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Introduction

An association scheme X = (X,{R;}o<i<a) of class d is a pair of a finite set X and a set of
nontrivial relations {R;}o<i<q on X satisfying the following four conditions:

(i) Ro ={(z,2) e X x X |z € X},
(11) ROUR1U~~URd:X><XandR¢ﬂRj:(/) if i #£ 3,

(iii) for each i € {0,1,...,d}, there exists some i’ € {0,1,...,d} such that ‘R; = R;» holds, where
"Ri :=={(y,x) € X x X|[(z,y) € Ri},

(iv) for each (orderd) triple 4,5,k € {0,1,...,d}, the cardinality of the set {z € X |(z,2) €
R;, (z,y) € R;}, which is denoted by pfj, does not depend on the choice of z,y € X under
the condition (z,y) € Ry.

The numbers pf; in condition (iv) are called the intersection numbers of X = (X,{R;}o<i<q), and
in particular we call the numbers k; := p%;, = |{z € X |(2,2) € R;}| (0 <i < d) the valencies of
X = (X, {Ri}o<i<a)-

Let A; be the adjacency matrix with respect to the relation R;, that is,

(A)ay = 1 if (z,y) € R;
R NV (z,y) ¢ Ry,

then, since A4;4; = ZZ:O pfjAk by condition (iii), Ao, 41, ..., Aq generates an algebra 2 over the
complex field C of dimension d+1. We call this algebra the Bose-Mesner algebra of the association
scheme. We say that an association scheme X = (X, {R; }o<i<a) is commutative, if the Bose-Mesner
algebra is commutative, or equivalently, if pfj = p;?i holds for all 4, j,k € {0,1,...,d}. A symmetric
association scheme is an association scheme X = (X, {R;}o<i<q) which satisfies 'R; = R; for all
i €{0,1,...,d}. Notice that a symmetric association scheme is a commutative association scheme.

Let X = (X, {R;}o<i<a) be a commutative association scheme, then the Bose-Mesner algebra
has a unique set of primitive idempotents Fy = l)lf—‘J, Ey, ..., E4, where J is the matrix whose

entries are all 1 (cf. Bannai-Ito [4] §2.3.]). Let

Then the (d + 1) by (d + 1) matrix P whose (j,)-entry is p;(j), is called the character table or
the first eigenmatriz of the association scheme. The character table P of an association scheme
X = (X, {Ri}o<i<a) satisfies the orthogonality relations (cf. Bannai-Ito [4, p.62, Theorem 3.5.]):

(i) (The First Orthogonality Relation)

d
1 — |X]
fe" [e% = 52"7
3 el = L0

K2

(ii) (The Second Orthogonality Relation)
d [
> mapi(a)p; (@) = | X|kidij,
a=0

< d), and ¢;; is the Kronecker delta. The numbers m; are

where m; := rank E; = tr F; (0 < i
(X,{Ri}o<i<a)- In particular we shall use the following equality:

called the multiplicities of X =

d
D pali)=0, if 1<i<d (1)
a=0



A subassociation scheme (or simply subscheme) of an association scheme X = (X, {R;}o<i<d)
is an association scheme X’ = (X, {S;}o<j<a) where each relation S;, j € {0,1,...,d'} is a union
of some R;’s. It is an interesting problem to find all the subschemes of an association scheme.
Bannai [I, Lemma 1.] showed that any subscheme of a given commutative association scheme is
obtained by partitioning its character table into appropriate blocks.

It is natural to regard association schemes as a combinatorial interpretation of finite transitive
permutation groups. Let G be a finite group acting transitively on a finite set X. Then G acts
naturally on X x X in such a way that

(x,y)? = (a9,29) for (x,y) € X x X, g € G,

and we can easily verify that the orbits of G acting on X x X (which are called the orbitals)
satisfy the above four conditions (cf. Bannai-Ito [4, p.53, Example 2.1.]), that is, the action of G
on X x X defines an association scheme. We denote this association scheme by X(G, X). It is well
known that X(G, X) is commutative if and only if the permutation character 1§ is multiplicity-free
where H is the stabilizer of an element of X, namely each irreducible character of G occurs in the
decomposition with multiplicity at most 1 (cf. Bannai-Ito [4 p.49, Theorem 1.4.)). If X(G, X) is
commutative, then determining the character table of X(G, X) is equivalent to determining all the
zonal spherical functions of G on X (cf. Bannai-Ito [4, §2.11.]).

In this paper, we study the association schemes defined by the action of the orthogonal groups
GO2m+1(q) over the finite fields of characteristic 2, on the set Q@ = Qg,,41(q) of positive-type
hyperplanes and on the set © = Oq,,,1+1(g) of negative-type hyperplanes. These association schemes
are isomorphic to the association schemes defined by the action of GOg,,41(g) on the set of cosets
by GO, (q) and on the set of cosets by GO,, (q), respectively.

This paper is organized as follows:

Introduction.

1. Preliminary;

1.1. Quadratic forms and orthogonal groups.

1.2. Description of the relations.
2. Computation of parameters;

2.1. The parameters of X(GO2m+1(q), Qom+1(q)).
2.2. The parameters of X(GO2m+1(q), O2m+1(q)).

3. Character tables;

3.1. The character tables of X(GO2m+1(q), Q2m+1(q))-
3.2. The character tables of X(GO2m+1(q), O2m+1(q))-

4. Subschemes;

4.1. Subschemes of X(GO2m+1(q), Q2m+1(q))-
4.2. Subschemes of X(GO2m+1(q), O2m+1(q)).

5. Remarks.

In section 3] we calculate the character tables of these association schemes. In fact, we will show
that the character tables of X(GOap,+1(q), Qam+1(q)) and X(GO2m+1(q), O2m+1(q)) are controlled
by the character tables of X(GO3(q), Q3(q)) and X(GOs(q), ©3(q)), respectively, by the replacement
q — g™ L. Tt is known that such phenomena occur in many cases (cf. Bannai-Hao-Song [2], Bannai-
Hao-Song-Wei [3], Kwok [9], Bannai-Kawanaka-Song [5]). Our method of calculating character
tables follows Bannai-Hao-Song [2, §6,7] in all essential points, where they determined the character
tables of the association schemes obtained from the action of finite orthogonal groups on the sets of
non-isotropic projective points. Actually, the association schemes treated in this paper correspond
to the case of even q.



In section [ we first show that X(GO2m+1(q), Q2m+1(q)) and X(GO2pm+1(q), O2m+1(q)) are
subschemes of X(GO3(¢™),Q3(¢™)) and X(GO3(¢™), O3(¢™)), respectively. Then we write down
all the relations of these subschemes from those of X(GO3(¢™),Q23(¢™)) and X(GO3(q™), O3(q™)).
It is also shown that X(GOa2,11(q), Q2n11(g)) is a subscheme of X(GOgpy1(q7 ), Qami1(g™))
whenever m divides n, and so forth.

Thus we can say that the two association schemes X(GO3(q),3(q)) and X(GO3(q),©3(q))
controll the other association schemes X(GOg,+1(q), Qom+1(q)) and X(GO2p,+1(q), O2m+1(q)) at
two levels—algebraic level and combinatorial level.

Acknowledgement. The author would like to thank Professor Eiichi Bannai for his suggestion
of this research.

1 Preliminary

1.1 Quadratic Forms and Orthogonal Groups

In this subsection, we review some basic facts on quadratic forms and orthogonal groups. For more
information, we are referred to Munemasa [12], ATLAS [g].

Let V be a finite dimensional vector space over the finite field I, of g elements. A symmetric
bilinear form on V over I, is a mapping f : V x V — F, which satisfies the following conditions:

f(ul + Ug,’l}) = f(ulvv) + f(UQ,’U)7
f(au,v) = af(uvv)a
fu,v) = f(v,u)
for all u,v,u1,uz € V and all « € F,. We define the orthogonal complement UL of a subset U of

V by
Ut :={veV]| f(uv)=0foraluecU},

and the radical of f by
Rad f:=V* ={v e V| f(u,v) =0 for allu € V}.

The symmetric bilinear form f is said to be non-degenerate if Rad f = 0. The following proposition
is a basic fact about non-degenerate symmetric bilinear forms (cf. Munemasa [12}, p.3, Proposition
1.1.]).

Proposition 1.1.1. Let f : VxV — F, be a symmetric bilinear form on a finite dimensional
vector space V over Fy, and let U be a subspace of V. Then we have

dim U+ = dimV — dim U + dim U N Rad f.
Moreover if f|y is non-degenerate then

V=UlU"*.

A quadratic form on V over F, is a mapping @) : V — F, which satisfies the following
conditions:

Q(av) = a*Q(v),
Qu+v) = Qu) + Qv) + f(u,v)

for all u,v € V and all o € Fy, where f:V xV — [, is a symmetric bilinear form on V over F,.
Notice that if ¢ is even, then the bilinear form f is an alternating bilinear form, that is, f(v,v) =0
for all v € V. The quadratic form @Q is said to be non-degenerate if Q=1(0) NRad f = {0}. If a
vector v € V satisfies Q(v) = 0, then we call this vector singular, and a subspace U of V which
consists of sigular vectors is also called singular. A hyperbolic pair is a pair of vectors {u,v} of V
satisfying Q(u) = Q(v) = 0, and f(u,v) = 1. For later use, we need the following proposition (cf.
Munemasa [12] p.7, Proposition 1.8.]).



Proposition 1.1.2. Let Q : V — F, be a non-degenerate quadratic form on a finite dimensional
vector space V over Fy and let w € V be a non-zero singular vector. Then there exists a vector
v € V such that {u,v} is a hyperbolic pair.

The orthogonal group O(V,Q) is the group which counsists of all automorphisms of . More
precisely,

OV,Q) :={r € GL(V) | Q(r(v)) = Q(v) for all v € V}.

Throughout this paper, we always assume that ¢ is even. Let @ be a non-degenerate quadratic
form on V. Suppose dimV = 2m + 1 is odd, then there exists a basis {v1, va, ..., V2,11 of V such

that
2m—+1

Q( Y &) = i +Eobmz + -+ Embom + G,
i=1

which is equivalent to saying that V is decomposed as
V= <Ula Um+1>J— s J—(“ma rUZm>J—<'02m+1>7

where {v1,Vm+t1}, ..., {Um,Vam } are hyperbolic pairs and Q(vam+1) = 1. We write GOz, y1(q) =
O(V, Q). Suppose dimV = 2m is even, then one of the following occurs:

(i) there exists a basis {v1, va, ..., V2, } of V such that
2m
Q( > fﬂ%) =&1&mr1 + &&mr2 + -+ Eméam,
i=1
(ii) there exists a basis {v1,va, ..., vam} of V such that

2m
QD) = &1mir + Eabmrz ++++ F Emo1€am1 + €4 + Embam + 7€,
i=1

where t? +t + 7 is an irreducible polynomial over F,. In what follows, we call the former positive-
type and the latter negative-type, and we write their orthogonal groups as GOJ, (¢) and GO,, (q),
respectively.

We end this subsection by proving the following enumerative lemma (cf. Bannai-Hao-Song [2
Lemma 1.1.]).

Lemma 1.1.3. For § € F, and a polynomial h(&1,&2,...,&) € Fylér,&a, ..., &), denote the
number of solutions of the equation h(§1,82,...,8.) = B in Fy by N[h(&1,82,...,6.) = B].
(i) If we denote

Tp(2m +1) == N[&bmi1 + Ea&mia + -+ + Enom + Epyr = B,

then
Ts(2m+1) = ¢*™ for all B € F,.
(#) If we denote
L5 (2m) == N[&1&mir + Eobmiz + - + Eméam = B,
then
m m—1(.m __ 1 —
g™ g™ - 1) for B € Fy.

(i4i) If we denote

T (2m) == N[&1&mir + Eobmrz + -+ + Em—1&om—1 + &y + Emam + 765, = 5],

then
m—1 m mfl_l =0
s emy =19 ta (4 ) forp *
" (" +1) for B € Fy,

where t2 +t + 7 is an irreducible polynomial over F,,.



Proof. (i) Since F, is assumed to be characteristic 2, any element in F, is a square. Thus we
can choose &1,&s,. .., arbitrarily. (ii) Suppose (§m41,E&m+t2,s---58m) = (0,0,...,0), then if
B = 0 we have ¢™ choices for &1,&,...,&n. Next suppose (§m41,Emt2,---58&m) # (0,0,...,0),
say &om # 0. Then &, is uniquely determined depending on &3, &, ..., &,_1, hence we have ¢™ !
choices for &,&a,...,&y. (iil) First we consider the case m = 1. If & = 0, then clearly &; is
uniquely determined. If & # 0, then the number of solutions of the equation

G+&&a+n8 =08 &#0

is equal to the number of solutions of the equation

EmP+n+m) =0, £#£0,

by putting £ := & and n := % Since ? +t +  is irreducible over F,, if 3 = 0 then there is no
solution, and if 3 # 0 then there are exactly ¢ solutions. Thus, we have

1 fi =0
r;(2) = or 8
q+1 forpelF;.

Consequently, from (ii) we have
ry (Qm) = {qm—l + qm—Z(qm—l _ 1)} + (¢ — 1)((] + 1)qm—2(qm—1 —1)
= qm*1 + qm(qul —1),
and for 0 # 0 we have
L;2m)=q¢" (@ =)+ @+ D{g" " +¢" (" =D} + (g - 2)(a+ 1" (¢" "~ 1)
=(g+1)g" "+ (" - 1)
— qm—l(qm + 1)’
which completes the proof of Lemma 0

1.2 Description of the Relations

Let V be a (2m + 1)-dimensional vector space over a finite field F, of characteristic 2, and let
Q : V — T, be a non-degenerate quadratic form on V over F, with associated alternating form
f:VxV — F,. In this case Rad f is a 1-dimensional subspace of V, and there exists a vector
r € V such that Q(r) =1 and

Rad f = (r).

Let U C V be a subspace of V. If the restriction of @ to U is non-degenerate (resp. degenerate),
then we call this subspace non-degenerate (resp. degenerate). Moreover suppose that dim U is even,
then if the restriction of @ to U is positive-type (resp. negative-type), then we call this subspace
positive-type (resp. negative-type).

Denote the set of positive-type hyperplanes of V and the set of negative-type hypeplanes of V by
Q = Qopnt1(q) and © = Og,,,11(q), respectively. The orthogonal group GOsy,11(q) acts transitively
on © and ©, and the stabilizer of an element of  (resp. ©) in GOay,+1(q) is isomorphic to GOS, (q)
(resp. GO,,,(q)). Note that to see the transitivity we do not need the Witt’s extension theorem
(cf. Munemasa [12]), since for any U, U’ € Q (resp. ©), any isometry 7 : U — U’ (that is, 7 is an
injective linear map which has the property that Q(7(u)) = Q(u) for all u € U) is extended to an
automorphism 7 : V — V by 7(r) :=r.

The numbers of positive-type and negative-type hyperplanes are given as follows (cf. ATLAS
8, p.xii]):
|Q| _ |GO2m+1(q)|

GO, (a)]
_ @@ ) (@2 —) (P )
- 2gmmD(gm —1)(¢?m2 — 1) (¢2 — 1)

_ qm(qz + 1)’ @)




and

[GO2m11()
GO3,,(9)]
_ @@ ) (@2 —1) (P )
2¢mm=D(gm +1)(¢*m 2 = 1)...(¢* - 1)
q"(q™ —1)

= (3)

6] =

Now, we describe the relations of the association scheme X(GO2,,+1(q), <), defined by the
action of GOgp,+1(q) on the set Q. Let U,V be two distinct elements in Q. Note that UNV is a
(2m — 1)-dimensional subspace in V.

(i) Suppose U NV is a degenerate subspace in V. Then there exists a singular vector w in UNV
such that
UnvV =(w)*nU = (w)* NV,

since 0 € Rad fluny € (UNV)ENU and dim{(UNV)+ NU} = dimU —dim(U NV) = 1 by
Proposition [LTJl Let u be a vector in U such that {u, w} is a hyperbolic pair (Proposition [[T.2).
Then since U and V' are both positive-type, there exists a positive-type hyperplane W of U NV
and a vector v € V such that {v,w} is a hyperbolic pair and

U= (u,w) LW, V = (v,w) LW.

