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Introduction

An association scheme X = (X, {Ri}0≤i≤d) of class d is a pair of a finite set X and a set of
nontrivial relations {Ri}0≤i≤d on X satisfying the following four conditions:

(i) R0 = {(x, x) ∈ X × X |x ∈ X},

(ii) R0 ∪ R1 ∪ · · · ∪ Rd = X × X and Ri ∩ Rj = ∅ if i ̸= j,

(iii) for each i ∈ {0, 1, . . . , d}, there exists some i′ ∈ {0, 1, . . . , d} such that tRi = Ri′ holds, where
tRi := {(y, x) ∈ X × X | (x, y) ∈ Ri},

(iv) for each (orderd) triple i, j, k ∈ {0, 1, . . . , d}, the cardinality of the set {z ∈ X | (x, z) ∈
Ri, (z, y) ∈ Rj}, which is denoted by pk

ij , does not depend on the choice of x, y ∈ X under
the condition (x, y) ∈ Rk.

The numbers pk
ij in condition (iv) are called the intersection numbers of X = (X, {Ri}0≤i≤d), and

in particular we call the numbers ki := p0
ii′ =

∣∣{z ∈ X | (x, z) ∈ Ri}
∣∣ (0 ≤ i ≤ d) the valencies of

X = (X, {Ri}0≤i≤d).
Let Ai be the adjacency matrix with respect to the relation Ri, that is,

(Ai)x,y :=

{
1 if (x, y) ∈ Ri

0 if (x, y) /∈ Ri,

then, since AiAj =
∑d

k=0 pk
ijAk by condition (iii), A0, A1, . . . , Ad generates an algebra A over the

complex field C of dimension d+1. We call this algebra the Bose-Mesner algebra of the association
scheme. We say that an association scheme X = (X, {Ri}0≤i≤d) is commutative, if the Bose-Mesner
algebra is commutative, or equivalently, if pk

ij = pk
ji holds for all i, j, k ∈ {0, 1, . . . , d}. A symmetric

association scheme is an association scheme X = (X, {Ri}0≤i≤d) which satisfies tRi = Ri for all
i ∈ {0, 1, . . . , d}. Notice that a symmetric association scheme is a commutative association scheme.

Let X = (X, {Ri}0≤i≤d) be a commutative association scheme, then the Bose-Mesner algebra
has a unique set of primitive idempotents E0 = 1

|X|J,E1, . . . , Ed, where J is the matrix whose
entries are all 1 (cf. Bannai-Ito [4, §2.3.]). Let

Ai =
d∑

j=0

pi(j)Ej .

Then the (d + 1) by (d + 1) matrix P whose (j, i)-entry is pi(j), is called the character table or
the first eigenmatrix of the association scheme. The character table P of an association scheme
X = (X, {Ri}0≤i≤d) satisfies the orthogonality relations (cf. Bannai-Ito [4, p.62, Theorem 3.5.]):

(i) (The First Orthogonality Relation)

d∑
α=0

1
kα

pα(i)pα(j) =
|X|
mi

δij ,

(ii) (The Second Orthogonality Relation)

d∑
α=0

mαpi(α)pj(α) = |X|kiδij ,

where mi := rankEi = tr Ei (0 ≤ i ≤ d), and δij is the Kronecker delta. The numbers mi are
called the multiplicities of X = (X, {Ri}0≤i≤d). In particular we shall use the following equality:

d∑
α=0

pα(i) = 0, if 1 ≤ i ≤ d. (1)
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A subassociation scheme (or simply subscheme) of an association scheme X = (X, {Ri}0≤i≤d)
is an association scheme X′ = (X, {Sj}0≤j≤d′) where each relation Sj , j ∈ {0, 1, . . . , d′} is a union
of some Ri’s. It is an interesting problem to find all the subschemes of an association scheme.
Bannai [1, Lemma 1.] showed that any subscheme of a given commutative association scheme is
obtained by partitioning its character table into appropriate blocks.

It is natural to regard association schemes as a combinatorial interpretation of finite transitive
permutation groups. Let G be a finite group acting transitively on a finite set X. Then G acts
naturally on X × X in such a way that

(x, y)g := (xg, xg) for (x, y) ∈ X × X, g ∈ G,

and we can easily verify that the orbits of G acting on X × X (which are called the orbitals)
satisfy the above four conditions (cf. Bannai-Ito [4, p.53, Example 2.1.]), that is, the action of G
on X ×X defines an association scheme. We denote this association scheme by X(G,X). It is well
known that X(G,X) is commutative if and only if the permutation character 1G

H is multiplicity-free
where H is the stabilizer of an element of X, namely each irreducible character of G occurs in the
decomposition with multiplicity at most 1 (cf. Bannai-Ito [4, p.49, Theorem 1.4.]). If X(G,X) is
commutative, then determining the character table of X(G,X) is equivalent to determining all the
zonal spherical functions of G on X (cf. Bannai-Ito [4, §2.11.]).

