)=0 \quad \text { or } \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)=1 \tag{108}
\end{equation*}
$$

Suppose $\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}^{2}\right) \neq 0$, so that $(U, V) \notin S_{1}$. Let

$$
\frac{\tilde{\mu}_{l} \omega_{m}}{\tilde{\lambda}_{l}}=\chi_{l 1}^{\prime} \omega_{1}+\cdots+\chi_{l m}^{\prime} \omega_{m}
$$

for $\chi_{l k}^{\prime} \in \mathbb{F}_{q}(1 \leq k \leq m)$, that is,

$$
\chi_{l k}^{\prime}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l} \omega_{m}}{\tilde{\lambda}_{l}} \omega_{k}\right) \quad(1 \leq k \leq m)
$$

and define two vector $u^{\prime} \in U$ and $v^{\prime} \in V$ by

$$
\begin{aligned}
u^{\prime} & :=\chi_{l 1}^{\prime} e_{21}+\cdots+\chi_{l m}^{\prime} e_{2 m}, \\
v^{\prime} & =\chi_{l 1}^{\prime} e_{21}^{\prime}+\cdots+\chi_{l m}^{\prime} e_{2 m}^{\prime} .
\end{aligned}
$$

Then we have $Q\left(u^{\prime}\right)=Q\left(v^{\prime}\right)=\pi\left(\chi_{l m}^{\prime}\right)^{2}$, and

$$
\begin{aligned}
u^{\prime}+v^{\prime} & =\chi_{l 1}^{\prime}\left(e_{21}+e_{21}^{\prime}\right)+\cdots+\chi_{l m}^{\prime}\left(e_{2 m}+e_{2 m}^{\prime}\right) \\
& =\sum_{j=1}^{m} \chi_{l j}^{\prime}\left(\sum_{k=1}^{m} \lambda_{l j k}^{\prime} e_{1 k}+\mu_{l j}^{\prime} r\right) \\
& =\sum_{k=1}^{m}\left(\sum_{j=1}^{m} \chi_{l j}^{\prime} \lambda_{l j k}^{\prime}\right) e_{1 k}+\left(\sum_{j=1}^{m} \chi_{l j}^{\prime} \mu_{l j}^{\prime}\right) r .
\end{aligned}
$$

Now it follows from (105) that

$$
\sum_{j=1}^{m} \chi_{l j}^{\prime} \lambda_{l j k}^{\prime}=\sum_{j=1}^{m} \chi_{l j}^{\prime} \lambda_{l k j}^{\prime}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l} \omega_{m}}{\tilde{\lambda}_{l}} \frac{\tilde{\lambda}_{l} \omega_{k}}{\omega_{m}^{2}}\right)=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l} \omega_{k}}{\omega_{m}}\right)=\mu_{l k}^{\prime}
$$

for $1 \leq k \leq m$. Also

$$
\begin{equation*}
\sum_{j=1}^{m} \chi_{l j}^{\prime} \mu_{l j}^{\prime}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l} \omega_{m}}{\tilde{\lambda}_{l}} \frac{\tilde{\mu}_{l}}{\omega_{m}}\right)=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\frac{\tilde{\mu}_{l}}{\tilde{\lambda}_{l}} \tilde{\mu}_{l}\right)=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right) \tag{109}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
u^{\prime}+v^{\prime} & =\sum_{k=1}^{m} \mu_{l k}^{\prime} e_{1 k}+\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)\right) r \\
& =w^{\prime}+\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)\right) r \tag{110}
\end{align*}
$$

so that

$$
\begin{equation*}
U=\left\langle u^{\prime}, w^{\prime}\right\rangle \perp W, \quad V=\left\langle v^{\prime}, w^{\prime}\right\rangle \perp W \tag{111}
\end{equation*}
$$

where $W:=\left\langle u^{\prime}, w^{\prime}\right\rangle^{\perp} \cap U \subset U \cap V$. It also follows from (109) and (110) that

$$
\begin{equation*}
f\left(u^{\prime}, v^{\prime}\right)=f\left(u^{\prime}, w^{\prime}\right)=f\left(v^{\prime}, w^{\prime}\right)=\sum_{j=1}^{m} \chi_{l j}^{\prime} \mu_{l j}^{\prime}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right) \tag{112}
\end{equation*}
$$

Here $\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right) \neq 0$ by assumption. Define

$$
w:=\frac{1}{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}\right)} w^{\prime},
$$

and

$$
u:=\frac{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}\right)}{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)} u^{\prime}, \quad v:=\frac{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}\right)}{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)} v^{\prime}
$$