Suppose f(u,v) = 0 holds. Then since f(u+v,w) =1+1 =0 and f(u + v,v) = 0, we have
u+v € VL = (r) so that v = u + ar for some a € F,. This implies u = v, since 0 = Q(v) = a?,
which contradicts the assumption U # V. Therefore we may assume f(u,v) = 1 without loss of
generality, since Q(w) = 0.

Let U’ and V' be other distinct elements in € such that U’ NV’ is degenerate, and decompose
U’ and V' in the same manner:

U'= W, o) LW V' =@ W) LW,

where {u/,w'}, {v',w'} are hyperbolic pairs, W’ is a positive-type hyperplane of U’ N V’, and
fw',v") = 1. Let 7 : W — W’ be an isometry, and define a linear mapping 7 : V — V by
Tlw =7, 7(u) := 4/, 7(v) := ', and 7(w) := w’. Then 7 becomes an automorphism of ) and we
have 7(U) = U’, 7(V) = V. Hence it follows that

R, ={(U,V)eQxQ|UNV : degenerate} (4)

forms a relation of X(GOg2m+1(q),§2) (that is, an orbital of the transitive action of GOgzpm41(q) on

Finally we determine the valency k1 of Ry. Let H be a degenerate hyperplane of U, then any
non-degenerate hyperplane K of V which includes H becomes automatically positive-type. In fact,
since there exist a singular vector w in H and a positive-type hyperplane W of H such that

H = (w)lW,

hence K = WL(W+ N K) cannot be negative-type. There are % = ¢ + 1 hyperplanes
of V which include H. In these ¢ + 1 hyperplanes, (r) LH is the only degenerate hyperplane.
Thus there are ¢ — 1 elements V' in Q such that (U, V) € Ry and UNV = H. It follows from
Proposition [[L.I] that there is a one-to-one correspondence between degenerate hyperplanes of U

and 1-dimensional singular subspaces of U. Therefore by Lemma [[L.T3|(ii) we have

R A Uit Vi

k
1 -1

(=1 =("""+1)(¢" —1). (5)




(ii) Suppose U NV is a non-degenerate subspace in V. Then there exists a vector w in U NV such
that Q(w) =1 and
UNV ={(w)>*nU = (w)*nV.

First of all, we show that for any non-degenerate hyperplane W of U NV there exist two vectors
uw € U, v €V such that Q(u) = Q(v), f(u,w) = f(v,w) =1 and

U= (u,w)lW, V= (v,w)LW.

If W is positive-type (resp. mnegative-type), then W+ N U is also positive-type (resp. negative-
type). Let u € W NU and v € WL NV be two vectors such that f(u,w) =1 and f(v,w) = 1,
then the polynomials ¢? 4+ ¢ + Q(u) and t? + ¢t + Q(v) are reducible (resp. irreducible) over F,,.
The assertion follows immediately from the fact that the set {a? + a|a € F,} is an additive
subgroup of F, of index 2 (cf. Munemasa [I2] p.12, Lemma 2.9.]). In fact, let o be an element in
F, such that Q(u) = o® + a + Q(v) then u € U and v := aw + v € V are desired vectors, since
Q') = 0o’ +a+Q(v) =Q(u) and f(v',w) = f(v,w) = 1.
Define
g AC0) iy (6)
flu,v)+1

Then we have the following:

Proposition 1.2.1. A is well-defined and A € F,\{0,1}. Moreover, the pair {A, A1} does not
depend on the choice of W, u,v.

Proof. Since f(u+v,w) =1+ 1 =0, the vector u + v is contained in (U N V)+. By Proposition
LTI we have dim(U N V)+ = 2, from which it follows that

u+v=aw+ Or

for some o, B € F,.

Suppose f(u,v) = 0, that is « = 0. Then we have § = 0, since Q(u) = Q(v) = Q(u + fr) =
Q(u) + B2, This implies u = v, which is a contradiction. Next, suppose f(u,v) = 1, that is a = 1.
Then we also have 3 = 0, since Q(u) = Q(v) = Q(u +w + fr) = Q(u) + 1 + 1+ 5% = Q(u) + B>
In this case this implies © + w = v, which is also a contradiction.

In order to show that the pair {A, A=!} does not depend on W,u and v, let

U=, wy /W V=, wlW

be another decomposition such that Q(uv') = Q(v') and f(u',w) = f(v,w) = 1. Then since
f(w,w) =1, we have v’ = u+~yw+ z for some v € Fy and z € W. Let v" := v+~w+ 2z be a vector
in V, then clearly Q(v") = Q(v') and f(v"”,w) = 1. Furthermore we have v'4+v" = u4+v = aw+pfr,
that is,

V=" wylW,

which implies that v” must be v’ or v/ + w, since if we express v” as a linear combination of v’
and w, say v" = 410" + yow, then 1 = f(v",w) =1 and Q(v') = Q(v"") = Q(v') + 3 + 72 so that
Yo =0or v2 = 1. If v” = v’, then we have

S, f' ) fwv)

F@ ) +1 " f o) +1 fluo)+1

Similarly if v" = v’ + w, then we have

fwio) o f"tw)  fW ") 41 fuv) +1
flw ) +1 7 f 0" +w)+1 fu,v) fuv)
This completes the proof of Proposition [L2.1] O



We denote
AU, V) :={A, A7) (7)

It should be noticed that in the definition of A(U, V') it does not matter whether W is positive-type
or negative-type.
Let U’ and V' be other distinct two elements in Q such that A(U’, V') = A(U, V), and let

U'= W o)W, vV =@ w) LW

be a decomposition, where Q(w’) = 1, W’ has the same type as W, Q(v') = Q(v') = Q(u)

and f(u',w') = f(v',w’) = 1. Without loss of generality we may assume f(u,v) fl ).
Let 7 : W — W’ be an isometry, and define a linear mapping 7 : V — V by 7|y = 7,
7(u) := o/, 7(v) := ¢/, and 7(w) := w’. Then 7 becomes an automorphism of @ and we have

7(U) = U', 7(V) = V’'. Thus, the remaining relations of X(GOapm+1(q),f2) are described as
follows:

R :={(U, V) €QxQ|UNV : non-degenerate, A(U,V) = {v' "1~ ("V}1 (2<i<), (8

where v € F is a primitive element of F,.
Finally, we determine the valencies k; of R; (2 <i < 2). We define

l/i—l

)\i = m S Fq\{(), 1}, for 2 S ) S %, (9)
and
pi =/ AZ+ A #0, for2<i<d, (10)
Notice that (1)
i 1
v =\ +1,

146D~ 14pi-1
from which it follows that
Ai+ A #0,1, ifd # g, (11)
or equivalently
ity i (12)
Let H be a non-degenerate hyperplane of U, then there exists a vector w in H such that Q(w) =1

and
H = (w)* nU.

Fix a vector w in U such that f(u,w) = 1. Then it follows that the only element V of Q which
satisfies U NV = H and A(U, V) = {v"~1,v=0~D} is given by
V= (v) @ H, where v :=u+ \w + p;r € V. (13)
To show this, let V' be such an element in € and let
U= (u,w)lW, V= (v,w) LW

be a decomposition, where Q(v) = Q(u) and f(v,w) = 1. As is in the proof of Proposition [[2.1]
u+v = aw + fr for some «a, § € Fy, where a # 0, 1, and we may assume

f(u,v) _ Vz'—l

flu,v) +1
without loss of generality. Then we have
i-1_ _ @
YT A

from which it follows o = A;. Also we have Q(u) = Q(v) = Q(u) + A? + \; + 32 so that 3 = p;, as
desired.




It follows from Proposition [T that there is a one-to-one correspondence between non-
degenerate hyperplanes of U and 1-dimensional non-singular subspaces of U. Therefore by Lemma
[CT3(ii) we obtain

ki =q™ g™ —1) (14)

for 2 <4 < 4. To summarize:

The association scheme X(GO2p11,Q) = (€, {Ri}o<i<a) is a symmetric association scheme of
class £ whose relations are defined by

R ={({U,V)eQxQ|UNV: degenerate},

R, :={(U,V)€QxQ|UNV : non-degenerate, A(U,V) = {Z/i_l,y_(i_l)}} (2<i<d).

The valencies of X(GOap11,€Y) are given as

k= (""" +1)(¢" - 1),
ki=q" '(¢"—1) (2<i<i).

Secondly, we describe the relations of the association scheme X(GOap,+1(q), ©) in the same way
as X(GOap11,). Let U,V be two distinct elements in ©.

(i) Suppose U NV is a degenerate subspace in V. Notice that this occurs only if m > 2, since any
2-dimensional negative-type subspace of V has no non-zero singular vector. There exists a singular
vector w in U NV such that

Unv=(w*nU=(w*nV,

Let u be a vector in U such that {u,w} is a hyperbolic pair (Proposition [LT.2]). Then since U and
V' are both negative-type, there exists a negative-type hyperplane W of U NV and a vector v € V
such that {v,w} is a hyperbolic pair and

U= (u,w) LW, V = (v,w) LW.

Suppose f(u,v) = 0 holds. Then since f(u+v,w) =1+ 1 =0 and f(u+ v,v) = 0, we have
u+v € VL = (r) so that v = u + ar for some a € F,. This implies u = v, since 0 = Q(v) = o2,
which contradicts the assumption U # V. Therefore we may assume f(u,v) = 1 without loss of
generality, since Q(w) = 0.

Let U’ and V' be other distinct elements in © such that U’ NV’ is degenerate, and decompose
U’ and V' in the same manner:

U'= @, )W V' =@ W) LW,

where {u’,w'}, {v',w'} are hyperbolic pairs, W’ is a negative-type hyperplane of U’ NV’ and
f(u',v") = 1. Let 7 : W — W' be an isometry, and define a linear mapping 7 : V — V by
Tlw =7, 7(u) := 4/, 7(v) := v, and 7(w) := w’. Then 7 becomes an automorphism of ) and we
have 7(U) =U’, 7(V) = V’. Hence it follows that

S1:={(U,V)e©x0O©|UNV : degenerate} (15)

forms a relation of X(GO2pm+1(q), ©).

Finally we determine the valency hy of S;. Let H be a degenerate hyperplane of U, then any
non-degenerate hyperplane K of V which includes H becomes automatically negative-type. In
fact, since there exist a singular vector w in H and a negative-type hyperplane W of H such that

H = (w)lW,

2m—

hence K = W L(W+NK) cannot be positive-type. There are % = ¢+1 hyperplanes of V

which include H. In these ¢+ 1 hyperplanes, (r) L H is the only degenerate hyperplane. Thus there



are ¢ — 1 elements V in © such that (U,V) € S; and UNV = H. Tt follows from Proposition [T
that there is a one-to-one correspondence between degenerate hyperplanes of U and 1-dimensional
singular subspaces of U. Therefore by Lemma [[.T3|(iii) we have

qm—l + qm(qm—l _ 1) -1
q—1

hy = (q—1)=(""=1)(¢"+1). (16)

(ii) Suppose U NV is a non-degenerate subspace in V. Then there exists a vector w in U NV such
that Q(w) =1 and
UNV =(w)*nU = (w)*nV.

First of all, we show that for any non-degenerate hyperplane W of U NV there exist two vectors
u € U, v €V such that Q(u) = Q(v), f(u,w) = f(v,w) =1 and

U= (u,w)lW, V= (v,w)LW.

If W is positive-type (resp. negative-type), then W+ N U is negative-type (resp. positive-type).
Let u € W NU and v € WL NV be two vectors such that f(u,w) = 1 and f(v,w) = 1, then
the polynomials ¢ + ¢ + Q(u) and > + ¢t + Q(v) are irreducible (resp. reducible) over F,. The
assertion follows immediately from the fact that the set {a? + a |« € F,} is an additive subgroup
of F, of index 2 (cf. Munemasa [I12, p.12, Lemma 2.9.]). In fact, let o be an element in F,
such that Q(u) = a? + a + Q(v) then u € U and v/ := aw +v € V are desired vectors, since
Q) = 0 + o+ Q(v) = Q(u) and f(v/,w) = f(v,w) = 1.
Define
f(u,v)

flu,v) + 17
The proof of the following proposition is exactly the same as that of Proposition [[.2.1]

Il := (17)

Proposition 1.2.2. II is well-defined and 11 € F,\{0,1}. Moreover, the pair {II,I17'} does not
depend on the choice of W, u,v.

Proof. Since f(u+v,w) =1+ 1 = 0, the vector u + v is contained in (U N V)+. By Proposition
LI we have dim(U N V)1 = 2, from which it follows that u + v = aw + fr for some «, 8 € F,.
Suppose f(u,v) = 0, that is « = 0. Then we have § = 0, since Q(u) = Q(v) = Q(u + fr) =
Q(u) + B2, This implies u = v, which is a contradiction. Next, suppose f(u,v) = 1, that is a = 1.
Then we also have 3 = 0, since Q(u) = Q(v) = Q(u +w + fr) = Q(u) + 1 + 1+ 5% = Q(u) + B>
In this case this implies u + w = v, which is also a contradiction.
In order to show that the pair {II, II=!} does not depend on W, u and v, let

U=, wylW V= wlW

be another decomposition such that Q(uv') = Q(v') and f(u',w) = f(v',w) = 1. Then since
f(u',w) =1, we have ' = u+~yw+ =z for some v € F, and z € W. Let v" := v+~w+z be a vector
in V, then clearly Q(v") = Q(v') and f(v”,w) = 1. Furthermore we have v'+v" = u+v = aw+pfr,
that is,

V=" wy LW,

which implies that v” must be v’ or v/ + w, since if we express v” as a linear combination of v’
and w, say v" = 410" + Yow, then 1 = f(v",w) =1 and Q(v') = Q(v"") = Q(v') + 3 + 72 so that
v2 =0or v2 = 1. If v = v/, then we have

fu o) fa 0" f(u,v)

flw,v)+1 :f(u’,v”)—i-l flu,v) +1°

Similarly if v" = v' + w, then we have

fwi o) o f"tw)  fW ") 41 fuv) +1
flw ) +1 7 f o +w)+1 fu,v) f(u,0)
This completes the proof of Proposition O
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We denote
(U, V) = {1, 1T '}. (18)

It should be noticed that in the definition of TI(U, V) it does not matter whether W is positive-type
or negative-type.
Let U" and V' be other distinct two elements in © such that II(U’, V') = II(U, V), and let

U'= W o)W, vV =@ w) LW
be a decomposition, where Q(w') = 1, W’ has the same type as W, Q(v) = Q(v') = Q(u)

and f(u',w') = f(v',w") = 1. Without loss of generality we may assume f(u,v) = f(u',v).
Let 7 : W — W’ be an isometry, and define a linear mapping 7 : V — V by 7|y = 7,
T(u) = o, 7(v) := ¢/, and 7(w) := w'. Then 7 becomes an automorphism of @ and we have

T(U) = U', (V) = V’. Thus, the remaining relations of X(GO2m+1(q),©) are described as
follows:

S;:=={(U,V) €©®x© | UNV : non-degenerate, II(U,V) = {v'~1,»~"U}1 (2 <i< 1) (19)

Finally, we determine the valencies h; of S; (2 <i < ). Let H be a non-degenerate hyperplane
of U, then there exists a vector w in H such that Q(w) =1 and

H=(w)*nU.

Fix a vector w in U such that f(u,w) = 1. Then it follows that the only element V of © which
satisfies UNV = H and II(U, V) = {v*~1, v~ (=D} is given by

V= (v) @ H, where v :=u+ \w+ p;r € V. (20)
To show this, let V' be such an element in © and let
U= (u,w)lW, V= {v,w) LW

be a decomposition, where Q(v) = Q(u) and f(v,w) = 1. As is in the proof of Proposition [[2.2]
u+ v = aw + Pr for some «, 5 € Fy, where a # 0,1, and we may assume

f(u,v) _ Vi—l

flu,v) +1

without loss of generality. Then we have

from which it follows o = A;. Also we have Q(u) = Q(v) = Q(u) + A\? + \; + 32 so that 8 = p;, as
desired.

It follows from Proposition [[LI.I] that there is a one-to-one correspondence between non-
degenerate hyperplanes of U and 1-dimensional non-singular subspaces of U. Therefore by Lemma

[CT3)iii) we obtain
hi=q" " (q™ +1) (21)

for 2 <i < 4. To summarize:

The association scheme X(GO2pm11,0) = (O, {Si}o<ica) is a symmetric association scheme of
class  if m > 2, whose relations are defined by

S1:={(U,V)e©x0O|UNV : degenerate},
S;:={(U,V)€e©x 0O |UNV : non-degenerate, II(U, V) = {z/ifl,l/*(ifl)}} (2<i<i).