In this paper, we study the association schemes defined by the action of the orthogonal groups
GO2m+1(q) over the finite fields of characteristic 2, on the set Ω = Ω2m+1(q) of positive-type
hyperplanes and on the set Θ = Θ2m+1(q) of negative-type hyperplanes. These association schemes
are isomorphic to the association schemes defined by the action of GO2m+1(q) on the set of cosets
by GO+

2m(q) and on the set of cosets by GO−
2m(q), respectively.

This paper is organized as follows:

Introduction.

1. Preliminary;

1.1. Quadratic forms and orthogonal groups.

1.2. Description of the relations.

2. Computation of parameters;

2.1. The parameters of X(GO2m+1(q), Ω2m+1(q)).

2.2. The parameters of X(GO2m+1(q), Θ2m+1(q)).

3. Character tables;

3.1. The character tables of X(GO2m+1(q), Ω2m+1(q)).

3.2. The character tables of X(GO2m+1(q), Θ2m+1(q)).

4. Subschemes;

4.1. Subschemes of X(GO2m+1(q), Ω2m+1(q)).

4.2. Subschemes of X(GO2m+1(q), Θ2m+1(q)).

5. Remarks.

In section 3, we calculate the character tables of these association schemes. In fact, we will show
that the character tables of X(GO2m+1(q),Ω2m+1(q)) and X(GO2m+1(q),Θ2m+1(q)) are controlled
by the character tables of X(GO3(q),Ω3(q)) and X(GO3(q),Θ3(q)), respectively, by the replacement
q → qm−1. It is known that such phenomena occur in many cases (cf. Bannai-Hao-Song [2], Bannai-
Hao-Song-Wei [3], Kwok [9], Bannai-Kawanaka-Song [5]). Our method of calculating character
tables follows Bannai-Hao-Song [2, §6,7] in all essential points, where they determined the character
tables of the association schemes obtained from the action of finite orthogonal groups on the sets of
non-isotropic projective points. Actually, the association schemes treated in this paper correspond
to the case of even q.
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In section 4, we first show that X(GO2m+1(q),Ω2m+1(q)) and X(GO2m+1(q),Θ2m+1(q)) are
subschemes of X(GO3(qm),Ω3(qm)) and X(GO3(qm),Θ3(qm)), respectively. Then we write down
all the relations of these subschemes from those of X(GO3(qm),Ω3(qm)) and X(GO3(qm),Θ3(qm)).
It is also shown that X(GO2n+1(q),Ω2n+1(q)) is a subscheme of X(GO2m+1(q

n
m ),Ω2m+1(q

n
m ))

whenever m divides n, and so forth.
Thus we can say that the two association schemes X(GO3(q),Ω3(q)) and X(GO3(q),Θ3(q))

controll the other association schemes X(GO2m+1(q),Ω2m+1(q)) and X(GO2m+1(q),Θ2m+1(q)) at
two levels—algebraic level and combinatorial level.

Acknowledgement. The author would like to thank Professor Eiichi Bannai for his suggestion
of this research.

1 Preliminary

1.1 Quadratic Forms and Orthogonal Groups

In this subsection, we review some basic facts on quadratic forms and orthogonal groups. For more
information, we are referred to Munemasa [12], ATLAS [8].

Let V be a finite dimensional vector space over the finite field Fq of q elements. A symmetric
bilinear form on V over Fq is a mapping f : V × V −→ Fq which satisfies the following conditions:

f(u1 + u2, v) = f(u1, v) + f(u2, v),
f(αu, v) = αf(u, v),

f(u, v) = f(v, u)

for all u, v, u1, u2 ∈ V and all α ∈ Fq. We define the orthogonal complement U⊥ of a subset U of
V by

U⊥ := {v ∈ V | f(u, v) = 0 for all u ∈ U},
and the radical of f by

Rad f := V⊥ = {v ∈ V | f(u, v) = 0 for all u ∈ V}.

The symmetric bilinear form f is said to be non-degenerate if Rad f = 0. The following proposition
is a basic fact about non-degenerate symmetric bilinear forms (cf. Munemasa [12, p.3, Proposition
1.1.]).

Proposition 1.1.1. Let f : V × V −→ Fq be a symmetric bilinear form on a finite dimensional
vector space V over Fq, and let U be a subspace of V. Then we have

dimU⊥ = dim V − dimU + dimU ∩ Rad f.

Moreover if f |U is non-degenerate then

V = U⊥U⊥.