Then $Q(u)=Q(v)$, and it follows from (106), (112), (111) that $Q(w)=1, f(u, w)=f(v, w)=1$, and

$$
U=\langle u, w\rangle \perp W, \quad V=\langle v, w\rangle \perp W .
$$

Also by (112) we have

$$
\begin{aligned}
f(u, v) & =\frac{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}^{2}\right)}{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)}=\frac{\left(\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)\right)\left(\operatorname{Tr}_{\mathbb{F}_{q} m / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)+1\right)}{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}+1\right)} \\
& = \begin{cases}\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right) & \text { if } m: \text { odd }, \\
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)+1 & \text { if } m: \text { even. } .\end{cases}
\end{aligned}
$$

Thus (U, V) belongs to S_{k} for some $k \in\left\{2,3, \ldots, \frac{q}{2}\right\}$ such that

$$
\begin{equation*}
\lambda_{k}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right), \quad \text { or } \lambda_{k}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\lambda}_{l}\right)+1 \tag{113}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\mu_{k}=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{l}\right) \tag{114}
\end{equation*}
$$

To summarize we have the following:
Proposition 4.2.7. Define $\left(\frac{q}{2}-1\right)$ relations $S_{1}, S_{2}, \ldots, S_{\frac{q}{2}}$ on $\Theta_{3}\left(q^{m}\right)$ by

$$
S_{j}:=\bigcup_{i \in \Xi_{j}^{\prime}} \tilde{S}_{i} \quad\left(1 \leq j \leq \frac{q}{2}\right),
$$

where

$$
\begin{aligned}
& \Xi_{1}^{\prime}:=\left\{\left.i \in\left\{2,3, \ldots, \frac{q}{2}\right\} \right\rvert\, \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{i}\right)=0\right\}, \\
& \Xi_{j}^{\prime}:=\left\{\left.i \in\left\{2,3, \ldots, \frac{q}{2}\right\} \right\rvert\, \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\tilde{\mu}_{i}\right)=\mu_{j}\right\} \quad\left(2 \leq j \leq \frac{q}{2}\right) .
\end{aligned}
$$

Then these $\left(\frac{q}{2}-1\right)$ relations, together with $S_{0}:=\tilde{S}_{0}$, form the subscheme of $\mathfrak{X}\left(G O_{3}\left(q^{m}\right), \Theta_{3}\left(q^{m}\right)\right)$ isomorphic to $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$.

Corollary 4.2.8. $\mathfrak{X}\left(G O_{2 n+1}(q), \Theta_{2 n+1}(q)\right)$ is a subscheme of $\mathfrak{X}\left(G O_{2 m+1}\left(q^{\frac{n}{m}}\right), \Theta_{2 m+1}\left(q^{\frac{n}{m}}\right)\right)$ whenever m devides n.

Proof. This is an immediate consequence of Proposition 4.2.7 and Lemma 4.1.8. In fact, these two association schemes are both subschemes of $\mathfrak{X}\left(G O_{3}\left(q^{n}\right), \Theta_{3}\left(q^{n}\right)\right)$ by Theorem 4.2.1.

5 Remarks

Remark 1. The association scheme $\mathfrak{X}\left(G O_{3}(q), \Theta_{3}(q)\right)$ (for even q) is a quotient association scheme (cf. Bannai-Ito [4, §2.9]) of the association scheme $\mathfrak{X}\left(G L_{2}(q), G L_{2}(q) / G L_{1}\left(q^{2}\right)\right)$ which is defined by the action of the general linear group $G L_{2}(q)$ on the finite upper half plane $\mathbb{H}_{q}=\mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. Terras [15] gives details on the property of the finite upper half plane. The original motivation of this research, which was proposed by Professor E. Bannai, was to find a connection between two association schemes $\mathfrak{X}\left(G O_{2 m+1}(q), \Theta_{2 m+1}(q)\right)$ and $\mathfrak{X}\left(G L_{2 m}(q), G L_{2 m}(q) / G L_{m}\left(q^{2}\right)\right)$, which is considered as a possible candidate of higher dimensional analogue of the finite upper half plane. Though I have not found such a connection yet, recently I determined the exact decomposition of the permutation character $1_{G L_{2}\left(q^{2}\right)}^{G L_{4}(q)}$ into the irreducible characters. One obtains the list in the following tables:

The Decomposition of $1_{G L_{2}\left(q^{2}\right)}^{G L_{4}(q)}$, with q : odd.