If m =1 then we have S1 = 0 so that X(GO3(q),©) is a symmetric association scheme of class
1 — 1. The valencies of X(GOzp41,0) are given as



2 Computation of Parameters

2.1 The Parameters of X(GOz2n+1(q), Q2m+1(q))
In this subsection, we compute the intersection numbers {pfj} of X(GO2m+1(q), Q2m+1(q))-
(i) Suppose first 2 < 4,5,k < Z. Let U and V' be elements in Q such that (U,V) € Ry, and let w
denote the vector in H := U NV such that Q(w) =1 and
H=UNV=wnU=(w*nV.

First of all, we count the number of elements K in € which satisfy (U, K) € R;, (V,K) € R,
and UNK =V NK = H. Let v be a vector in V' with f(v,w) =1 and define

U= v+ Agw + pgr
Then it follows from ([I3]) that
U=H&o <u>7
and the only element K in €2 such that (V,K) € R; and V N K = H is given by

K :=H®® (z), wherez:=v+ \w+ py;r

Since

u+z=(Aj +A)w+ (5 + p)r,
if (U, K) € R;, then we have
Aj 4 Ak — =G
A+ A +1

)

that is,
)\j+)\k:>\ia or AJ+>\]€:)\1+1,
which is equivalent to
pi + 13 + pi = 0.
Thus the number n; of elements K in Q which satisfy (U, K) € R;, (V,K) € R;, and UNK =
VNK=His
1 if 2 +p2+pu2 =0
Next, fix a vector w’ in V'\ (w) with Q(w’) = 1, and define two subspaces of V as
H =NV,
W:=HNH = (w,w) NV

We need to determine whether there exists an element K in € such that (U, K) € R;, (V,K) €
Rj and V N K = H'. Notice that Rad f|(,, .,y = 0 holds if and only if f(w,w’) # 0, that is, W
is non-degenerate if and only if f(w,w’) # 0. Assume f(w,w’) # 0, then W is positive-type if
and only if the polynomial t? + f(w,w')t + 1 € F,[t] is reducible over F,, since a 2-dimensional
negative-type subspace has no non-zero singular vector.

Let v be a vector in H such that f(v,w’) = 1, and let v' be a vector in H' such that f(v',w) = 1.
We define

u=v" 4+ A\pw + g,
z =0+ \jw' + pyr,

so that U = H @ (u), and K := H' @ (z) is the unique element in 2 which satisfies (V, K) € R;
and VNK=H'
Since V=W & (v,v’) & (r), any vector z in U N K is uniquely written as

r=oav+ v +y+yr,

12



for some «, 3,7 € F, and y € W. Then it follows from U = H & (u) and K = H' & (z) that
Y = ap; = B (23)
Notice that there exist two vectors y and 3’ in W such that
w= flw,w)+y, w=flww)+y. (24)
Let w” be a vector in U N K such that
UNK = (w"\*nU = (") NK.
(a) Suppose f(w,w’) # 0, that is, W is a non-degenerate subspace of V. Since dim W+ = 3 by
Proposition [[.T1] there exist some elements £, 7,6 € F, such that
w” = &w + nu' + dr.
Then by (24) we have
w’ = &f(w,w v+ nf(w,w ) + &y +ny' + o,
so that from (23] we obtain
w” = ppew + pjew’ + g f(w, w')er, (25)

for some € € Fy. Since w” # 0, we have € # 0.
Now suppose (U, K) € R;, then Q(w”) must not be 0. Hence the inner product f(w,w’) must
satisfy
13 i f (w,w')? + e f (w, w') + 113 + i # 0,

or equivalently

flw,w') # A 4 Aw), Ai + A+ 1).
(w, w’) Mjﬂk(j ) 'ujuk(J )
We may assume Q(w’) =1 so that
1
e = . (26)

R fw, w2 i f (w0, w') 4 pd g,
If (U, K) € R, then repeating the same argument as before we have
w = piew” + e’ + gy fw" w)e'r, (27)

for some € € IF,. Then since it follows from (25]) that

1 .
w=—w" + B 1y flw,w)r,
Hi€ Pk
we have
1
€= —.
i

Therefore by (26]) the inner product f(w,w’) must satisfy the following condition:

15 i f (w,w') 4 g f (w,w") + i + p + pi =0,

which is equivalent to

flw,w') = L()\, + Aj + M), or f(w,w') =

v o N+ X+ +1). (28)
J

Conversely, if f(w,w’) satisfies (28) then from (Il) we deduce that (U, K) € R;.

13



We can now count the number of elements K in Q such that (U, K) € R;, (V,K) € R;, and
W =UnNVNK=HNK is a non-degenerate hyperplane of H. For brevity we let

1
Kiik = N+ A+ A
= Ot A+ )
1
S N+ X+ +1)
ik 141k J

for i,j,k € {2,3,..., %}, and define

o(a) 1 if the polynomial ¢? + at +1 € F,[t] is reducible over F,,
o) =
0 otherwise,

for a € Fy. (For o € F} the function ¢(«) is also defined by ¢(«) = Trp, s, (a™"). See Lemma
24 below.) We need the following lemma:

Lemma 2.1.1. Let Wy be a 2-dimensional positive-type (resp. negative-type) subspace of V, and
let w be a vector in Wy with Q(w) = 1. Then for any a € F; such that ¢(a) =1 (resp. ¢(a) =0)
there exist two vectors wi,wh in Wy such that Q(w}) =1 and f(w,w}) =« (i =1,2).

Proof. Let y be a vector in Wy\(w) with Q(y) = 1, then we have f(w,y) # 0 and ¢(f(w,y)) =1

(resp. ¢(f(w,y)) = 0). If a vector 3 in Wy satisfies Q(y') = 1 and f(w,y’) = f(w,y), then ¢/

must be y or y + f(w, y)w. The number of elements o € I}, such that ¢(a) = 1 (resp. ¢(a) = 0) is
q

obviously equal to 2 — 1 (resp. 2), and by Proposition [.1.3] the number of vectors y in Wy other

than w with Q(y) = 1 is given by ¢ — 2 (resp. ¢), which proves the lemma. O

Suppose for instance k;jr # 0 and ¢(kix) = 1 (resp. ¢(kix) = 0). If w' € V satisfies
Q(w') = 1 and f(w,w’) = kijk, then as mentioned before, W := (w,w’)t NV is a positive-
type (resp. negative-type) hyperplane of H. On the other hand, let W be a positive-type (resp.
negative-type) hyperplane of H, then by Lemma E.I.1] the number of vectors w’ in W+ NV which

satisfy Q(w') = 1 and f(w,w’) = k;ji is exactly 2. Thus from @) (resp. (@), the number of
vectors w’ in V' such that Q(w’) =1 and f(w,w’) = ki, is given by

q" g™ 1) (resp. g™ (@™ 1))
Since fijk, K # 0 unless pf + p3 4+ pi = 0, the number ny of elements K in Q such that
(U,K)eR;, (V,K)e Rjand W=UNVNK = HnNK is a non-degenerate hyperplane of H, is
obtained as follows:

"N g 1) i =0 and ¢ (L) =1,

¢" Mgt =1)  if g 4 pd 4+ pf =0 and ¢(Ml,%) =0,
2¢™ Ng™ 1) i g+ pg #0 and (ki) = (ki) = 1,
2™ g™t = 1) if g+ pd + pE #0 and @(kin) = G(kl) =0,

2¢%m—2 if 7 4 3 + pg # 0 and {d(kin), (k5,0 = {0,1}.

Ng =

(29)

(b) Suppose f(w,w’) = 0, that is, W is a degenerate subspace of V. Notice that this occurs
only if m > 2. In this case (w,w’) is a subspace of W. Since dim W+ N K = 2 by Proposition [LT1]
we have W+ N K = (w,w’). Therefore there exist two elements ¢ and 7 in F, such that

w’ = &w 4+ nw'.
Let x = av + Bv' +y + v r be a vector in U N K, then it follows from (23] that

0= pf(z,w") = Buré + aprn = i€ + pan),

so that
W' = prew + pjew’, (30)
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for some € € F,,.
Now suppose (U, K) € R;, then Q(w") must not be 0, that is, 45 + ui # 0. We may assume

Q(w") =1 so that
2 1

RN
If (U, K) € R; then repeating the same argument as before we have
w = piew” + pjew’, (31)

for some € € F,;. Then since it follows from (B0) that

1 .
w=—uw"+ &w',
K€ 22
we have
1
€= —,
i
so that
pi + ui + pi =0 (32)

Conversely, if [B2)) is satisfied, then from ([I2) we deduce (U,K) € R;. By Lemma [[T3\i)
there are ¢*™~2 — 1 vectors w’ in H other than w such that Q(w’) = 1, hence the number njz of
elements K in Q such that (U, K) € R;, (V,K) € Rjand W =UNVNK = HNK is a degenerate
hyperplane of H, is given by

2m—2 __ 1 if 2 2 2 _ 0
From (22), (Z9) and (33)), we obtain
pf’j =n1+ N2 +ng

¢" Tt (2¢m 4 1) if pd 4 pd 4 pi =0 and gb(#jl#k):l,
¢ N 2qm Tt = 1) ifp +pd +pp =0 and ¢ Ml“k):o,

= m— m— 3 34
20" Mg 1) i pf el pf A0 and dkigr) = o(kly) = 1, (34)
29" (g = 1) i pd 4 pd 4 pg #0 and G(kik) = d(kij) =0,
2¢>m 2 if pf + 1§ + pi # 0 and {d(kijn), d(k;)} = {0, 1},

fori,j,k €{2,3,...,2}.

(ii) Suppose i = 1 and 2 < j,k < 4. Let U and V be elements in Q such that (U,V) € Ry. We use
the same notation as in (i). Notlce that if an element K in 2 satisfies (U, K) € R; and (V, K) € Rj,
then UNV N K = HN K has dimension 2m — 2, since U N K is degenerate by definition while H
is non-degenerate.

In the same way as (i), fix a vector w’ in V\(w) with Q(w’) = 1, and define two subspaces of
V as

H =)t nV,
W:=HNH = (ww)"NV.

Let K be the unique element in  which satisfies (V,K) € R; and VN K = H', and let w” be a
vector in U N K such that UN K = (w")* NU = (w”’)* N K. Then (U,K) € R, if and only if

Q(w") = 0.

(a) Suppose f(w,w’) # 0, that is, W is a non-degenerate subspace of V', then it follows from
(Z7) that (U, K) € Ry if and only if

5 ui f (w, w')? + g f(w, w') + 3 + pi =0,
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which is equivalent to

1 1
flw,w') = ——(\; + M), or flw,w) = ——(\; + X\ +1). 35
(w,w’) ujmc(J k) (w,w’) ujmc(J K+ 1) (35)
It follows that ) )
¢< A A >:¢<x+¢ +1>:1. 36
ujuk( k) ujuk(j K+ 1) (36)
In fact,
1 A2+ A7) = L A2+ \2)
2 O+ A)0F + a0
1
MNOZED+ 2200\ +1
)\k+1 Ak Aj+1
(A H)( W) o) (55
_VJ k—|—l/ (- k)
Likewise
! A +X+1) = L A2+ X2 +1)
122 AZ+0)(0F + ) 7 7"
1

T EwrrEsw WA+ AT+ DA+ 1))

- () Gon) - () (50

= Vj+k =+ V_(j+k).

It follows from (2) that the number of positive-type hyperplanes of H is given by

qm—l(qm—l + 1)

—
Hence by Lemma [ZT.T] the number n) of elements K in Q such that (U, K) € Ry, (V,K) € R; and
W =UnNVnNK = HnN K is a non-degenerate hyperplane of H, is obtained as

m—1( m—1 e

" (gmH)ifj=k,

MY =90 1y mo1 e (37)
2¢m N (gm T + 1) iy #E,

since nj is equal to the number of vectors w’ in V\H with Q(w’) = 1 which satisfies (35)).

(b) Suppose f(w,w’) = 0, that is, W is a degenerate subspace of V', which occurs only if m > 2.
Then it follows from [B0) that (U, K) € R; if and only if

15 + i =0,

that is, 7 = k. By Lemma [[.T3(i), the number of vectors w’ in H other than w with Q(w’) =1
is equal to ¢°™~2 — 1, from which it follows that the number nj of elements K in ) such that
(U,K)e R, (V,K)e Rjand W =UNVNK = HNK is a degenerate hyperplane of H, is given

by
m=2_1 ifj=k
ny = {g Sl (38)
if j # k.
From (37) and (B8]), we obtain

(24" = 1)(g" T+ 1) i =k,

k / /
b1y =Ml {2qm—1(qm—1 +1) it j % k.
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(iii) Suppose 2 <7 < Z and j = k = 1. Let U and V' be elements in  such that (U,V) € Ry, and
let w denote a vector in H := U NV such that Q(w) = 0 and

H=UNV=w!nU=w'nV

Notice that in this case w is not uniquely determined, and also notice that if an element K in
satisfies (U, K) € R; and (V, K) € Ry, then UNV NK = HNK has dimension 2m — 2, since UNK
is non-degenerate by definition while H is degenerate. Fix a vector w’ in V\(w) with Q(w’) = 0,
and define two subspaces of V' as
H' =)t nV,
W:=HNH = (w,w)*NV.
We determine whether there exists an element K in Q such that (U, K) € R;, (V,K) € R; and
VNK=H.
(a) Suppose f(w,w’) # 0, that is, W is a non-degenerate hyperplane of H. Since Q(w) =
Q(w") =0, we may assume f(w,w’) = 1 without loss of generality. Define

Vo i=w +w + ar,

for o € IFy, then K, := H' © (va) (a € Fy) are distinct elements in  with K, NV = H'. In fact,
since these hyperplanes of V do not contain the vector r, they are non-degenerate. Moreover since
W is positive-type and H' = W 1 (w'), we conclude that K, = W L (W' N K,) is positive-type for

all @ € Fy, and also it follows that they are distinct elements in € since we have v, +v5 = (a+ 8)r
2m4l_ 2m—1

for a, 3 € F;;. The number of hyperplanes K of V which include H’ is given by ‘W =q+1.
In these ¢ 4+ 1 hyperplanes of V, H' L(r) is the only degenerate hyperplane, that is, there are ¢ — 1
elements K in Q such that K NV = H’ and hence each K is written as K = K, for some o € F7.
By the same reason, there exists an element aq in F such that

U=H® (Vag)-

Fix an element « in Fy, then since V.= W & (w,w’) ® (r), any vector z in U N K, is uniquely
written as
z = Efw+nw' +y+or,

for some £, 71,0 € F, and y € W. Then it follows from U = H & (v,,) and K, = H' & (v,) that
0 = &a = nay. (40)
Let w” be a vector in U N K, such that
UNK, = (Ww")*nU=w""*"nK,.
Since W+ = (w,w’,r), it follows from (@T) that
w” = agew + aew’ + agpaer, (41)

for an element € € F,. Since w” # 0, we have € # 0.
Now suppose (U, K,) € R;, then Q(w”) must not be 0, so that

2 2
aga” + apa # 0,

which is equivalent to
o # oy L

We may assume Q(w”) =1 so that
9 1
C T 2ot aga’
0 o
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Then we have
1 1, 1
—w+ —w =
Qe Q€ apae?

From f(w,w") = ae, f(w',w") = age and Q(w) = Q(w') = 0 it follows that

1 1
w” + =r = (apa+ D" + =r. (42)
€ €

apa + 1 il o apa + 1 _ -1
apo e ’

or equivalently
apax = \; or ago = \; + 1. (43)

Conversely if [{A3]) is satisfied, then from (IIl) we deduce that (U, K) € R;. Therefore for each
1-dimensional singular subspace (w’) in V' such that f(w,w’) # 0, there are exactly 2 elements K
in Q such that (U,K) € R;, (V,K) € Ry and VN K = H' := (w')* N V. The number of vectors v
in V such that f(v,w) # 0 is ¢*™ — ¢*™~!, and hence the number of 2-dimensional positive-type
subspaces of V' which include (w) is by Proposition equal to

2m 2m—1

q 5 q — q2m72’ (44)

qa” —q

which is also equal to the number of 1-dimensional singular subspace (w') in V such that f(w,w’) #

0 since any 2-dimensional positive-type subspace of V contains two 1-dimensional singular sub-

spaces. Thus the number m; of elements K in Q such that (U, K) € R;, (V,K) € R; and
W =UnNVNK = HnNK is a non-degenerate hyperplane of H, is given by

my = 2q2m72. (45)

(b) Suppose f(w,w’) = 0, which never happens if m = 1, then (w,w’) = Wt NV is a singular
subspace of W. Hence if an element K in  satisfies UNV N K = W, then U N K cannot be
non-degenerate, since (UNK)TNK C W-NK = (w,w’). This implies that there is no element K
in 2 such that (U,K) € R;, (V,K) € Ry and W =UNVNK = HNK is a degenerate hyperplane
of H.