A quadratic form on V over Fq is a mapping Q : V −→ Fq which satisfies the following
conditions:

Q(αv) = α2Q(v),
Q(u + v) = Q(u) + Q(v) + f(u, v)

for all u, v ∈ V and all α ∈ Fq, where f : V × V −→ Fq is a symmetric bilinear form on V over Fq.
Notice that if q is even, then the bilinear form f is an alternating bilinear form, that is, f(v, v) = 0
for all v ∈ V. The quadratic form Q is said to be non-degenerate if Q−1(0) ∩ Rad f = {0}. If a
vector v ∈ V satisfies Q(v) = 0, then we call this vector singular, and a subspace U of V which
consists of sigular vectors is also called singular. A hyperbolic pair is a pair of vectors {u, v} of V
satisfying Q(u) = Q(v) = 0, and f(u, v) = 1. For later use, we need the following proposition (cf.
Munemasa [12, p.7, Proposition 1.8.]).
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Proposition 1.1.2. Let Q : V −→ Fq be a non-degenerate quadratic form on a finite dimensional
vector space V over Fq and let u ∈ V be a non-zero singular vector. Then there exists a vector
v ∈ V such that {u, v} is a hyperbolic pair.

The orthogonal group O(V, Q) is the group which consists of all automorphisms of Q. More
precisely,

O(V, Q) := {τ ∈ GL(V) | Q(τ(v)) = Q(v) for all v ∈ V}.

Throughout this paper, we always assume that q is even. Let Q be a non-degenerate quadratic
form on V. Suppose dim V = 2m+1 is odd, then there exists a basis {v1, v2, . . . , v2m+1} of V such
that

Q
( 2m+1∑

i=1

ξivi

)
= ξ1ξm+1 + ξ2ξm+2 + · · · + ξmξ2m + ξ2

2m+1,

which is equivalent to saying that V is decomposed as

V = 〈v1, vm+1〉⊥ . . .⊥〈vm, v2m〉⊥〈v2m+1〉,

where {v1, vm+1}, . . . , {vm, v2m} are hyperbolic pairs and Q(v2m+1) = 1. We write GO2m+1(q) =
O(V, Q). Suppose dim V = 2m is even, then one of the following occurs:

(i) there exists a basis {v1, v2, . . . , v2m} of V such that

Q
( 2m∑

i=1

ξivi

)
= ξ1ξm+1 + ξ2ξm+2 + · · · + ξmξ2m,

(ii) there exists a basis {v1, v2, . . . , v2m} of V such that

Q
( 2m∑

i=1

ξivi

)
= ξ1ξm+1 + ξ2ξm+2 + · · · + ξm−1ξ2m−1 + ξ2

m + ξmξ2m + πξ2
2m,

where t2 + t + π is an irreducible polynomial over Fq. In what follows, we call the former positive-
type and the latter negative-type, and we write their orthogonal groups as GO+

2m(q) and GO−
2m(q),

respectively.
We end this subsection by proving the following enumerative lemma (cf. Bannai-Hao-Song [2,

Lemma 1.1.]).

Lemma 1.1.3. For β ∈ Fq and a polynomial h(ξ1, ξ2, . . . , ξn) ∈ Fq[ξ1, ξ2, . . . , ξn], denote the
number of solutions of the equation h(ξ1, ξ2, . . . , ξn) = β in Fn

q by N [h(ξ1, ξ2, . . . , ξn) = β ].
(i) If we denote

Γβ(2m + 1) := N [ ξ1ξm+1 + ξ2ξm+2 + · · · + ξmξ2m + ξ2
2m+1 = β ],

then
Γβ(2m + 1) = q2m for all β ∈ Fq.

(ii) If we denote
Γ+

β (2m) := N [ ξ1ξm+1 + ξ2ξm+2 + · · · + ξmξ2m = β ],

then

Γ+
β (2m) =

{
qm + qm−1(qm − 1) for β = 0
qm−1(qm − 1) for β ∈ F∗

q .

(iii) If we denote

Γ−
β (2m) := N [ ξ1ξm+1 + ξ2ξm+2 + · · · + ξm−1ξ2m−1 + ξ2

m + ξmξ2m + πξ2
2m = β ],

then

Γ−
β (2m) =

{
qm−1 + qm(qm−1 − 1) for β = 0
qm−1(qm + 1) for β ∈ F∗

q ,

where t2 + t + π is an irreducible polynomial over Fq.
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Proof. (i) Since Fq is assumed to be characteristic 2, any element in Fq is a square. Thus we
can choose ξ1, ξ2, . . . , ξ2m arbitrarily. (ii) Suppose (ξm+1, ξm+2, . . . , ξ2m) = (0, 0, . . . , 0), then if
β = 0 we have qm choices for ξ1, ξ2, . . . , ξm. Next suppose (ξm+1, ξm+2, . . . , ξ2m) ̸= (0, 0, . . . , 0),
say ξ2m ̸= 0. Then ξm is uniquely determined depending on ξ1, ξ2, . . . , ξm−1, hence we have qm−1

choices for ξ1, ξ2, . . . , ξm. (iii) First we consider the case m = 1. If ξ2 = 0, then clearly ξ1 is
uniquely determined. If ξ2 ̸= 0, then the number of solutions of the equation