Type	Degree	Frequency
$\mathrm{I}^{\left(1^{4}\right)}$	1	1
$\mathrm{I}^{\left(2^{2}\right)}$	$q^{2}\left(q^{2}+1\right)$	2
$\mathrm{I}^{(4)}$	q^{6}	1
$\mathrm{I}^{\left(1^{2}\right)} \mathrm{I}^{\left(1^{2}\right)}$	$\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q-3}{2}$
$\mathrm{I}^{(2)} \mathrm{I}^{\left(1^{2}\right)}$	$q\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	1
$\mathrm{I}^{(2)} \mathrm{I}^{(2)}$	$q^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q-3}{2}$
$\mathrm{I}^{\left(1^{2}\right)} \mathrm{I}^{(1)} \mathrm{I}^{(1)}$	$(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q-3}{2}$
$\mathrm{I}^{(2)} \mathrm{I}^{(1)} \mathrm{I}^{(1)}$	$q(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q-3}{2}$
$\mathrm{I}^{(1)} \mathrm{I}^{(1)} \mathrm{I}^{(1)} \mathrm{I}^{(1)}$	$(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{(q-3)(q-5)}{8}$
$\mathrm{I}^{\left(1^{2}\right)} \mathrm{II}^{(1)}$	$(q-1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q-1}{2}$
$\mathrm{I}^{(2)} \mathrm{II}^{(1)}$	$q(q-1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q-1}{2}$
$\mathrm{I}^{(1)} \mathrm{I}^{(1)} \mathrm{II}^{(1)}$	$(q-1)(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{(q-1)(q-3)}{4}$
$\mathrm{II}^{\left(1^{2}\right)}$	$(q-1)^{2}\left(q^{2}+q+1\right)$	$\frac{q-1}{2}$
$\mathrm{II}^{(2)}$	$q^{2}(q-1)^{2}\left(q^{2}+q+1\right)$	$\frac{q-1}{2}$
$\mathrm{II}^{(1)} \mathrm{II}^{(1)}$	$(q-1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{(q-1)(q-3)}{8}+\frac{(q-1)^{2}}{4}$
$\mathrm{I} \mathrm{IV}^{(1)}$	$(q-1)^{3}(q+1)\left(q^{2}+q+1\right)$	$\frac{(q-1)(q+1)}{4}$
	$\#$ of irreducible characters = q(q+1)	

The Decomposition of $1_{G L_{2}\left(q^{2}\right)}^{G L_{4}(q)}$, with q : even.		
Type	Degree	Frequency
$\mathrm{I}^{\left(1^{4}\right)}$	1	1
$\mathrm{I}^{\left(2^{2}\right)}$	$q^{2}\left(q^{2}+1\right)$	1
$\mathrm{I}^{\left(1^{2}\right)} \mathrm{I}^{\left(1^{2}\right)}$	$\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q-2}{2}$
$\mathrm{I}^{(2)} \mathrm{I}^{(2)}$	$q^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q-2}{2}$
$\mathrm{I}^{\left(1^{2}\right)} \mathrm{I}^{(1)} \mathrm{I}^{(1)}$	$(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q-2}{2}$
$\mathrm{I}^{(1)} \mathrm{I}^{(1)} \mathrm{I}^{(1)} \mathrm{I}^{(1)}$	$(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{(q-2)(q-4)}{8}$
$\mathrm{I}^{\left(1^{2}\right)} \mathrm{II}^{(1)}$	$(q-1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q}{2}$
$\mathrm{I}^{(1)} \mathrm{I}^{(1)} \mathrm{II}^{(1)}$	$(q-1)(q+1)\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q(q-2)}{4}$
$\mathrm{II}^{\left(1^{2}\right)}$	$(q-1)^{2}\left(q^{2}+q+1\right)$	$\frac{q}{2}$
$\mathrm{II}^{(2)}$	$q^{2}(q-1)^{2}\left(q^{2}+q+1\right)$	$\frac{q}{2}$
$\mathrm{II}^{(1)} \mathrm{II}^{(1)}$	$(q-1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)$	$\frac{q(q-2)}{8}+\frac{q(q-2)}{4}$
$\mathrm{IV} \mathrm{IV}^{(1)}$	$(q-1)^{3}(q+1)\left(q^{2}+q+1\right)$	$\frac{q^{2}}{4}$

In these tables, types of irreducible characters are described in terms of pairs of monic irreducible polyomials over \mathbb{F}_{q} and partitions (cf. Macdonald [11, Chapter IV.]). It follows that the association scheme $\mathfrak{X}\left(G L_{4}(q), G L_{4}(q) / G L_{2}\left(q^{2}\right)\right)$ is a (commutative) association scheme of class $q(q+1)$.