Thus by ({5
P =my = 2¢°" 2. (46)

(iv) Finally suppose i = j = k = 1. Let U and V be elements in 2 such that (U,V) € R;. We use
the same notation as in (iii). In the same way as (iii), fix a vector w’ in V\(w) with Q(w’) = 1,
and define two subspaces of V' as

H =) NV,

W:=HNH = (w,w)*NV.

(a) Suppose f(w,w’) # 0, that is, W is a non-degenerate hyperplane of H. We may assume
f(w,w") = 1 without loss of generality, since Q(w) = Q(w’) = 0. Define

Vo i= W +w + ar,

for a € F}, then as mentioned before, U = H & (va,) for some ag € F;. Also K, := H' @ (va)
(a € Fy) are distinct elements in Q with K, NV = H’, and each element K in €2 such that
KNV = H'is written as K = K, for some o € IE‘;.

Fix an element o in F}; and let w” be a vector in U N K, such that UN K, = (w")*NU =
(w")*+ N K,. Then (U, K) € R, if and only if Q(w”) = 0, which is by (EI]) equivalent to

ata® 4+ apa = 0,
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that is, &« = ag . Therefore for each 1-dimensional singular subspace (w') in V such that f(w,w’) #
0, there is exactly one element K in € such that (U,K) € Ry, (V,K) € Ry and VNK = H' :=
(w")+NV. Hence it follows from (F4]) that the number m/} of elements K in 2 such that (U, K) € Ry,
(V,K)e Ry and W =UNVNK = HnN K is a non-degenerate hyperplane of H, is given by

my =" (47)

(b) Suppose f(w,w’) = 0, that is, W is a degenerate hyperplane of H. This happens only if
m > 2. In this case any element K in  such that U NV N K = W satisfies (U, K) € Ry, since
UNK)*NKcWtnK = (w,w') and (w,w') is a singular subspace.

The number of singular vectors in H is given by

q"+q" (" =), (48)

To show this, let W’ be a non-degenerate hyperplane of H so that we have H = W’'1(w). Since
W’ is positive-type and Q(w) = 0, it follows from Lemma [[CT3(ii) that the number of singular
vectors in H is equal to

A e (e O ) e A (A DN

as desired. Thus by ([@8) the number m/, of elements K in 2 such that (U, K) € Ry, (V,K) € Ry
and W =UNVNK =HNK is a degenerate hyperplane of H, is given by

_ qm + qul(qul _ 1) _ q(

ppa =1 =q¢"+q"(¢" " =1) —q (49)

!
Mg

(¢) We have to count the number mj of the elements K in §2 such that (U, K) € Ry, (V,K) € Ry

2m 2m—
and U N K = H. Since there are exactly % — 1 = g elements in Q which include H, m}

is given by
my=q—2. (50)
From ({T), (49) and (B0) we obtain
piy=mh +my+mh = ¢ (2" g - 1) - 2. (51)
The rest of parameters are directly computed by the following equality (cf. Bannai-Ito [4] p.55,
Proposition 2.2.]):
Proposition 2.1.2. Let {pfj} denotes the intersection numbers of a symmetric association scheme

X = (X, {Ri}o<i<d). Then for alli,j,k € {0,1,...,2} we have kkpfj = k:jpii = kipé-k.

Hence from ([46])

k m— m—
p’f1=épi1=2q "g" +1) for2<k< g (52)

Also from (39)

ol = ﬁpj. _ gmi(2¢m T —1) if2<i=j< 1
ij kq 14 2q2m—2 if2<ij< % and i £ j.

To summarize:
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Lemma 2.1.3. The intersection numbers p¥. of X(GOgm+1(q), Q) are given as follows.
ij +

g2 g 1) =2 if =g =

Pij =DPj =4 ¢" H(2¢™ 7 — 1) if 2<i=j<4,
2¢%m—2 if 1<i<yj<d,
D=k (2¢m P =1)(¢g"m M +1) if2<j=k<1
YT 2gm (g 4 1) if1<j<$%,2<k<% j#k

¢ R ) i Rt =0 and 6 () =1,

o e ) i g i =0 and o () =0,

P = Y oqm Mg 1) ifpd g £ 0 and dlkin) = Skly) = 1,
20N qm 1) iR A0 and Blkige) = (L) =0,
2472 if 2+ 2+ A0 and {6(rign), 6(k50)} = {0, 1}.

2.2 The Parameters of X(GO2m+1(q); O2m+1(q))

In this subsection, we compute the intersection numbers {s¥;} of X(GO2m+1(q), O2m+1(q)).
(i) Suppose first 2 < 4,5,k < . Let U and V be elements in © such that (U, V) € S, and let w
denote the vector in H := U NV such that Q(w) =1 and

H=UNV=*nU=w*nV

First of all, we count the number of elements K in © which satisfy (U, K) € S;, (V,K) € Sj,
and UNK =V NK = H. Let v be a vector in V with f(v, w) =1 and define

U=V 4+ Apw + pgr.
Then it follows from (20)) that
U=H® (u),
and the only element K in © such that (V,K) € S; and VN K = H is given by

K :=H® (z), wherez:=v+ \w+ py;r

Since
u+z =N+ A)w+ (5 + p)r,

if (U, K) € S;, then we have

/\j + Ak — ,EG-1

A+ A +1 ’
that is,
)\j+)\k:)\iu or )\j+>\k:>\l+17

which is equivalent to

1+ pd + pg = 0.
Thus the number n; of elements K in © which satisfy (U, K) € S;, (V,K) € S;, and UNK =
VNK=His

54
0 if g +p3 +pj #0. (54)

Next, fix a vector w’ in V\(w) with Q(w’) = 1, and define two subspaces of V as

e 2 2 2 _
nlz{l i pi +p5 +p =0,

H =NV,
W:=HNH = (w,w)*NV.
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We need to determine whether there exists an element K in © such that (U, K) € S;, (V,K) € S,
and V N K = H'. Notice that Rad f|(,,.y = 0 holds if and only if f(w,w’) # 0, that is, W is
non-degenerate if and only if f(w,w’) # 0. Assume f(w,w’) # 0, then W is negative-type if
and only if the polynomial ¢? 4+ f(w,w’)t + 1 € F,[t] is reducible over F,, since a 2-dimensional
negative-type subspace has no non-zero singular vector.

Let v be a vector in H such that f(v,w’) = 1, and let v’ be a vector in H' such that f(v',w) = 1.
We define

ui=v" 4+ A\pw + g,
z =0+ \jw' + pr,

so that U = H @ (u), and K := H' @ (z) is the unique element in © which satisfies (V, K) € S;
and VNK =H'
Since V=W & (v,v') @ (r), any vector z in U N K is uniquely written as

r=av+ v +y+r,
for some «, 3,7 € F, and y € W. Then it follows from U = H & (u) and K = H' & (z) that
Y = apy = B (55)
Notice that there exist two vectors y and 3’ in W such that
w= flw,w))v+y, w=flww+y. (56)
Let w” be a vector in U N K such that
UNK = (W nU = (") NK.
(a) Suppose f(w,w’) # 0, that is, W is a non-degenerate subspace of V. Since by Proposition
LT we have dim W+ = 3, there exist some elements &, 7, € F, such that
w’ = &w + nw' + r.
Then by (B0) we have
w” = Ef(w,w)v +nf(w,w)o' + &y +ny' + or,
so that from (G5 we obtain
w" = prew + pjew’ 4 g f(w, w')er, (57)

for some € € F,. Since w” # 0, we have € # 0.
Now suppose (U, K) € S;, then Q(w”) must not be 0. Hence the inner product f(w,w’) must
satisfy
pi i f (w, w')? + pypn f (w,w') + 5 + pip # 0,

or equivalently

fw,w’;é Ai + k), A+ A+ 1).
(w,w) wuk( i) .Uj,uk( ’ )
We may assume Q(w’) =1 so that
2= 2,2 72 1 7 2 2 (58)
pipg S (w, w")? + i f(w, w') + p3 + g,
If (U, K) € S; then repeating the same argument as before we have
w=piew” + piew + pipg f(w” we'r, (59)
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for some € € F,. Then since it follows from (57)) that

1 )
w=—w" + B 1y flw,w)r,
Hi€ Pk
we have
1
€= —.
Mg

Therefore by (B8] the inner product f(w,w’) must satisfy the following condition:

p3prf(w,w')? + pjpef (w,w') + pf + pf + pi =0,

which is equivalent to

f(wvw,) = ()‘2 + )‘j + )‘k)a or f(wvw/) =

145 1k 1145 11k
Conversely, if f(w,w’) satisfies (€0) then from (Il) we deduce that (U, K) € S;.

We can now count the number of elements K in © such that (U, K) € S;, (V,K) € S;, and
W =UnNVNK = HnNK is a non-degenerate hyperplane of H. We use the same notation as the
previous subsection.

Suppose for instance k;jx # 0 and ¢(kix) = 1 (resp. @(kik) = 0). If w' € V satisfies
Q') =1 and f(w,w') = Kij, then as mentioned before, W := (w,w’)* NV is a negative-type
(resp. positive-type) hyperplane of H. On the other hand, let W be a negative-type (resp. positive-
type) hyperplane of H, then by Lemma EI.1 the number of vectors w’ in W+ NV which satisfy
Q(w') =1 and f(w,w') = Ky is exactly 2. Thus from (@) (resp. (@), the number of vectors w’
in V such that Q(w’) =1 and f(w,w’) = K4k is given by

" Ng" T =1) (resp. ¢ M (@™ T+ 1))

Since Kijk, K. 0 unless u? + u2 + 2 = 0, the number ny of elements K in O such that
J ijk % J k
UK)eS;, (VK)eS;and W=UNVNK = HnN K is a non-degenerate hyperplane of H, is
J
obtained as follows:

if u7 + 43 + pj =0 and qﬁ(uuk):o,

(Ni + A5+ A+ 1). (60)

qul(qul -1

if 2 + 2+ p2 =0 and qb( L

qm—l(qm—l + 1

= . 61
"2 ogm (g 1) 42 A0 and (ki) = Gkl = 1, (61
2" g 1) i pd 4+ R A0 and ¢(kin) = ¢(k,) =0,
2™ 2 if pf + 5 + pi #0 and {p(kijr), d(kl;;)} = {0,1}.

(b) Suppose f(w,w’) = 0, that is, W is a degenerate subspace of V. Notice that this occurs
only if m > 2. In this case (w,w’) is a subspace of W. Since dim W+ N K = 2 by Proposition [T
we have W+ N K = (w,w’). Therefore there exist two elements ¢ and 7 in F, such that

"= w+nu'.
Let x = av + Bv' +y + vr be a vector in U N K, then it follows from (B3] that

0= prflz,w") = Buré + aprn = o€ + ),
so that
w’ = ppew + pyew’, (62)

for some € € F,,.
Now suppose (U, K) € S;, then Q(w”) must not be 0, that is, ,u? + u? # 0. We may assume
Q(w") =1 so that
9 1
€ =—7.
H5
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If (U, K) € S; then repeating the same argument as before we have

1,0

w = piew” + pjew, (63)

for some € € F,;. Then since it follows from (62)) that

W= —w" + &w/’
HE€ 143

we have

1

€= —,

Hi

so that
pE + 15+ pi = 0. (64)

Conversely, if ([64]) is satisfied, then from ([I2]) we deduce (U, K) € S;. By Lemma [[LT3[i) there
are ¢?™~2 — 1 vectors w’ in H other than w such that Q(w’) = 1, hence the number n3 of elements
K in © such that (U, K) € S;, (V,K) € S and W =UNVNK = HNK is a degenerate hyperplane
of H, is given by

ng = JC 1 i =0, (65)
0 if p? 4+ pd + pp #0.
From (54)), (€I and (GH), we obtain
sfj =ni +ng +ns3

gmr (2™ = 1) if +,le? Jru% =0 and ¢ (ujluk> =1,
g 1(2qm 1+1) ifu?+u§+ui:0 and ¢(u M) =0,

~ Y 2qm ~ 66
2N gm 1) i 4 A0 and G(kigh) = G(kl,) = 1, (66)
2¢™ Ng™ 1) i g g #0 and @(kik) = B(k7,) =0,
2¢*m 2 if g + 5 + pz # 0 and {@(kijn), d(x;)} = {0, 1},

fori,j,k €{2,3,...,4}.
Notice that we have computed all the intersection numbers of X(GO3(q), ©3(q)), since if m =1
then S; = (). Thus in what follows, we always assume m > 2.

(ii) Suppose i = 1 and 2 < j,k < 4. Let U and V' be elements in © such that (U, V) € Sj.. We use
the same notation as in (i). Notlce that if an element K in © satisfies (U, K) € S; and (V, K) € S,
then UNV N K = HN K has dimension 2m — 2, since U N K is degenerate by definition while H
is non-degenerate.

In the same way as (i), fix a vector w’ in V\(w) with Q(w’) = 1, and define two subspaces of
V as

H =)t nV,
W:=HNH = (ww)tnV.

Let K be the unique element in © which satisfies (V,K) € S; and VN K = H’, and let w” be a
vector in U N K such that UN K = (w”)t NU = (w”)* N K. Then (U,K) € S; if and only if
Qu") = 0.

(a) Suppose f(w,w') # 0, that is, W is a non-degenerate subspace of V, then it follows from
(B7) that (U, K) € S if and only if

1L (w, ')+ e f (w,w') + 5 + i = 0,

which is equivalent to

f(wv w/) =

A+ M), or f(w,w') =
ujuk( ! ) (w,w) 14 11k

(Aj+ A+ 1), (67)
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where as shown in the previous subsection (cf. ([B36)) we have

¢>< ! ()\j+)\k)>¢<'u1u ()\j+>\k+1))1.

121 ik

It follows from (@) that the number of negative-type hyperplanes of H is given by

¢" g 1)
5 .

Hence by Lemma 211l the number nj of elements K in © such that (U, K) € S, (V,K) € S; and
W =UNVNK=HNK is a non-degenerate hyperplane of H, is obtained as
/ {q”“(qm1 —-1) ifj=k,

nh = o (68)
220 g - ) if g £k,

since nj is equal to the number of vectors w’ in V\H with Q(w’) = 1 which satisfies (€7)).

(b) Suppose f(w,w’) = 0, that is, W is a degenerate subspace of V. Then it follows from (G2))
that (U, K) € S; if and only if
15 + pj, = 0,
that is, j = k. By Lemma [[LT3(i), the number of vectors w’ in H other than w with Q(w') =1

is equal to ¢>™~2 — 1, from which it follows that the number n} of elements K in © such that
(U,K)e S, (V,K)e Sjand W=UNVNK =HNK is a degenerate hyperplane of H, is given

by
¢P#m? -1 ifj =k,
ny = o (69)
0 if j # k.
From (68) and (63]), we obtain
2¢" L+ 1) (gL — 1) ifj=k
sty =g = g 20T DT 2D T (70)
2¢™ (g™ - 1) it j # k.

(iii) Suppose 2 <4 < £ and j =k = 1. Let U and V be elements in © such that (U, V) € 51, and
let w denote a vector in H := U NV such that Q(w) = 0 and

UnvV=(w)*nU=(w*nV.

Notice that in this case w is not uniquely determined, and also notice that if an element K in ©
satisfies (U, K) € S; and (V, K) € Sy, then UNV N K = HN K has dimension 2m — 2, since U N K
is non-degenerate by definition while H is degenerate. Fix a vector w’ in V\(w) with Q(w’) =0,
and define two subspaces of V' as

H =)+ nV,
W:=HNH = (w,w)*NV.