ξ2
1 + ξ1ξ2 + πξ2

2 = β, ξ2 ̸= 0

is equal to the number of solutions of the equation

ξ2(η2 + η + π) = β, ξ ̸= 0,

by putting ξ := ξ2 and η := ξ1
ξ2

. Since t2 + t + π is irreducible over Fq, if β = 0 then there is no
solution, and if β ̸= 0 then there are exactly q solutions. Thus, we have

Γ−
β (2) =

{
1 for β = 0
q + 1 for β ∈ F∗

q .

Consequently, from (ii) we have

Γ−
0 (2m) = {qm−1 + qm−2(qm−1 − 1)} + (q − 1)(q + 1)qm−2(qm−1 − 1)

= qm−1 + qm(qm−1 − 1),

and for β ̸= 0 we have

Γ−
β (2m) = qm−2(qm−1 − 1) + (q + 1){qm−1 + qm−2(qm−1 − 1)} + (q − 2)(q + 1)qm−2(qm−1 − 1)

= (q + 1)qm−1 + qm(qm−1 − 1)

= qm−1(qm + 1),

which completes the proof of Lemma 1.1.3.

1.2 Description of the Relations

Let V be a (2m + 1)-dimensional vector space over a finite field Fq of characteristic 2, and let
Q : V −→ Fq be a non-degenerate quadratic form on V over Fq with associated alternating form
f : V × V −→ Fq. In this case Rad f is a 1-dimensional subspace of V, and there exists a vector
r ∈ V such that Q(r) = 1 and

Rad f = 〈r〉.
Let U ⊂ V be a subspace of V. If the restriction of Q to U is non-degenerate (resp. degenerate),

then we call this subspace non-degenerate (resp. degenerate). Moreover suppose that dimU is even,
then if the restriction of Q to U is positive-type (resp. negative-type), then we call this subspace
positive-type (resp. negative-type).

Denote the set of positive-type hyperplanes of V and the set of negative-type hypeplanes of V by
Ω = Ω2m+1(q) and Θ = Θ2m+1(q), respectively. The orthogonal group GO2m+1(q) acts transitively
on Ω and Θ, and the stabilizer of an element of Ω (resp. Θ) in GO2m+1(q) is isomorphic to GO+

2m(q)
(resp. GO−

2m(q)). Note that to see the transitivity we do not need the Witt’s extension theorem
(cf. Munemasa [12]), since for any U,U ′ ∈ Ω (resp. Θ), any isometry τ : U −→ U ′ (that is, τ is an
injective linear map which has the property that Q(τ(u)) = Q(u) for all u ∈ U) is extended to an
automorphism τ̃ : V −→ V by τ̃(r) := r.

The numbers of positive-type and negative-type hyperplanes are given as follows (cf. ATLAS
[8, p.xii]):

|Ω| =
|GO2m+1(q)|
|GO+

2m(q)|

=
qm2

(q2m − 1)(q2m−2 − 1) . . . (q2 − 1)
2qm(m−1)(qm − 1)(q2m−2 − 1) . . . (q2 − 1)

=
qm(qm + 1)

2
, (2)
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and

|Θ| =
|GO2m+1(q)|
|GO−

2m(q)|

=
qm2

(q2m − 1)(q2m−2 − 1) . . . (q2 − 1)
2qm(m−1)(qm + 1)(q2m−2 − 1) . . . (q2 − 1)

=
qm(qm − 1)

2
. (3)

Now, we describe the relations of the association scheme X(GO2m+1(q),Ω), defined by the
action of GO2m+1(q) on the set Ω. Let U, V be two distinct elements in Ω. Note that U ∩ V is a
(2m − 1)-dimensional subspace in V.

(i) Suppose U ∩ V is a degenerate subspace in V. Then there exists a singular vector w in U ∩ V
such that

U ∩ V = 〈w〉⊥ ∩ U = 〈w〉⊥ ∩ V,

since 0 $ Rad f |U∩V ⊂ (U ∩ V )⊥ ∩ U and dim{(U ∩ V )⊥ ∩ U} = dimU − dim(U ∩ V ) = 1 by
Proposition 1.1.1. Let u be a vector in U such that {u,w} is a hyperbolic pair (Proposition 1.1.2).
Then since U and V are both positive-type, there exists a positive-type hyperplane W of U ∩ V
and a vector v ∈ V such that {v, w} is a hyperbolic pair and

U = 〈u,w〉⊥W, V = 〈v, w〉⊥W.