Remark 2. The association scheme $\mathfrak{X}\left(G O_{3}(q), \Omega_{3}(q)\right)$ (for even q) is isomorphic to the association scheme $\mathfrak{X}\left(P G L_{2}(q), P G L_{2}(q) / D_{2(q-1)}\right)$, where $D_{2(q-1)}$ is the dihedral group of order $2(q-1)$. This association scheme is obtained by the action of the projective general linear group $P G L_{2}(q)$ on the set of two-element subsets of the projective geometry $P G(1, q)$, and is studied by de Caen - van Dam [7]. According to [7, the association scheme $\mathfrak{X}\left(P G L_{2}(q), P G L_{2}(q) / D_{2(q-1)}\right)$ has the following subschemes:

- subschemes defined by the action of the overgroup $P \Gamma L_{2}(q)$,
- for $q=4^{f}(f \geq 2)$, a subscheme of class 4 whose character table P is given as follows:

$$
P=\left[\begin{array}{ccccc}
1 & 2\left(4^{f}-1\right) & \left(2^{f-1}-1\right)\left(4^{f}-1\right) & 2^{f-1}\left(4^{f}-1\right) & 2^{f}\left(2^{f-1}-1\right)\left(4^{f}-1\right) \\
1 & 4^{f}-3 & 2-2^{f} & -2^{f} & -2^{f}\left(2^{f}-2\right) \\
1 & -2 & 2^{f-1}\left(2^{f}-1\right)+1 & -2^{f-1}\left(2^{f}+1\right) & 2^{f} \\
1 & -2 & \left(2^{f-1}-1\right)\left(2^{f}-1\right) & 2^{f-1}\left(2^{f}-1\right) & -2^{f}\left(2^{f}-2\right) \\
1 & -2 & 1-2^{f} & 0 & 2^{f}
\end{array}\right]
$$

where $P \Gamma L_{2}(q)$ is the semidirect product of $P G L_{2}(q)$ with the Galois group $\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{p}\right)$. More precisely, the existence of the above 4 -class subscheme was a conjecture, and this cojecture was proved in [14]. It follows from Theorem4.1.1] and Theorem4.2.1 that we have found another kind of subschemes of $\mathfrak{X}\left(P G L_{2}(q), P G L_{2}(q) / D_{2(q-1)}\right)$.
Remark 3. Professor E. Bannai has pointed out that some graphs obtained from the relations of our association schemes are Ramanujan graphs, that is, regular graphs having good expansion constants (cf. Terras [15, Chapter 3.]).

References

[1] E. Bannai, Subschemes of Some Association Schemes, J. Algebra 144 (1991),167-188.
[2] E. Bannai, S. Hao, and S.-Y. Song, Character Tables of the Association Schemes of Finite Orthogonal Groups Acting on the Nonisotropic Points, J. Combin. Theory Ser. A 54 (1990),164-200.
[3] E. Bannai, S. Hao, S.-Y. Song, and H. Wei, Character Tables of Certain Association Schemes Coming From Finite Unitary and Symplectic Groups, J. Algebra 144 (1991),189-213.
[4] E. Bannai and T. Ito, "Algebraic Combinatorics I," Benjamin/Cummings, Menlo Park, CA, 1984.
[5] E. Bannai, N. Kawanaka, and S.-Y. Song, The Character Table of the Hecke Algebra $\mathscr{H}\left(G L_{2 n}\left(\mathbb{F}_{q}\right), S p_{2 n}\left(\mathbb{F}_{q}\right)\right)$, J. Algebra 129 (1990),320-366.
[6] E. Bannai, W.M. Kwok, and S.-Y. Song, Ennola Type Dualities in the Character Tables of Some Association Schemes, Mem. Fac. Sci. Kyushu Univ. Ser. A 44 (1990),129-143.
[7] D. de Caen and E. R. van Dam, Fissioned triangular schemes via the cross-ratio, to appear in Europ. J. Combin.
[8] J.H. Conway et al., "ATLAS of Finite Groups," Clarendon Press, Oxford, 1985.
[9] W.M. Kwok, Character Tables of Association Schemes of Affine Type, Europ. J. Combin. 13 (1992),167-185.
[10] R. Lidl and H. Niederreiter, "Finite Fields" 2nd ed., Encyclopedia of Mathematics and its Applications 20, Cambridge University Press, 1997.
[11] I.G. Macdonald, "Symmetric Functions and Hall Polynomials" 2nd ed., Oxford Mathmatical Monographs, Oxford University Press, 1995
[12] A. Munemasa, "The Geometry of Orthogonal Groups over Finite Fields," JSPS-DOST Lecture Notes in Math. 3, Sophia University, Tokyo, 1996.
[13] G. Seroussi and A. Lempel, Factorization of Symmetric Matrices and Trace-orthogonal Bases in Finite Fields, SIAM J. Comput. 9 (1980),758-767.
[14] H. Tanaka, A 4-class Subscheme of the Association Scheme Coming from the Action of PGL $\left(2,4^{f}\right)$, to appear in Europ. J. Combin.
[15] A. Terras, "Fourier Analysis on Finite Groups and Applications," London Math. Soc. Student Texts 43, Cambridge University Press, 1999.