We determine whether there exists an element K in © such that (U, K) € S;, (V, K) € S; and
VNK=H'.

(a) Suppose f(w,w’) # 0, that is, W is a non-degenerate hyperplane of H. Since Q(w) =
Q(w') = 0, we may assume f(w,w’) =1 without loss of generality. Define

Vo 1= w +w + ar,

for a € T, then K, := H' ® (va) (o € F}) are distinct elements in © with K, NV = H'. In fact,
since these hyperplanes of V do not contain the vector r, they are non-degenerate. Moreover since
W is negative-type and H' = W L{(w'), we conclude that K, = W L(W+NK,) is negative-type for
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all @ € F}, and also it follows that they are distinct elements in © since we have v, +v5 = (a+ 3)r
2mt1_2m—1

for o, 8 € F. The number of hyperplanes K of V which include H' is given by W =q-+1.

In these ¢ 4+ 1 hyperplanes of V, H' L (r) is the only degenerate hyperplane, that is, there are ¢ — 1
elements K in O such that KNV = H' and hence each K is written as K = K, for some o € Fy.
By the same reason, there exists an element aq in F such that

U=H® (Vo)

Fix an element « in I}, then since V.= W & (w,w’) @ (r), any vector z in U N K, is uniquely
written as
x = &w+nuw' +y+ or,

for some &, 71,0 € F, and y € W. Then it follows from U = H & (v,,) and K, = H' & (v,) that
6 = E&a = nay. (71)
Let w” be a vector in U N K, such that
UNKy = (wh*nU =W NK,.
Since W+ = (w,w’,r), it follows from (I)) that
w"” = apew + aew’ + apaer, (72)

for an element € € F,. Since w” # 0, we have € # 0.
Now suppose (U, K,) € S;, then Q(w”) must not be 0, so that

aga? + apa # 0,

which is equivalent to
a#ayt.

We may assume Q(w”) =1 so that
1
2

-
aga? + apo

Then we have
1 1, 1
—w+ —w =
e o€ opoe?

From f(w,w"”) = ae, f(w',w") = ape and Q(w) = Q(w’) = 0 it follows that

1 1
w” + =r = (apa+ Dw” + =r. (73)
€ €

aga + 1 - apa+ 1 (e
— =yt oy —— = =
[e7s]10% Qo

or equivalently
apax = \; or oago = \; + 1. (74)

Conversely if (74) is satisfied, then from (IIJ) we deduce that (U, K) € S;. Therefore for each
1-dimensional singular subspace (w’) in V such that f(w,w’) # 0, there are exactly 2 elements K
in © such that (U,K) € S;, (V,K) € S; and VN K = H' := (w')X N V. The number of vectors v
in V such that f(v,w) # 0 is ¢*™ — ¢*™~!, and hence the number of 2-dimensional positive-type
subspaces of V' which include (w) is by Proposition equal to

2m 2m—1
q 5 q _ q2m—27 (75)
q~ —4q
which is also equal to the number of 1-dimensional singular subspace (w') in V such that f(w,w’) #
0 since any 2-dimensional positive-type subspace of V contains two 1-dimensional singular sub-
spaces. Thus the number m; of elements K in © such that (U, K) € S;, (V,K) € S; and
W =UnNVNK = HnNK is a non-degenerate hyperplane of H, is given by

m1 = 272, (76)
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(b) Suppose f(w,w’) = 0, then (w,w’) = W+ NV is a singular subspace of W. Hence if
an element K in © satisfies UNV N K = W, then U N K cannot be non-degenerate, since
(UNK)*NK c WtNK = (w,w'). This implies that there is no element K in © such that
(UK)e S, (V,K)e Sy and W=UNVNK=HNnNK is a degenerate hyperplane of H.

Thus b
y @ 1 o 2m-2
S =m1 =2q . (77)

(iv) Finally suppose i = j = k = 1. Let U and V be elements in © such that (U, V) € S;. We use
the same notation as in (iii). In the same way as (iii), fix a vector w’ in V\(w) with Q(w') = 1,
and define two subspaces of V' as

H =@ nYV,
W:=HNH = (ww)*NV.

(a) Suppose f(w,w’) # 0, that is, W is a non-degenerate hyperplane of H. We may assume
f(w,w") = 1 without loss of generality, since Q(w) = Q(w') = 0. Define

/
Vo =W+ w + ar,

for a € I}, then as mentioned before, U = H @ (vq,) for some ag € F;. Also K, := H' @ (va)
(o € F) are distinct elements in © with K, NV = H’, and each element K in © such that
KNV = H'is written as K = K,, for some a € ;.

Fix an element o in F and let w” be a vector in U N K, such that UN K, = (w")* NU =
(w")* N K,. Then (U, K) € S if and only if Q(w") = 0, which is by ([72) equivalent to

2 2
aga” + aga =0,

that is, & = ag . Therefore for each 1-dimensional singular subspace (w’) in V such that f(w,w’) #
0, there is exactly one element K in © such that (U, K) € S1, (V,K) € Sy and VNK = H' =
{(w')*NV. Hence it follows from (75)) that the number m/ of elements K in © such that (U, K) € S,
(V,K)e Sy and W=UNVNK =HnNK is a non-degenerate hyperplane of H, is given by

my = ¢*" 2 (78)

(b) Suppose f(w,w’) = 0, that is, W is a degenerate hyperplane of H. In this case any element
K in © such that UNV N K = W satisfies (U, K) € Sy, since (UNK)*NK C WrNK = (w,w')
and (w,w’) is a singular subspace.

The number of singular vectors in H is given by

q" g (" ). (79)

To show this, let W’ be a non-degenerate hyperplane of H so that we have H = W1 (w). Since
W' is negative-type and Q(w) = 0, it follows from Lemma [[T3)iii) that the number of singular
vectors in H is equal to

A L A D) i S A DN
as desired. Thus by ([[9) the number m} of elements K in © such that (U, K) € Sy, (V,K) € 5}
and W=UNVNK = HNK is a degenerate hyperplane of H, is given by

m—1 m( , m—2
q +q"(q —1)—g¢q m— myom—
my = q(_l ) (=) =q¢"""+¢"(¢"?=1)—q (80)

(¢) We have to count the number mj of the elements K in © such that (U, K) € S1, (V,K) € S1

and U N K = H. Since there are exactly ‘12211;3,2]:1 — 1 = g elements in © which include H, m}

is given by
my=q—2. (81)
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From (78), B0) and (RI)) we obtain

sty =my +mh+mh=q"(2¢" " —q+1)—2. (82)

The rest of parameters are directly computed from Proposition 2.1.2]

From (77
h
slﬁ = h*;s}gl = 2qm71(qm—1 —1) for2<k< %_ (83)
Also from ([70)
g hiy et eenT 1) if2<i=g <, "
ij hl 14 2q2m72 (£ 9 <i j < and ; 7& j

To summarize:

Lemma 2.2.1. The intersection numbers s¥; of X(GOamy1(q),0) are given as follows.

qm—1(2qm—1 —q+ 1) -2 qfi=j=1,

sh= )= 4q" (20" + 1) if 2<i=j<4,
2¢%>m—2 if 1<i<j<i,
g TN ) i 2< =k < g,
YO 2gm (g - 1) if 1s;s2,2gkgg,j#k.

For other 2 <i,j,k < 1,

¢t 2 = 1) ifpd s+ pi =0 and (b(ﬂjluk) =1,

e 1+1) i+ =0 and 6 (L) =0,

st = .

“ 20" g™ = 1) i pd g+ 0 and $(kigr) = d(k,) =1
20" g™ L) i pd g+ g 0 and $(kigr) = d(k) =0,
2¢°™ 2 if i+ pd 4 pg 0 and {d(kijr), (w5} = {0,1}.

3 Character Tables

3.1 The Character Tables of X(GOz2+1(q), Q2m+1(q))

In this subsection, we determine the character table of X(GOap,+1(q), Qom+1(q)) explicitly. Our
account follows Bannai-Hao-Song [2, §6.] in all essential points. Namely, we prove that the

character table of X(GOa:,11(q), Q2m+1(q)) is controlled by that of X(GOs(q),23(q)).
First of all, we prove the following lemma which shows the relation between the sets of param-

eters of X(GO2,+41(q), Q2m+1(q)) and X(GO3(q), Q3(q)):
Lemma 3.1.1. Let {a};} denotes the set of the intersection numbers of X(GOs(q),Qs(q)). Then

Ph=20""1 " = )+ " (g +2) -2
Pl =rh = 2" (g™ 1) + qul( +1) -1 for 2<j<1,

for other 1 <i,j,k < %,
Py = 24" "M@ = 1) + ¢ .

27



Proof. For i = j =k =1, from a}; = ¢ — 1 we have

p=q¢""'2¢"  +q-1)—2=2¢""(¢" T = 1)+ ¢" +q" ' =2
=2¢"" (g™ = 1) +¢™ Hag, +2) — 2.

For2§i:j§%andkzl,froma%izlwehave

pi=q" 2" = 1) =2¢" (g™ = ) g
m—l(qm—l _ 1) + qm—la}i.

For1<i<j<4%andk=1, fromaj; = aj;, =2 we have

pll‘7 — p;z — 2q2m72 — 2qm71(qm71 _ 1) 4 2qm71

_ qu—l(qm—l _ 1) + qm—lallj.

Fori:land2§j:k§%,froma{j:a;1:2wehave

plLi=ph =@ =@+ 1) =2¢""" (g™ = 1) +3¢" -1
= 2q’m*1(q’m71 o 1) + qul(a{j + 1) _1

Fori:l,lgjg%,ZSkg andj;ék:,fromalfj:a§1:4wehave

q
2

Py =p5 =247 @M 1) =2¢" (g™ = 1) 4™
_ 2qm—1(qm—1 _ )"rqm_lalfj-

For2§i,j,/€§%,M?+u§+u%:0and¢(ﬁ)—l from af; = 3 we have

Py =q" (2" +1) =2¢" (g™ 1)+ 3¢™ !

=2¢"" g™ = 1) + ¢ ).

Fongi,j,k<2,,ul+uj+ukf0and¢( )*0 froma =1 we have

Hjikk

ph=q" 2" 1) =2¢" (g™ = 1) + ™!

For 2 <i,j k<%, pu?+ ,u? + 43 # 0 and @(kiji) = d(kj;,) = 1, from a = 4 we have

Pl =2¢""g" T + 1) =2¢" " (" = 1) + 4™

=2¢"" g™ = 1) + ¢ ).

For 2 <i,j, k<%, uf + ,u? + 43 # 0 and @(kiji) = ¢(kj;,) = 0, from a = 0 we have

pv] = 2qm 1(qm b 1)

=2¢"" g™ = 1) + ¢ "aj;

For 2 <i,j,k < &, i + p3 + i, # 0 and {p(kiji), d(ki,;,)} = {0,1}, from a¥; = 2 we have

p’]LC] — 2q2m72 — 2qm71(qm71 _ 1) 4 2qm71

_ 2qm71(qm71 o 1) + qula;cj.

This proves Lemma B.T.11
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It is known that the character table PT = (5;(i)) of X(GOs(q),Q3(q)) is given as follows (cf.
Tanaka [14]):

1 2(¢—=1) (¢—=1) ... (¢—1)
1 ¢-3 2 ... -2
1

=2 : (85)
(Xij)2<ii<

Pt =

[SIIS)

1 -2

for suitable x;; € Q (#) with § = exp(;% 270 ) . The values of the entries y;; are slightly complicated.
The explicit description of these Values are given in [I4].

Theorem 3.1.2. The character table P = (p;(i)) of X(GO2m+1(q), Qom+1(q)) is described as

1 (@ 1)@ —1) ¢ g —1) ... "™ - 1)
I (¢—=2)¢" -1 —2¢™m 1 —9gm—1
ptr=|1 —(¢gm 1t +1)
: : (@™ "Xij)2<ij<g
1 —(¢™ ' +1)
That is,
po(i) =1 for0<i<i
pj(0)=Fk; for0<j<4
pi(i) =¢" 'p(i) +g™ =1 for1<i< d
pi(i) =q" 'p;(i) for1<i<g 2<j<4i

Proof. The transposition of each row of the character table of X(GOzp,+1(q), Q2m+1(q)) is a com-
mon right eigenvector of the intersection matrices By, By, ..., B%, where B; is the matrix whose
(j, k)-entry is pfj (cf. Bannai-Ito [4], p.91, Proposition 5.3.]). Thus, we have only to show that the
following equality:

po(l) po(l)
1 l 1
B; ! :( ) = pi(l) g ;( : (86)
pa(l) pa(l)

for all ¢ and .
(i) Suppose first i = j = 1 and 1 <[ < £, then using the equality (IJ) and Lemma [B.T.T] we see
that

2
> ptipall) = plipo(l) + piipi (1) + Z piipall

= (" 1" - 1)
+2¢° (g = V)i (1) + @ el iy (D) + 247 (g™ = D)pa (1)
+{g" 20" - 1) - 24" - 1)

+2¢7"3( Z Pall) + "2 Z afipall

— 222 1) - 2q2m (" - 1)p1(l)
_ 2q2m—2(q _ 1) _ q2m—2ahﬁ1(l) by a(l)l = 2((] - 1)7

_ q2m72ﬁ1(1)2 + 2qm71(qm71 _ 1)251(” + (qul o 1)2
— {qulf)l(l) _‘_qul _ 1}2
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:pl(l)Q.
(ii) Suppose i = 1,1 < j< 4 and 1 <1 < %, then

%
> ptpa(l) = pYpo(D) + piypr (1) + plyp; (1) + Zpljpa
a#J
)+ ¢ 2aypa (1) + 2472 (¢ = 1)

2m72( m—1 _ )
(1) +q*"~ 2@1]29;(0 +q" N g = ()

=2 q pr (1
+ 207" 3¢ = 1)p;
+ 2q2m 2 Zpa 2m 2 Z aljpoz

2m— Q(qm 1_1)_2q2m 2(qm 1_1)pl(l>_2q2m—2(qm—1_1)p~j(l)

R

_ q2m72a(1)j[30(l) — q2m72a%j151 (l) - q2m72a{jﬁj (l)
_ q2m_2ﬁ1(l)ﬁj(l) + qm—l(qm—1 — 1)ﬁj(l>
= {g" B (0) + g™ = 11" ()
=p1(Dp; (1)

(iii) Suppose 1 <i < %, j=1and 1 <1< 1, then

aq
2
> pipa(l) = pipo(l) + phpr (1) + phpi(l) + Z Pipall
oc#z

=2¢""2(¢" 7 = Dp(l) + ¢ Pafp (1) + 2672 (¢ - 1)
+ 2q2m72(qm71 — l)ﬁl(l) + qu 2 zlﬁl(l) + qul(qul - l)ﬁz(l)
q
2
+20"" 2" = 1) Y pall) + 47" Zaupa
a=0

R (gmt = 1) = 2¢PM (g™ 1) (1) = 2¢7" (™ = Dpa(l)

—2q q
(1) = " Panp (D) — ™ 2ai pi(l)

2m—2 O
—q zlpO

=" pi()pr(1) +¢" (g™ = Dpa(l)
=" ' ({q" () + ¢ -1}
= p’L( ) )

1(l
(iv) Suppose 1 <i=j < % and 1

A

l

IA

M-

q
3, then

%
> piipal) = ppo(D) + pipr (D) + Y pipa(l)

=q¢" (g™ —1)
222 1)y

a=2

/—\

D+ 2agpi(l) + ¢ (24" = D(g™ " = 1)

%
+ 2q2m 2 Z 2m—2 Z agﬁa(l)
a=0 a=0
_2q2m 2(qm 1_1)_2q2m Q(qm—l_l)p*l(l)

— " (g —1) = ¢ Pa;pi(l) by af; = q— 1,

=" pi(1)?

== pi(l)2.