Suppose f(u, v) = 0 holds. Then since f(u + v, w) = 1 + 1 = 0 and f(u + v, v) = 0, we have
u + v ∈ V⊥ = 〈r〉 so that v = u + αr for some α ∈ Fq. This implies u = v, since 0 = Q(v) = α2,
which contradicts the assumption U ̸= V . Therefore we may assume f(u, v) = 1 without loss of
generality, since Q(w) = 0.

Let U ′ and V ′ be other distinct elements in Ω such that U ′ ∩ V ′ is degenerate, and decompose
U ′ and V ′ in the same manner:

U ′ = 〈u′, w′〉⊥W ′, V ′ = 〈v′, w′〉⊥W ′,

where {u′, w′}, {v′, w′} are hyperbolic pairs, W ′ is a positive-type hyperplane of U ′ ∩ V ′, and
f(u′, v′) = 1. Let τ : W −→ W ′ be an isometry, and define a linear mapping τ̃ : V −→ V by
τ̃ |W := τ , τ̃(u) := u′, τ̃(v) := v′, and τ̃(w) := w′. Then τ̃ becomes an automorphism of Q and we
have τ(U) = U ′, τ(V ) = V ′. Hence it follows that

R1 := {(U, V ) ∈ Ω × Ω | U ∩ V : degenerate} (4)

forms a relation of X(GO2m+1(q),Ω) (that is, an orbital of the transitive action of GO2m+1(q) on
Ω).

Finally we determine the valency k1 of R1. Let H be a degenerate hyperplane of U , then any
non-degenerate hyperplane K of V which includes H becomes automatically positive-type. In fact,
since there exist a singular vector w in H and a positive-type hyperplane W of H such that

H = 〈w〉⊥W,

hence K = W⊥(W⊥ ∩ K) cannot be negative-type. There are q2m+1−q2m−1

q2m−q2m−1 = q + 1 hyperplanes
of V which include H. In these q + 1 hyperplanes, 〈r〉⊥H is the only degenerate hyperplane.
Thus there are q − 1 elements V in Ω such that (U, V ) ∈ R1 and U ∩ V = H. It follows from
Proposition 1.1.1 that there is a one-to-one correspondence between degenerate hyperplanes of U
and 1-dimensional singular subspaces of U . Therefore by Lemma 1.1.3(ii) we have

k1 =
qm + qm−1(qm − 1) − 1

q − 1
(q − 1) = (qm−1 + 1)(qm − 1). (5)
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(ii) Suppose U ∩ V is a non-degenerate subspace in V. Then there exists a vector w in U ∩ V such
that Q(w) = 1 and

U ∩ V = 〈w〉⊥ ∩ U = 〈w〉⊥ ∩ V.

First of all, we show that for any non-degenerate hyperplane W of U ∩ V there exist two vectors
u ∈ U , v ∈ V such that Q(u) = Q(v), f(u,w) = f(v, w) = 1 and

U = 〈u,w〉⊥W, V = 〈v, w〉⊥W.

If W is positive-type (resp. negative-type), then W⊥ ∩ U is also positive-type (resp. negative-
type). Let u ∈ W⊥ ∩ U and v ∈ W⊥ ∩ V be two vectors such that f(u,w) = 1 and f(v, w) = 1,
then the polynomials t2 + t + Q(u) and t2 + t + Q(v) are reducible (resp. irreducible) over Fq.
The assertion follows immediately from the fact that the set {α2 + α |α ∈ Fq} is an additive
subgroup of Fq of index 2 (cf. Munemasa [12, p.12, Lemma 2.9.]). In fact, let α be an element in
Fq such that Q(u) = α2 + α + Q(v) then u ∈ U and v′ := αw + v ∈ V are desired vectors, since
Q(v′) = α2 + α + Q(v) = Q(u) and f(v′, w) = f(v, w) = 1.

Define

∆ :=
f(u, v)

f(u, v) + 1
. (6)

Then we have the following:

Proposition 1.2.1. ∆ is well-defined and ∆ ∈ Fq\{0, 1}. Moreover, the pair {∆,∆−1} does not
depend on the choice of W,u, v.

Proof. Since f(u + v, w) = 1 + 1 = 0, the vector u + v is contained in (U ∩ V )⊥. By Proposition
1.1.1 we have dim(U ∩ V )⊥ = 2, from which it follows that

u + v = αw + βr

for some α, β ∈ Fq.
Suppose f(u, v) = 0, that is α = 0. Then we have β = 0, since Q(u) = Q(v) = Q(u + βr) =

Q(u) + β2. This implies u = v, which is a contradiction. Next, suppose f(u, v) = 1, that is α = 1.
Then we also have β = 0, since Q(u) = Q(v) = Q(u + w + βr) = Q(u) + 1 + 1 + β2 = Q(u) + β2.
In this case this implies u + w = v, which is also a contradiction.