30



(v)Finally, suppose 1 <i,j < 4,4 # jand 1 <1< £, then

aq q

2 2
> 5pa(l) = plipo(l) + pipr(l) + > pgipall)
a=0 a=2

— 2q2m72(qm71 _ 1)]31([) 4 q2m72a,}jl~)1(l) 4 2q2m72(qm71 _ 1)

q

q aq

2 2
+2¢°" (@ =)D Pa) + 72D adipall)

a=0

a=0
_ 2q2m—2(qm—1 _ 1) _ 2q2m—2(qm—1 _ 1)ﬁ1(l)
- q2m72a(i)j - q2m72a%ﬂ31 ()
=¢*" ?pi(1)p; (1)
= pi(Dp;(1).
This completes the proof of Theorem O

3.2 The Character Tables of X(GO2,+1(q), O2m+1(q))

We have shown that the character table of X(GO2m+1(q), Q2m+1(q)) is essentially controlled by
that of a smaller association scheme X(GO3(q), 23(q)), by the replacement ¢ — ¢™~*. Although it
is possible to calculate the character table of X(GO2pm+1(q), ©2m+1(¢)) in the same way, we observe
a similar kind of phenomenon which is called an Ennola type duality (cf. Bannai-Kwok-Song [6]),
that is, we will show that the character table of X(GO2m+1(q), ©2m+1(q)) is essentially obtained
by that of X(GO2m+1(q), Q2m+1(q)), by the replacement ¢ — —g. Consequently it follows that the
charactr table of X(GO2,41(q), O2m+1(q)) is controlled by that of X(GOs(q), ©3(q)).

The following lemma shows the relation between the parameters of X(GOa,+1(q), O2m+1(q))
and those of X(GO2pm+1(q), Qam+1(q)) for m > 2, also the relation between the parameters of
X(GOs(q),©3(q)) and those of X(GO3(q),23(q)). (Notice that X(GOs(q), O3(q)) is of class £ — 1
while X(GO2m+1(q), O2m+1(q)) is of class 4 for m > 2.)

Lemma 3.2.1. Let {bj;} denotes the set of the intersection numbers of X(GOs(q),O3(q)). Then
form > 2

s =4¢°" 7 —p1y —4

sl =sh =47 —pl; =2 for 2<j< g,
for other 1 <i,j k < %,

Also

for2 <i,j k<2
Proof. For i = j =k =1, from p}; = ¢ 1(2¢™ 1 + ¢ — 1) — 2 we have
s=q"" 2" =g+ 1) —2=4¢" — ¢ (2¢"  +qg—1) -2
=4¢*" 7 —py; — 4.
For 2<i=j<%and k=1, from pj; = ¢" (2¢™ " — 1) we have
si=q" (20" 1) = 4¢P =g (2 - )
— 4?2 L.
For1<i<j<4%andk=1, from pllj = p}i = 2¢>""2 we have

1 1 2m—2 2m—2 2m—2
s--:sji:2qm =4q¢“™m " = 2¢°™

9
_ 2m—2 1
=4q — Dij-
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Fori=1land2<j=k<1, from p{j :pg1 = (2¢™ 1 —1)(¢™ ! + 1) we have

sjlj — 5:;1 — (2qm—1 + 1)(qm—1 _ 1) — 4q2m—2 _ (2q2m—2 + qm—l _ 1) _ 2

Fori=1,1<j<%,2<k<%andj#k, from p’fj :p;?l =2¢"" (g™ ! + 1) we have

Slf] = 5?1 = 2qm*1(qm71 o 1) _ 4q2m72 o qufl(qul I 1)

= 4q2m72 - P]fj'

For 2 <i,j,k < &, pf 4+ p3 + pi =0 and ¢ (ujluk) =1, from pf’j = ¢ 1(2¢™ ! + 1) we have

Si‘Cj — qm—1(2qm—1 _ 1) — 4q2m—2 _ qm—l(zqm—l + 1)

— 4q2m72 _piﬂj

For 2 <i,j,k < §, 2 + i + i = 0 and ¢ (1) =0, from pf; = ¢"~(2¢™ 1 ~ 1) we have

Sfj — qm—1(2qm—1 + 1) — 4q2m—2 _ qm—l(qu—l _ 1)
— 422 _p%
For 2 < i, j,k < &, 2 + u2 + 1, # 0 and ¢(rije) = $()y;,) = 1, from pl; = 24" (¢™ " + 1) we
have
S?j B qu—1<qm—1 _ 1) _ 4q2m—2 _ 2qm—1(qm—1 + 1)
— 422 —pfj-
For 2 <i,j,k < §, pf + 43 + i # 0 and ¢(kijn) = ¢(kiy;,) = 0, from pf; = 2™~ (¢™ ™' — 1) we
have

s?j _ qu—l(qm—l + 1) _ 4q2m—2 _ 2qm—1(qm—1 _ 1)

= 447" % — pfj;.

For 2 <i,j,k < &, i + i3 + pjy # 0 and {¢(kijn), d(kiy) } = {0, 1}, from pf; = 2¢*™2 we have

2m—2 _ 4 2m—2 2 2m—2

s = 2q q q

— 4q2m—2 _picj

This proves Lemma [3.2.11
O

Theorem 3.2.2. For m > 2, the character table P~ = (s;(i)) of X(GO2m+1(q),©) is described

as

L (@™ =1 +1) ¢ g™ +1) ... ¢" g™ +1)
1 —(¢g—2)g™ 1t -1 2¢m 1 .. 2¢m1
p=|1 ("' -1)
(_qm_lxm’)?gi,jg%
L@
That 1is,

so(i) =1 for0<i<?

5;(0)=h; for0<j<4i

51(i) = —p1(i) =2 for1<i< 1

5;(1) = —p;j(i) for1<i<i 2<j<4d



Proof. In the same way as the proof of Theorem B.1.2] we verify the following equality:

Z siisall) = si(l)s; (1)

for all 4,5, € {0,1,...,2}.
(i) Suppose first i = j
that

q
2

Z 5050 (1) = 89, 50(1) + 51,51 (1) + Z sT18al(l

a=0
= (g™ =1)(¢™+1)
—4¢""pr (D) + prypr (1) + 4p1 (1) — 2{¢™ ' (2¢" " —q+ 1) — 2}

2
42N " pa(l) + D pfipall)
a=0 a=0

+4¢°™ 2 +4¢°™ 21 (1)

[SIS)

— (@™ "+ )" = 1) = p1yp(l) by pd; = (¢™ "t +1)(q

=pi(1)? +4p1 (1) + 4
= (p1(1) +2)?
= Sl(l)z.

(ii) Suppose i = 1,1 < j < 4 and 1 <1< 4, then

Zsljsa = s{;50(1) + s1;51(1) +sljs] —I—Zsljsa
asﬁj
= —4q2m *pr(l) + p1pa(l) — 472
¢t (l)+p13p;()+2pj(l)

4g>m =2 Zpam + Z p§;pall)
a=0 a=0
+ 4q2m—2 + 4q2m_2p1(l) +4q2m_2pj(l)
— pYpo(l) — p1,p1(l) — pi,p; (1)
= p1(D)p; (1) +2p; (1)

= (pr(1) +2)p; (1)
= Sl(l)Sj (l)

(iii) Suppose 1 <1< %, j=1and 1 <<, then

2511% ) = stiso(l) + sjs1(1) + syl +25z15a
a;éz
— _4q2m 2 )+p11p1<l) 4q2m 2
K ( ) +pipi(l) + 2pi(l)

a
2

27n 2 Zpa + Z lea
= a=0
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=1land 1 <[ <, then using the equality (Il) and Lemma B.2ZT] we see

m_l),



4 4q2m—2 4 4q2m—2p1(l) + 4q2m_2pi(l)
— pipo(l) — pipr(l) — plipi(l)

= pi(D)p1 (1) + 2pi(1)

=pi(1)(pr(1) +2)

(iv) Suppose 1 <i=j < % and 1 <1< 4, then

g 5%50(1) = s%s0(1) + s3;51(1 —|—E $%8q/(1

=q" g™ +1)
—4¢*™ ?p (l) +pipi(D) — 2" (24" + 1)

[N

(M)

2m ? Zpa + zzp()t(l)

a=0
+ 4¢*™™ 2+4t12m *p1(1)
—q¢" M (¢™ = 1) = pipa(l) by p = ¢™ (g™ — 1),
=pi(l)®
= Si(l)z.

(v)Finally, suppose 1 <i,j < 4,i# jand 1 <[ < 1, then

E sljsa —s so( —|—s 81 —|—E s”sa

= —4¢*"" 2p1(l)+pijp1(1)—4q2m ?

3 3
472N " pa(l) + > pfpall)
a=0 a=0
+4¢°" % + 46" 2 ()
— i — pigpr(l)
=pi(l)p;(1)
= si(1)s;(1).
This completes the proof of Theorem O

It is known that the character table P~ = (5,(i)) of X(GO3(q), ©3(q)) is described as follows
(cf. Bannai-Kwok-Song [6 p.139, Remark 1.]):

1 (¢g+1) ... (¢+1)
pP=1 . (88)
: (_Xij)Qgi,jgg
1
Thus it follows from Theorem that the character table of X(GOa,11(q), O2m+1(q)) is con-
trolled by that of X(GO3(q),©3(q)), by replacing ¢ — ¢™ L.

4 Subschemes

4.1 Subschemes of X(GO21,11(q), Q2m+1(q))

First of all, we prove the following theorem:
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Theorem 4.1.1. X(GO21,11(q), Qom+1(q)) is a subscheme of X(GOs(¢™), Q3(¢™)).

The underlying vector space V is decomposed as
V = (e11,e21)L ... L{e1m,eam)L(r),
where {e1;,e2;} (1 <i < m) are hyperbolic pairs and as usual Q(r) = 1. Let
U:=(e11,e01)L ... L{e1m,eam)

be an element in Qa,11(q), then f|y is a non-degenerate alternating bilinear form on U. The
symplectic group Spam(q) is the group of all elements of GLa,,(¢) = GL(U) which preserve the
non-degenerate alternating bilinear form f|. More precisely,

Spam(q) := {7 € GLU) | flu(t(u),7(v)) = flu(u,v) for all u,v € U}.

It is well known that the orthogonal group GOay,+1(q) is isomorphic to the symplectic group
Spam(q) for even g, but we review this again in a form convenient for our purpose.
Let EO .V — U, E® .V — (r) be the orthogonal projections, and define a mapping

D : G02m+1(Q) — Sp2m(Q) by
o(A) = AV,

for A € GOgp,41(q), where ' 4
AD = EDA (1 =1,2).

Then we have the following:

Proposition 4.1.2. The mapping ® : GOsy,11(q) — Spam(q) is well-defined. Moreover, ® is an
isomorphism of GOap,11(q) onto Spam(q).

Proof. Let A be an element in GOz;,,41(q). Then since A does not move the vector r we have
(AM)=1(0) = (r), so that

rank AV |y = dim AVU = dimU — dim U N (r) = dim U = 2m.
Thus ®(A) is an element in GL(U). Also since AV is equal to the radical (r) of f, we obtain
F(AW Y, ADp) = F(AD Y + AP u, AWy + AP y) = f(Au, Av) = f(u,v),

for all w,v € U, which implies that ®(A) belongs to Spa;,(q), namely, the mapping ® is well-
defined. This mapping ® is also a homomorphism. To show this, let A and A’ be two elements in
GOa1n11(q). Then since (EMWAE® ANV = EM(r) = 0, we have

EWAA = EMWAED + EOYA' = EWAEW A + EOAE@ A’ = EWAED 47

so that ®(AA") = O(A)D(A’).
It remains to show that ® is a bijection. Suppose ®(A) = idy. Then for any vector u in U we
have

Qu) = Q(Au) = Q(u+ A®u) = Q(u) + QAP u),

from which it follows that A®u = 0, since otherwise Q(A®)u) cannot be zero by Q(r) = 1.
Consequently Au = u for all u € U, that is A|y = idy. This implies A = idy since V = U _L(r).
Thus @ is injective. Finally let B be an element in Sps,,(q) and define an element A in GL(V) by

Ae;j = Be;j + \/Q(Beij) r, fori=1,2and1<j <m, (89)
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Then we have Q(Ae;;) =0 for i = 1,2 and 1 < j < m, and for any vector v = 3, - §jeq; + &r in
V we have

Q(Av) = Z &l f(Aeyy, Aegy) + €
igkl

= Y &iéuf(Beij, Ber) + &

.3,k

= > &Gibufleijen) +€

i3kl
=Q(v),

which implies that A is an element in GOzm41(¢), and clearly we have ®(A) = B. Thus & is
surjective. This completes the proof of Proposition O

Let L be the stabilizer of U in GOa,,41(q), then L is isomorphic to GO, (¢). From (89) we
have the following:

Corollary 4.1.3. Let B be an element in Spay,(q). Then ®~1(B) is contained in L if and only if
Q(Be;j) =0 foralli=1,2 and 1 < j <m.

Next, let Vo be a 3-dimensional vector space over Fym, and let Qp : Vo — Fgm be a non-
degenerate quadratic form on V, with associated alternating bilinear form fy : Vo X Vo — Fym.
Then Vj is decomposed as

VO = <€1,62>J_<7’0>

where {e1, es} is a hyperbolic pair and Qg(rg) = 1. Let
U() = <61,€2>

be an element in Q3(¢™), then fo|y, is a non-degenerate alternating bilinear form on Uy. Seroussi-
Lempel [I3] proved that for even ¢ there exists a trace-orthonormal basis {wi,ws, ... ,wy} of Fgm
over IFy, that is,

Trp, m /v, (Wiw;) = dij, (90)

where Try . /5, : Fgm — Fg is the trace map from Fym onto Fy. Since U and Up are both 2m-
dimensional vector space over F,, we may identify e;; with w;e; fori =1,2and 1 <j <m, and U
with Up. Under this identification, GLy(¢™) is naturally embedded in G Loy, (q).

Proposition 4.1.4. Spy(¢™) is a subgroup of Spam(q).

Proof. Let u= 3%, ;&jei; and v =3, i mije;; be two vectors in U, and let §; := wi+++ +E&mwm
and 7; := nw1 + -+ + Nimwa, for i = 1,2, Then by ([@0) we have
Trg, . /v, (folu, (u,v)) = Trg . e, (folu, (§1€1 + Eae2,m1e1 + n2e2))
= Ty, /w, (E1772 + E2m1)
= TI"Iqu/]Fq((fnw1 + o mwm) (M21w1 + -+ Namwim)
+ (§21w1 + -+ Eamwm) (M1ws + - + Nimwim))
=&unt + -+ &mMam + 2111 + -+ Somim
= flu(u,v).

Hence any element in Spa(¢™) also preserves the alternating form f|y, which proves Proposition

414 O

It follows immediately from Proposition[4.T.21and Proposition [T 4that GO3(¢™) is a subgroup
of GO2y,41(q). Furthermore we have the following:

Proposition 4.1.5. Let Lo be the stabilizer of Uy in GO3(q™), then GO3(¢™) N L = Ly.
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Proof. For any element By = (: g) in Sp2(¢™), let B be the corresponding element in Spa,(q),

that is, B is the mapping obtained by regarding By as a linear mapping over F,. Thenfor1 < j <m
we have

Belj = Bo(Wjel) = awjeq —+ YWj€2
= aji1€e11 + -+ Qjmeim + Y1621 + -+ Vime2am
where aw; = qjiwi ++ - -+ QjmWm, YWj = Yj1wi +- - - +Yjmwn for some o, ik € Fq (1 <k <m),
from which it follows that
Q(Bey;) = ajivji + + @jmYim = Trr o /F, (aw3).
Similarly for 1 < j < m we have
Begj = Bo(u)jeg) = 5Wj61 + 6wjeg
= Bj1e11 + - + Bjmeim + dj1€21 + -+ + Gjmeam

where fw; = Bj1w1 + -+ BjmwWm, 0wj = dj1w1 + -+ 0jmwn, for some B, 01 € Fg (1 <k <m),
from which it follows that

Q(Bezj) = Bj16j1 + -+ + Bjm0jm = Trr o r, (ﬂéw?)'

If ay = 30 = 0 then clearly Trg ,, /¢, (0w7) = Trp,,, /5, (B0w?) = 0 for all 1 < j < m. The converse

is also true. To show this, suppose contrary. Since {wi,ws,...,wn} is a basis of Fgm over Fy, so

is {wf, w3, ..., w2 }. Thus it follows that for all £ € Fym we have Trg,_,, /5, (£) = 0 since Tr,,, /5, is

a linear mapping, which is a contradiction. Therefore by Corollary EET.3] ®~*(B) is contained in
L if and only if ay = 86 = 0. In the same way as before let Eél) : Vo — Uy, E(()z) : Vo — (ro)
be the orthogonal projections, and define a mapping ®g : GO3(¢™) — Sp2(¢™) by
o(Ao) := A lu,
for Ay € GO3(¢™), where
AW = ED Ay (i =1,2).

Since actually we chose m arbitrarily, it also follows that ®; Y(By) is contained in Lg if and only
if ay = 86 = 0, which proves Proposition [4.1.5] O

Remark. As is in the proof of Proposition LTS, GO3 (q) is isomorphic to

W) (o ) emp

which is in turn isomorphic to the dihedral group Dy(4—1y of order 2(q — 1).

By Proposition the containment relations among GOspy1(q), GO (q), GO3(¢™) and
GO (¢™) are displayed in the following diagram:

GOamy1(q) D GO3,(q)
U U
GOs(¢™) > GOz (q™)
where GO3(¢™) N GO, (q) = GOS (g™).
Proof of Theorem L1l Tt follows from the above diagram that each left coset of GOa,,41(q) by
GO, (q) contains at most one left coset of GO3(¢™) by GOj5 (¢™), since for any two elements

Ag, A}y in GO3(¢™), we have Ayt A € GOS (¢™) if and only if A;' Al € GO3, (q). Moreover from
@) it follows that

GO 11(q) : GO3,,(g)] = |GO3(q™) : GOF (g )|:q<q2i>,
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so that each left coset of GOa,,11(q) by GO, (q) contains exactly one left coset of GO3(¢™) by
GOZ (¢™). Therefore the action of GO3(¢™) on GOa,,11(q)/GO3,,(q) is equivalent to the action
on GO3(q™)/GOF (¢™), which completes the proof of Theorem EIIl O

From now on, we determine how to merge the relations of X(GO3(g™),Q23(¢™)) to get the
subscheme X(GO2m+1(q), Q2m+1(q)). We use the notation in the proof of Proposition 1.5l and
also we mainly use the symbol “~” to stand for GO3(q"™) case. Namely we let 7 be a primitive
element of Fym, and define

and
i 1= \/5\12 +5\i.

Also we let {Ri}ogzs% denotes the set of relations of X(GO3(¢™), Q3(g™)).

(i) Define a mapping Ag : Vo — Vj by

Apey :=e1 + ez + 1o,
Apes 1= eg,

A()TO =T0.

Then we have Qo(A4pe1) = Qo(Aoez) = 0 and fo(Aper, Agea) = 1 so that Ap is an element in
GO3(qg™). Let Vp := AgUy € Q3(g™), then we have

UynNVy= <62>L NUy = <€2>l NV,

from which it follows that (Up, Vo) € R;. By definition, the mapping By := Do(Ag) € Sp2(q™) is
defined by

Bger = e1 + e,

B0€2 = €92.
Let B denotes the element in Sps,,(q) corresponding to By, then B is given by

Belj = Bo(wjel) = wjel + Wjea = €15 + €25,

Begj = Bo(wjeg) = Wwjea = €2;.
Since Q(Bey;) =1 and Q(Bey;) = 0, it follows from (BJ) that A := ®~!(B) is obtained as

Aeljzeij::61j+62j+r for1 <j<m,
Aegj = ey i=eg; for1<j<m,
Ar=r.

Let V := AU be an element in Q9,,11(¢), and define a vector w in U NV by
W= €91 + €22+ -+ €om = €hy + €hy + -+ €.
Then w # 0 and it follows that
UnV ={(w)*nU = (w)*nV.

To show this, let y = . j &j e;j be a vector in V orthogonal to w, then the r-component of y with
respect to the basis {e;;}; ; U {r} is equal to

Sut+&t -+ &m = flw,y) =0,

so that y belongs to U NV, as desired. Since Q(w) = 0 we have (U, V) € Ry. That is, the relation
R; is merged into the relation R;.
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(ii) Next, for 2 <[ < qu define a mapping Ay : Vo — Vg by

Agey =€} = (;\l +1)es + Nes + 70,
Ages = el := Ner + (A + L)ea + ji 7o,

A()T'Q =T0.

Then we have Qg(e]) = Qo(es) = 0 and fo(e},e5) = 1 so that Ay is an element in GO3(¢™). Let
Vo := ApUy € Q3(¢™), and let wp := e1 + e = €] + € be a vector in Uy N Vj, then we have

UynNnVy= (w0>L NUy = <w0)l NVo.

Since Qo(wo) = 1, foler,wo) = fo(eh,wo) = 1 and e1 + ¢} = Nwo + fu o, it follows that (Up, Vo) €
R;. The mapping By := ®o(Ag) € Spa(¢™) is defined by
Boer = (M + er + Nea,
Boez = Ney + (5\1 + 1es.
Let )
Awj = Ajjiws + -+ Ajjmwm for 1 <j <m,

and
= piw + - fmWm,

for some Ak, pur € Fy. Notice that the coefficients Ajjx, i are given by

Njke = Trp_ jr, (Nwjwr)  and g, = Trs, . /5, (fuw), (91)
for 1 < j,k < m. Let B be the element in Spa,,(g) corresponding to By. Then we have
Belj = (5\1 + 1)wj€1 + ;\le'(ig
= Nji(err +e21) + -+ Njm(erm + eam) +e15, forl <j<m,
BEQj = 5\[(4)]'61 + (5\1 + l)wjeg
= Ajji(enn +ean) + - -+ Ajm(eim + eam) + €25, forl <j<m.
Since from ([9T])
= T‘I‘qu /Fq (A%w?) + TI']qu /Fq ()\lw.?)
= Trg, . /¥, (A{w)
= :ul2j7
it follows from (B9) that the mapping A := ®~1(B) € GO2,,,11(q) is given by
Aeyj = ey = Niji(enn +ean) + -+ ANjmleim + €am) + 15 + pyr,  for 1 <j <m,
Aegj = ey = Aiji(enr +e21) + -+ + Ajjm(€im + €am) + €25 + pyr, for1 < j <m,

Ar =r.

Let V := AU be an element in Qs,,11(q). Notice that since fi; # 0 the number of f;; equal to 0 is
at most m — 1. Define a vector w’ in U NV by

w = pr(enn +e21) + - 4 fum(e1m + e2m)
= Mll(elll + 6/21) +o 4+ :ulm(ellm + eIQm)
Then w’ # 0 and it follows that

UnV =@\t nU = @)+ nV.
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To show this, let y = Zi,j §ije§j be a vector in V orthogonal to w’, then the r-component of y

with respect to the basis {e;;}; ; U {r} is equal to

(C11+ &) + - 4 (Em + Eam)ium = f(w',y) =0,

so that y is contained in U NV, as desired. Also we have

Q(w/) = :ul21 + -+ UlQm = TI‘]qu /Fq ([le)’

from which it follows that (U, V) € Ry if and only if

Tre, . v, (fi7) = 0,

or equivalently ~ ~
TI‘]Fqm /Fq ()\l) = 0 or TI‘]qu /Fq (>\l) =1.

Suppose Trg, . /¢, (A7) # 0, so that (U, V) & Ry. Let

[l
% = Xuw1 + -+ XimWm,
l

for xir € Fy (1 <k <'m), that is,

Xik = T/, (’;lwk> (1<k<m),
1

and define two vector v’ € U and v’ € V by

I
u = x11€e11 + -+ Xim€im,

v =Xneh o Xim €
Then we have Q(u') = Q(v') =0, and

u' 40" = x(enn +€q) + 4 Xim(€1m + €hn)

=> x; ( > Njr(err + ear) + Hljr)

k=1

Jj=1

Now it follows from (@) that

m m

. ]
> Xtk = Xighikg = s w, (g)\lwk) = Trg, . 6, (fuwk) = par,
l

j=1 j=1

for 1 <k <m. Also

- iy - N
> Xijtug = Trp, , (5\#1) = Trpm /7, (N + 1)
j=1 !

Hence we have

u +v = Zﬂlk(elk + ear) + (Tr]qu/IFq (5\[ + 1))7“

k=1
=w + (TI‘]qu/]Fq (5\1 + 1))7“,

so that
U=, w)lW, V=" w)LW,

40

= Z (ZXI;Njk) (e1x + ear) + (lej,ulj)T'
j=1



where W := (v/,w)t NU Cc UNV. It also follows from (@5]) and (@) that

f' W) = fu' ') = f(u',w') = ZXUNU = Tr]qu/IFq(S\l +1). (98)

j=1

Here Trg,,, /Fq(j\l + 1) # 0 by assumption. Define

and

1 !/
W= ————7w,
Trg,m /v, (1)
e ) T )
Trg,m /v, (N + 1) Trg,m /r, (N + 1)

Then Q(u) = Q(v) =0, and it follows from ([@2), (@F), (@70 that Q(w) =1, f(u,w) = f(v,w) =1,

and

U= (u,w)ylW, V= (v,w)lW.

Also by (@8]) we have

Trg, . r, (A7) (Trp, . /i, (N)) (T2 y, (N) + 1)

N Tr]pqm /Fq (5\1 + 1) Tr[qu /F, (5\1 + 1)

) Trp 0 ym, (5\1) if m: odd,
a Tr]qu/]Fq(S\l) +1 if m: even.

f(u,v)

Thus (U, V) belongs to Ry, for some k € {2,3,..., 2} such that

Ak = Trp . /m, (N), or A= Trp, m /¥, (M) +1, (99)

which is equivalent to

e = Trp . /e, (fr)- (100)

To summarize we have the following:

Proposition 4.1.6. Define (4 — 1) relations Ry, Ry, .. ., Ry on Qs(g™) by

where

Ry=JR (1<j<y),

Sy

Then these (4 — 1) relations, together with Ry := Ry, form the subscheme of X(GO3(q™), Q3(q™))
isomorphic to X(GO2m11(q), Q2m+1(q))-

Corollary 4.1.7. X(GO2,11(q), Q2n11(q)) is a subscheme of X(GOapmy1(q™ ), Qams1(qm)) when-
ever m devides n.

Proof. This is an immediate consequence of Proposition and Lemma below (cf. Lidl-
Niederreiter [I0, p.56, Theorem 2.26]). In fact, these two association schemes are both subschemes
of X(GOs(q™),Q3(¢™)) by Theorem ETT] O

Lemma 4.1.8. If m devides n, then

Trp 5, = T0F m jF, © TIF 0 jFym -
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4.2 Subschemes of X(GOz2+1(q), O2m+1(q))

First of all, we prove the following theorem.

Theorem 4.2.1. X(GO2,1+1(q), O2m+1(q)) is a subscheme of X(GO3(¢™), O3(¢™)).

Let ¢ + ¢ + 7 be an irreducible polynomial over F,. Then the underlying vector space V is

decomposed as
V= <611, 621>J_ e J_<€1m, €2m>J_<’/’>,

where {611',621'} (
r

< i < m —1) are hyperbolic pairs, Q(e1m) = 1, Q(eam) = 7, f(e1m,e2m) =1
and as usual Q(r) = 1. Let

1
)=1.
U = <€11, 621>J_ e J_<€1m, 62m>
be an element in Og,,11(¢), then f|y is a non-degenerate alternating bilinear form on U. This
time, we consider the symplectic group Spa,,(q) with respect to f|y, that is,
Spam(q) := {1 € GLU) | flu(r(u),7(v)) = flu(u,v) for all u,v € U}.

Let EO .V — U, E® .V — (r) be the orthogonal projections, and define a mapping

U : GO2m41(q) — Spam(q) by
U(A) =AWV

for A € GOspny1(q), where 4 _
AD = EDA (i=1,2).

Then we have the following:

Proposition 4.2.2. The mapping ¥ : GO2,41(q) — Spam(q) is well-defined. Moreover, U is
an isomorphism of GOap11(q) onto Spam(q).

Proof. Let A be an element in GOgy,+1(q). Then since A does not move the vector r we have
(AM)=1(0) = (r), so that
rank AV|; = dim AVU = dimU — dim U N (r) = dim U = 2m.
Thus ¥(A) is an element in GL(U). Also since A®)V is equal to the radical (r) of f, we obtain
FADu, AW y) = F(ADu 4+ APy, Ay 4+ APy) = f(Au, Av) = f(u,v),

for all w,v € U, which implies that W(A) belongs to Spa,(¢), namely, the mapping ¥ is well-
defined. This mapping ¥ is also a homomorphism. To show this, let A and A’ be two elements in
GOap11(q). Then since (EMWAE® AW = EM(r) = 0, we have

EWAA = EMAED + EONYA' = EOAEMW A + EWAE® A = EMWAED A

so that W(AA") = U (A)P(A").
It remains to show that ¥ is a bijection. Suppose W(A) = idy. Then for any vector v in U we
have

Q(u) = Q(Au) = Q(u+ APu) = Q(u) + Q(APu),

from which it follows that A®)u = 0, since otherwise Q(A®)u) cannot be zero by Q(r) = 1.
Consequently Au = u for all u € U, that is A|y = ¢dy. This implies A = idy since V. = U_L(r).
Thus U is injective. Finally let B be an element in Spa,,(¢) and define an element A in GL(V) by

Ae;; = Be;; + \/Q(Beij) r, fori=1,2and1<j5<m-—1,

Aeyp := Beim, + (v Q(Beim) + 1), (101)
AeQm = Begy, + (\/ Q(Be%n) + \/7?)7"7
Ar:=r.
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Then we have Q(Ae;;) =0for i =1,2and 1 < j <m —1, Q(Aerm) = 1, Q(Aezy,) = 7 and for
any vector v =}, ; &jei; +&r in V we have

Q(Av) = Y &;ibuf(Aeij, Aew) + &1, + 785, + €

.9,k

= Y &éuf(Bey, Bey) + &1, + 763, + €
.3,k

= Y Gluf(ey,en) + &y + 75, + €
i,5,k,1

= Q(v),

which implies that A is an element in GOa,,41(q), and clearly we have ¥(A) = B. Thus ¥ is
surjective. This completes the proof of Proposition £.2.7] O

Let L be the stabilizer of U in GOap,41(q), then L is isomorphic to GO5,,(¢). From ([I0I) we
have the following:

Corollary 4.2.3. Let B be an element in Spam(q). Then V=1(B) is contained in L if and only if
Q(Beij) =0 foralli=1,2 and 1 <j<m—1, Q(Beim) =1 and Q(Beay) = 7.

Next, let Vo be a 3-dimensional vector space over Fym, and let Qo : Vg — Fym be a non-
degenerate quadratic form on V with associated alternating bilinear form fy : Vo X Vo — Fgm.
As mentioned before, there exists a trace-orthonormal basis {w1,ws, ..., wm} of Fgm over Fg, that
is,

TI‘]qu /]Fq (wiwj) = (Sij, (102)
where Try ,, /r, : Fgm — Fy is the trace map from Fym onto Fy (cf. ([@0)). Then the polynomial
w2 t2+t+7w2, € Fym[t] is irreducible over Fym. In order to show this, we make use of the following
lemma (cf. Lidl-Niederreiter [I0, p.56, Theorem 2.25]):

Lemma 4.2.4. A polynomial t> +t+a in Fq4[t] is irreducible over Fy if and only if Trg, /r, (o) = 1.
Since t? + t + 7 is irreducible over Fy, it follows from Lemma LT that
Trg, m /i, (Twy,) = Trg, s, (Trp, o v, (Twr,))
= T, /k, (1(Tg,m /5, (Wi))?)
= Trg, /i, (7)
= 17

so that (¢)2 4+t + mw?, € Fym[t'] is an irreducible polynomial over F,m. By putting ¢’ := w?2,¢, this
also implies that w2 t> +t + w2, € Fym[t] is irreducible over Fym, as desired.
Therefore Vj is decomposed as
V() = <€1, 62>J_<’I"0>

where Qo(e1) = wi,, Qole2) = mwy,, fo(er,e2) =1 and Qo(ro) = 1. Let
Uo = <€1,62>

be an element in ©3(¢™), then fy|y, is a non-degenerate alternating bilinear form on Uy. Since U
and Uy are both 2m-dimensional vector space over [y, we may identify e;; with wje; for i = 1,2
and 1 < j < m, and U with Uy. Under this identification, GL2(¢™) is naturally embedded in
GLop(q).