In order to show that the pair {∆,∆−1} does not depend on W,u and v, let

U = 〈u′, w〉⊥W ′, V = 〈v′, w〉⊥W ′

be another decomposition such that Q(u′) = Q(v′) and f(u′, w) = f(v′, w) = 1. Then since
f(u′, w) = 1, we have u′ = u+γw+z for some γ ∈ Fq and z ∈ W . Let v′′ := v+γw+z be a vector
in V , then clearly Q(v′′) = Q(u′) and f(v′′, w) = 1. Furthermore we have u′+v′′ = u+v = αw+βr,
that is,

V = 〈v′′, w〉⊥W ′,

which implies that v′′ must be v′ or v′ + w, since if we express v′′ as a linear combination of v′

and w, say v′′ = γ1v
′ + γ2w, then γ1 = f(v′′, w) = 1 and Q(v′) = Q(v′′) = Q(v′) + γ2

2 + γ2 so that
γ2 = 0 or γ2 = 1. If v′′ = v′, then we have

f(u′, v′)
f(u′, v′) + 1

=
f(u′, v′′)

f(u′, v′′) + 1
=

f(u, v)
f(u, v) + 1

.

Similarly if v′′ = v′ + w, then we have

f(u′, v′)
f(u′, v′) + 1

=
f(u′, v′′ + w)

f(u′, v′′ + w) + 1
=

f(u′, v′′) + 1
f(u′, v′)

=
f(u, v) + 1

f(u, v)
.

This completes the proof of Proposition 1.2.1.
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We denote
∆(U, V ) := {∆,∆−1}. (7)

It should be noticed that in the definition of ∆(U, V ) it does not matter whether W is positive-type
or negative-type.

Let U ′ and V ′ be other distinct two elements in Ω such that ∆(U ′, V ′) = ∆(U, V ), and let

U ′ = 〈u′, w′〉⊥W ′, V ′ = 〈v′, w′〉⊥W ′

be a decomposition, where Q(w′) = 1, W ′ has the same type as W , Q(u′) = Q(v′) = Q(u)
and f(u′, w′) = f(v′, w′) = 1. Without loss of generality we may assume f(u, v) = f(u′, v′).
Let τ : W −→ W ′ be an isometry, and define a linear mapping τ̃ : V −→ V by τ̃ |W := τ ,
τ̃(u) := u′, τ̃(v) := v′, and τ̃(w) := w′. Then τ̃ becomes an automorphism of Q and we have
τ(U) = U ′, τ(V ) = V ′. Thus, the remaining relations of X(GO2m+1(q),Ω) are described as
follows:

Ri :=
{
(U, V ) ∈ Ω × Ω

∣∣ U ∩ V : non-degenerate, ∆(U, V ) = {νi−1, ν−(i−1)}
}

(2 ≤ i ≤ q
2 ), (8)

where ν ∈ F∗
q is a primitive element of Fq.

Finally, we determine the valencies ki of Ri (2 ≤ i ≤ q
2 ). We define

λi :=
νi−1

1 + νi−1
∈ Fq\{0, 1}, for 2 ≤ i ≤ q

2 , (9)

and
µi :=

√
λ2

i + λi ̸= 0, for 2 ≤ i ≤ q
2 , (10)

Notice that
ν−(i−1)

1 + ν−(i−1)
=

1
1 + νi−1

= λi + 1,

from which it follows that
λi + λj ̸= 0, 1, if i ̸= j, (11)

or equivalently
µi ̸= µj if i ̸= j. (12)

Let H be a non-degenerate hyperplane of U , then there exists a vector w in H such that Q(w) = 1
and

H = 〈w〉⊥ ∩ U.

Fix a vector u in U such that f(u,w) = 1. Then it follows that the only element V of Ω which
satisfies U ∩ V = H and ∆(U, V ) = {νi−1, ν−(i−1)} is given by

V := 〈v〉 ⊕ H, where v := u + λiw + µir ∈ V. (13)

To show this, let V be such an element in Ω and let

U = 〈u,w〉⊥W, V = 〈v, w〉⊥W

be a decomposition, where Q(v) = Q(u) and f(v, w) = 1. As is in the proof of Proposition 1.2.1,
u + v = αw + βr for some α, β ∈ Fq, where α ̸= 0, 1, and we may assume

f(u, v)
f(u, v) + 1

= νi−1

without loss of generality. Then we have

νi−1 =
α

α + 1
,

from which it follows α = λi. Also we have Q(u) = Q(v) = Q(u) + λ2
i + λi + β2 so that β = µi, as

desired.
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It follows from Proposition 1.1.1 that there is a one-to-one correspondence between non-
degenerate hyperplanes of U and 1-dimensional non-singular subspaces of U . Therefore by Lemma
1.1.3(ii) we obtain

ki = qm−1(qm − 1) (14)

for 2 ≤ i ≤ q
2 . To summarize:

The association scheme X(GO2m+1,Ω) = (Ω, {Ri}0≤i≤ q
2
) is a symmetric association scheme of

class q
2 whose relations are defined by

R1 := {(U, V ) ∈ Ω × Ω | U ∩ V : degenerate},
Ri :=

{
(U, V ) ∈ Ω × Ω

∣∣ U ∩ V : non-degenerate, ∆(U, V ) = {νi−1, ν−(i−1)}
}

(2 ≤ i ≤ q
2 ).

The valencies of X(GO2m+1,Ω) are given as

k1 = (qm−1 + 1)(qm − 1),

ki = qm−1(qm − 1) (2 ≤ i ≤ q
2 ).

Secondly, we describe the relations of the association scheme X(GO2m+1(q),Θ) in the same way
as X(GO2m+1,Ω). Let U, V be two distinct elements in Θ.

(i) Suppose U ∩ V is a degenerate subspace in V. Notice that this occurs only if m ≥ 2, since any
2-dimensional negative-type subspace of V has no non-zero singular vector. There exists a singular
vector w in U ∩ V such that

U ∩ V = 〈w〉⊥ ∩ U = 〈w〉⊥ ∩ V,

Let u be a vector in U such that {u,w} is a hyperbolic pair (Proposition 1.1.2). Then since U and
V are both negative-type, there exists a negative-type hyperplane W of U ∩ V and a vector v ∈ V
such that {v, w} is a hyperbolic pair and

U = 〈u,w〉⊥W, V = 〈v, w〉⊥W.

Suppose f(u, v) = 0 holds. Then since f(u + v, w) = 1 + 1 = 0 and f(u + v, v) = 0, we have
u + v ∈ V⊥ = 〈r〉 so that v = u + αr for some α ∈ Fq. This implies u = v, since 0 = Q(v) = α2,
which contradicts the assumption U ̸= V . Therefore we may assume f(u, v) = 1 without loss of
generality, since Q(w) = 0.

Let U ′ and V ′ be other distinct elements in Θ such that U ′ ∩ V ′ is degenerate, and decompose
U ′ and V ′ in the same manner:

U ′ = 〈u′, w′〉⊥W ′, V ′ = 〈v′, w′〉⊥W ′,

where {u′, w′}, {v′, w′} are hyperbolic pairs, W ′ is a negative-type hyperplane of U ′ ∩ V ′, and
f(u′, v′) = 1. Let τ : W −→ W ′ be an isometry, and define a linear mapping τ̃ : V −→ V by
τ̃ |W := τ , τ̃(u) := u′, τ̃(v) := v′, and τ̃(w) := w′. Then τ̃ becomes an automorphism of Q and we
have τ(U) = U ′, τ(V ) = V ′. Hence it follows that

S1 := {(U, V ) ∈ Θ × Θ | U ∩ V : degenerate} (15)

forms a relation of X(GO2m+1(q),Θ).
Finally we determine the valency h1 of S1. Let H be a degenerate hyperplane of U , then any

non-degenerate hyperplane K of V which includes H becomes automatically negative-type. In
fact, since there exist a singular vector w in H and a negative-type hyperplane W of H such that

H = 〈w〉⊥W,

hence K = W⊥(W⊥∩K) cannot be positive-type. There are q2m+1−q2m−1

q2m−q2m−1 = q+1 hyperplanes of V
which include H. In these q+1 hyperplanes, 〈r〉⊥H is the only degenerate hyperplane. Thus there
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are q− 1 elements V in Θ such that (U, V ) ∈ S1 and U ∩V = H. It follows from Proposition 1.1.1
that there is a one-to-one correspondence between degenerate hyperplanes of U and 1-dimensional
singular subspaces of U . Therefore by Lemma 1.1.3(iii) we have

h1 =
qm−1 + qm(qm−1 − 1) − 1

q − 1
(q − 1) = (qm−1 − 1)(qm + 1). (16)

(ii) Suppose U ∩ V is a non-degenerate subspace in V. Then there exists a vector w in U ∩ V such
that Q(w) = 1 and

U ∩ V = 〈w〉⊥ ∩ U = 〈w〉⊥ ∩ V.

First of all, we show that for any non-degenerate hyperplane W of U ∩ V there exist two vectors
u ∈ U , v ∈ V such that Q(u) = Q(v), f(u,w) = f(v, w) = 1 and

U = 〈u,w〉⊥W, V = 〈v, w〉⊥W.