Proposition 4.2.5. Spy(¢™) is a subgroup of Spam(q).
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Proof. Let u = Ei’j &ijeijand v = Z” ni;j€i; be two vectors in U, and let &; 1= &rwi +- - -+ Eimwm
and 7; := njw1 + -+ + Nimwn, for i = 1,2. Then by ([I02)) we have
Trr,m /7, (folue (u, ) = Trp m r, (folu, (§161 + &2€2,me1 + Nn2€2))
= Trp, . /v, (E172 + E2m)
= Trg, . /r, ((§1101 + - + E1mwim) (M21w1 + -+ + N2mwin)
+ (L1w1 + -+ + Lamwin) (M1w1 + <+ - + Mmwim))
=&un + -+ EimNam + a1 + - Somim
= flu(u,v).

Hence any element in Sp2(¢™) also preserves the alternating form f|y, which proves Proposition
4.2.9l L

Tt follows immediately from Proposition .22 and Proposition 25 that GO3(¢™) is a subgroup
of GO2y,+1(q). Furthermore we have the following:

Proposition 4.2.6. Let Lo be the stabilizer of Uy in GO3(g¢™), then GO3(¢™) N L = Ly.

Proof. For any element By = (f{‘ g) in Spa(¢™), let B be the corresponding element in Span,(q),

that is, B is the mapping obtained by regarding By as a linear mapping over F,. Thenfor1 <j <m
we have

Beyj = Bo(wjer) = awjer + ywjes

= aj1e11 + -+ Qgmeim Y5121 + 0 Yimeam

where aw; = aj1w1 +- -+ QjmWm, YW; = V1w +- -+ Yjmwm for some aji, v € Fy (1 <k <m),
from which it follows that

Q(Belj) = 1%1 + 0+ GmYim T a?m + W’szm
= Trg,m /F, (aijz-) + (TI'[qu JF, (aijm))Q + 7 (Trr,m /F, (ijwm))2

= Trg, . F, ((0Pw?, + ay + WVQw;)w?).
Similarly for 1 < j < m we have

Begj = Bo((.djeg) = ﬂwj'(h + (Swj'(ig
= Bjre11 + - + Bjmeim + dj1€21 + - + Gjmeam

where fw; = Bjiw1 + - + BjmWm, 0w; = 0j1w1 + -+ §jmwn, for some B, 0, € Fy (1 <k <m),
from which it follows that

Q(Bezj) = Bj10j1 + -+ + Bjmjm + B, + 105,
= Trg, . /F, (B0w5) + (Tre, . jv, (Bwjwm))? + 7(Trp,m /v, (Owjwm))?
= Trg, . /v, ((B°wh, + 86 + w0°w), )w3).

Therefore by Corollary EE2Z3] U~1(B) is contained in L if and only if

1 ifj=m
Try .. aPw? + ay + 1y2w? Yw?) = ’
Fq /Fq(( m Y Y m) ]) 0 lf.]?ém,

and

m ifj =m,

T 2 2 5 62 2 2y
e (T T PO H RO = 0 iy fm,
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which is equivalent to

Qw2+ ay + Ty, = Wi, (103)

and
B2w2, + B + m6w?, = mw2,, (104)
since {w?,w3, ..., w2} is also a trace-orthonormal basis of Fym over Fy. In the same way as before

let Eél) : Vo — Uy, E(SQ) : Vo — (ro) be the orthogonal projections, and define a mapping
o : GO3(q™) — Sp2(q™) by
Wo(Ao) = A |1,
for Ag € GO3(¢™), where
A= EP Ay (i=1,2).

Then in this case Ag = ¥y ' (By) is given by

A061 = B061 + (\/ Qo(Boel) + wm)”f‘o,
Apes == Byes + (v/Qo(Boe2) + vVmwm)ro,
Ao’l’o =T0.

Thus it follows that Ag = W5 '(By) is contained in Ly if and only if (I03) and (I04) are satisfied,
which proves Proposition O

By Proposition the containment relations among GO2pm+1(q), GO5,,(q), GO3(¢™) and
GO, (¢™) are displayed in the following diagram:

GO2my1(q) D GO, (q)
U U
GO3(¢™) D GOy (q™)

where GO3(q™) N GOy, (q) = GOy (¢™).

Proof of Theorem 211l Tt follows from the above diagram that each left coset of GOa,41(q) by
GOs,,(q) contains at most one left coset of GO3(¢™) by GO5 (¢™), since for any two elements
Ap, A}y in GO3(¢™), we have Ayt A € GO, (¢™) if and only if Ayt Al € GO, (q). Moreover from
@) it follows that

GO  CO= ()] — my . o (omy) — " = 1)

GO2m11(q) : GO (@)] = GOs(¢™) : GO3 (¢")| = —5—,
so that each left coset of GOap41(q) by GOs,,(¢) contains exactly one left coset of GO3(¢™) by
GO3 (¢™). Therefore the action of GO3(¢™) on GO2,+1(q)/GO5,,(q) is equivalent to the action
on GOs3(¢™)/GO, (¢"), which completes the proof of Theorem E.2.1] O

From now on, we determine how to merge the relations of X(GO3(¢™),©3(¢™)) to get the
subscheme X(GO21,41(q), O2m+1(¢)). We use the notation in the proof of Proposition E2.0] and
in the same manner as previous subsection, we mainly use the symbol “~” to stand for GO3(¢™)
case. Namely we let 7 be a primitive element of Fym, and define

~i—1

~ v . m
)\i::W fOI‘2§ZSq7,
and
i = 5\12"‘5\1



Also we let Sy, S5, S5, ..., S,m denotes the relations of X(GO3(¢™),©5(¢™)).
For2<i1< % define a mapping Ag : Vg — Vg by

!
A061 = €1 = €1,

Al i

!

Ageg = €5 = —-€1+ ez + —ry,
w2, W,

A()TO =T0.

Then we have Qo (€}) = w?,, Qo(eh) = mw?, and fo(e}, eh) = 1 so that Ag is an element in GO3(¢™).
Let Vo := AgUp € ©3(¢™), and define three vectors wo, ug, vy by
1 1

— — U — — U
Wo = —€1 = —€4, Ug ‘= Wmea, Vo ‘= Wmtaq,
Wm Wm

then we have Qo(wo) = 1, Qo(uo) = Qo(vo), foluo,wo) = fo(vo, wo) = 1, and fo(uo,ve) = A
Hence it follows that (Uy, Vp) € S;. The mapping By := U(A4g) € Spa(¢™) is defined by

Boe = e,

Al
Boeg = —261 + es.
W,

m
Let 3
ij = Njpwr b A N for 1< j <m,
and [
Lrln = ppwi + -+ Wi,

for some A, pyy, € Fy. Notice that the coefficients A, p;, are given by

Nw; i

for 1 < j,k < m. Let B be the element in Sps,,(q) corresponding to By. Then we have

Beij =wje; = ey, forl <j<im,

Al
Be2j = —5 wjé1 +w]'€2
w2
m

:/\;j1611+"'+/\;jm61m+62j, for 1 <j<m.
Since from (I05)

Q(Begj) = (Agjm)2 + Ajjj

5\12%2 Aw?
= Tr]Fq’"/]Fq ( o.)2 ) +r:[‘r]qu/]Fq ( OJ2 )
~2.2
MW
= Tr]qu/IFq ( w2j )

m
= (NE;‘)Q,
for 1 <j<m—1, and

Q(Begm) = <)‘2mm)2 + )‘;mm + ™
= (Him)? +
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it follows from (I0I) that the mapping A := ¥~1(B) € GOg,,11(q) is given by

Aelj = e'lj = €15, for 1 S ] S m,
Aegj = € = Ajjie11 + -+ Njm€im + €25 + pyyr, for 1 <j <m,
Ar =r.

Let V := AU be an element in O,,11(q). Notice that since f # 0 the number of 1;; equal to 0 is
at most m — 1. Define a vector w’ in U NV by

w' = ppen + -+ fp€im
= :uglelll +ooeet ﬂ’;mellnw
then w’ # 0 and it follows that
Unv=w)*nU= @) nV.

To show this, let y = Z” §ije§j be a vector in V orthogonal to w’, then the r-component of y
with respect to the basis {e;;}; ; U {r} is equal to

621“;1 +eee me/J';m = f(w/a y) = 07
so that y is contained in U NV, as desired. Also by (I05) we have

Q(w') = (Him)* = Trp, e, (A7), (106)
from which it follows that (U, V) € S} if and only if
Tre, 5, (A7) = 0, (107)
or equivalently ~ R
TI‘]qu /IFQ ()\l) = 0 or TI‘]qu /IFq (>\l) =1. (108)

Suppose Trg,,. /r, (13) # 0, so that (U, V) & S;. Let

fuw
Tm = Xnwi + -+ XimWms
1

for xj, € Fy (1 <k <m), that is,

X;k:’I‘rqu/Fq (MS\ (A)k;) (1§k§m),
1
and define two vector v’ € U and v’ € V by

u't=Xpea + -+ X C2ms
v = X;16/21 oot Xgmel2m
Then we have Q(v') = Q(v') = 7(x},,)%, and

u v = (e +e) + o A X (2m + €5p)
m m
/ / li
= Z X1; < Aljreik + Nzﬂ")
j=1 k=1
m m m
! / / /
> <Z Xlﬁ‘ljk) €1k + ( le”lj) .
j=1

k=1 \j=1

Now it follows from (I05) that

m m ~ N ~
Hyw N Wi MWk
D XGAGK = D XAy = Tiem F, ( - ) = Tre,o g ( w ) = Hig:
m

2
)\l W

Jj=1 Jj=1
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for 1 <k <m. Also

m ~ ~

HiwWm, [ j. X
E X5 = Tr8 m /E, ( = 7) = T, m /¥, (;\*M) = Trg, . yp, (N + 1).
j=1 !

Al Wm

Hence we have

u’ + v = Z/U‘gkelk + (TI‘]qu/]Fq (5\1 -+ 1))7“
k=1

=w' + (Tr]qu/]Fq (5\[ + 1))7",
so that
U=, w)YlW, V={" w)LW,
where W := (v/,w’)t NU CUNV. It also follows from ([09) and (II0) that

f ) = f(u',w') = f(v',w') = ngjufj = Tr]qu/Fq(S\l +1).
j=1

Here Try,,, /]Fq(j\l + 1) # 0 by assumption. Define

R 1 /
U T e, )
and
Trg,m /v, () o b Tre, . /v, (1) "

b

u B~ — o ~
TI‘]qu /Fq ()\l + 1) TI‘qu /Fq ()\l + 1)

(109)

(110)

(111)

(112)

Then Q(u) = Q(v), and it follows from ([I06), (I12), (III) that Q(w) =1, f(u,w) = f(v,w) =1,

and
U= (u,w)ylW, V= (v,w)lW.

Also by ([II2)) we have

Trg, . r, (A7) (Trp,m /v, (\)) (Trg,m (\) +1)

flu,v) = < = z
TI']qu /]Fq ()\l —|— 1) TTIqu /]Fq ()\l + 1)

) Trp . yr, (5\1) if m: odd,
B TrF,m /F, (A)+1 if m: even.
Thus (U, V') belongs to S, for some k € {2,3,...,2} such that

Ae = Trg o jw, (M), 0 Ae = Trp_, g, (N) + 1,

which is equivalent to
e = Trp . e, (f)-

To summarize we have the following:
Proposition 4.2.7. Define ( — 1) relations S1,52,...,51 on ©3(¢™) by
Si=J8 (<j<),
1€E]
where
2 ={ie{2.3,..., 4} Trp . m, (i) = 0},
E; = {ie{2733"'7%}|Trqu/Fq(ﬂi)::u‘j} (QSJS

[S]ESY

).

(113)

(114)

Then these (4 — 1) relations, together with So := So, form the subscheme of X(GO3(q™), ©3(q™))

isomorphic to X(GO2m+1(q), O2m+1(q)).
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Corollary 4.2.8. X(GOa2,,41(q),02,+1(q)) is a subscheme of X(GOz2m11(q™), Oapmy1(q™)) when-
ever m devides n.

Proof. This is an immediate consequence of Proposition [£.2.7] and Lemma[Z.T.8 In fact, these two
association schemes are both subschemes of X(GO3(q"), ©3(¢™)) by Theorem L2111 O

5 Remarks

Remark 1. The association scheme X(GO3(q), O3(q)) (for even q) is a quotient association scheme
(cf. Bannai-Tto [4, §2.9]) of the association scheme X(GL2(q), GL2(q)/GL1(g*)) which is defined
by the action of the general linear group GLy(q) on the finite upper half plane H, = Fg\F,.
Terras [I5] gives details on the property of the finite upper half plane. The original motivation
of this research, which was proposed by Professor E. Bannai, was to find a connection between
two association schemes X(GO2y,11(q), O2m+1(q)) and X(G Lo (q), GL2m(q)/G Ly (g?)), which is
considered as a possible candidate of higher dimensional analogue of the finite upper half plane.
Though I have not found such a connection yet, recently I determined the exact decomposition
of the permutation character 122;52%) into the irreducible characters. One obtains the list in the
following tables:

The Decomposition of 1@2;82), with q : odd.
Type Degree Frequency
109 1
1% *(¢®+1) 2
1(4) qG 1
10910 (¢ +1)(a* +q+1) 2
21 a(@® +1)(@ +4+1) 1
1212 (¢ +1)(¢* +q+1) 52
1010 g+ 1)+ 1) (g g+ 1) 12
1) S a(a+1)(@ +1)(¢* +q+1) =
IOIOIOIO (g +1)%(¢” + 1)@ +q+1) (=)
1o (4= 1)(¢* +1)(¢* +q+1) i
1@t a(q = 1)(¢* + 1)(¢* +q+1) =
IOIOnO (- D+ D@ D@ g+ R
2
I (@—1)%* +q+1) =
1 ¢*(q = 1% +q+1) =
1O (q— 1)2(q2 + 1)(q2 +q+1) (q—l)s(q—3) + (11—41)2
vt (= 1%+ 1) +q+1) S S

# of irreducible characters = ¢(q + 1)
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The Decomposition of 1%‘;8%, with q : even.

Type Degree Frequency
109 1 1
1% ¢(*+1) 1
119105 >+ 1)(*+q+1) T h
121 P+ 1) +q+1) =
ISR (@+ 1)@+ 1> +q+1) o
W11 (@+ 12+ 1) (2 +q+1) (q72)8(q74)
9™ (=D +1D(+q+1) Z
1010 (= 1)(g+ D(@® + 1)(® + g +1) fe?)
1 (¢— 1% +q+1) 3
1 Pla—1)%*(+q+1) g
A (¢ — 1)2(q2 + 1)(q2 +q+1) q(qg2) + a(g—2)
v (¢—1%(q+1)(?+q+1) L

# of irreducible characters = g(q + 1)

In these tables, types of irreducible characters are described in terms of pairs of monic irreducible
polyomials over Fy and partitions (cf. Macdonald [I1l, Chapter IV.]). It follows that the association
scheme X(GL4(q), GL4(q)/GL2(g?)) is a (commutative) association scheme of class g(q + 1).

Remark 2. The association scheme X(GO3(q),23(q)) (for even g) is isomorphic to the association
scheme X(PGL3(q), PGL2(q)/Daq—1)), where Dy(y_1y is the dihedral group of order 2(¢—1). This
association scheme is obtained by the action of the projective general linear group PGLs(g) on
the set of two-element subsets of the projective geometry PG(1,q), and is studied by de Caen
- van Dam [7]. According to [7], the association scheme X(PGL2(q), PGL2(q)/D2(q—1)) has the
following subschemes:

e subschemes defined by the action of the overgroup PI'Ls(q),

o for ¢ =47 (f > 2), a subscheme of class 4 whose character table P is given as follows:

1 247 —1) 2/1-1n@-1) 2/71@4f—1) 2/t -1 -1)

1 4/ -3 2—2f —2f —2f(2f - 2)
P=11 -2 2/=12f —1)+1  —2f71(2f +1) 2/ ,
1 —2 2t -1 -1) 2/ @2/ -1) —2f(2F —2)

1 -2 1-2f 0 2/

where PT'Ly(q) is the semidirect product of PGL2(q) with the Galois group Gal(F,/F,). More
precisely, the existence of the above 4-class subscheme was a conjecture, and this cojecture was
proved in [14]. Tt follows from Theorem FTT] and Theorem 2] that we have found another kind
of subschemes of X(PGL3(q), PGL2(q)/Dag—1))-

Remark 3. Professor E. Bannai has pointed out that some graphs obtained from the relations
of our association schemes are Ramanujan graphs, that is, regular graphs having good ezpansion
constants (cf. Terras [I5, Chapter 3.]).
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