If W is positive-type (resp. negative-type), then W⊥ ∩ U is negative-type (resp. positive-type).
Let u ∈ W⊥ ∩ U and v ∈ W⊥ ∩ V be two vectors such that f(u,w) = 1 and f(v, w) = 1, then
the polynomials t2 + t + Q(u) and t2 + t + Q(v) are irreducible (resp. reducible) over Fq. The
assertion follows immediately from the fact that the set {α2 + α |α ∈ Fq} is an additive subgroup
of Fq of index 2 (cf. Munemasa [12, p.12, Lemma 2.9.]). In fact, let α be an element in Fq

such that Q(u) = α2 + α + Q(v) then u ∈ U and v′ := αw + v ∈ V are desired vectors, since
Q(v′) = α2 + α + Q(v) = Q(u) and f(v′, w) = f(v, w) = 1.

Define

Π :=
f(u, v)

f(u, v) + 1
. (17)

The proof of the following proposition is exactly the same as that of Proposition 1.2.1.

Proposition 1.2.2. Π is well-defined and Π ∈ Fq\{0, 1}. Moreover, the pair {Π,Π−1} does not
depend on the choice of W,u, v.

Proof. Since f(u + v, w) = 1 + 1 = 0, the vector u + v is contained in (U ∩ V )⊥. By Proposition
1.1.1 we have dim(U ∩ V )⊥ = 2, from which it follows that u + v = αw + βr for some α, β ∈ Fq.

Suppose f(u, v) = 0, that is α = 0. Then we have β = 0, since Q(u) = Q(v) = Q(u + βr) =
Q(u) + β2. This implies u = v, which is a contradiction. Next, suppose f(u, v) = 1, that is α = 1.
Then we also have β = 0, since Q(u) = Q(v) = Q(u + w + βr) = Q(u) + 1 + 1 + β2 = Q(u) + β2.
In this case this implies u + w = v, which is also a contradiction.

In order to show that the pair {Π,Π−1} does not depend on W,u and v, let

U = 〈u′, w〉⊥W ′, V = 〈v′, w〉⊥W ′

be another decomposition such that Q(u′) = Q(v′) and f(u′, w) = f(v′, w) = 1. Then since
f(u′, w) = 1, we have u′ = u+γw+z for some γ ∈ Fq and z ∈ W . Let v′′ := v+γw+z be a vector
in V , then clearly Q(v′′) = Q(u′) and f(v′′, w) = 1. Furthermore we have u′+v′′ = u+v = αw+βr,
that is,

V = 〈v′′, w〉⊥W ′,

which implies that v′′ must be v′ or v′ + w, since if we express v′′ as a linear combination of v′

and w, say v′′ = γ1v
′ + γ2w, then γ1 = f(v′′, w) = 1 and Q(v′) = Q(v′′) = Q(v′) + γ2

2 + γ2 so that
γ2 = 0 or γ2 = 1. If v′′ = v′, then we have

f(u′, v′)
f(u′, v′) + 1

=
f(u′, v′′)

f(u′, v′′) + 1
=

f(u, v)
f(u, v) + 1

.

Similarly if v′′ = v′ + w, then we have

f(u′, v′)
f(u′, v′) + 1

=
f(u′, v′′ + w)

f(u′, v′′ + w) + 1
=

f(u′, v′′) + 1
f(u′, v′)

=
f(u, v) + 1

f(u, v)
.

This completes the proof of Proposition 1.2.2.
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We denote
Π(U, V ) := {Π,Π−1}. (18)

It should be noticed that in the definition of Π(U, V ) it does not matter whether W is positive-type
or negative-type.

Let U ′ and V ′ be other distinct two elements in Θ such that Π(U ′, V ′) = Π(U, V ), and let

U ′ = 〈u′, w′〉⊥W ′, V ′ = 〈v′, w′〉⊥W ′

be a decomposition, where Q(w′) = 1, W ′ has the same type as W , Q(u′) = Q(v′) = Q(u)
and f(u′, w′) = f(v′, w′) = 1. Without loss of generality we may assume f(u, v) = f(u′, v′).
Let τ : W −→ W ′ be an isometry, and define a linear mapping τ̃ : V −→ V by τ̃ |W := τ ,
τ̃(u) := u′, τ̃(v) := v′, and τ̃(w) := w′. Then τ̃ becomes an automorphism of Q and we have
τ(U) = U ′, τ(V ) = V ′. Thus, the remaining relations of X(GO2m+1(q),Θ) are described as
follows:

Si :=
{
(U, V ) ∈ Θ × Θ

∣∣ U ∩ V : non-degenerate, Π(U, V ) = {νi−1, ν−(i−1)}
}

(2 ≤ i ≤ q
2 ). (19)

Finally, we determine the valencies hi of Si (2 ≤ i ≤ q
2 ). Let H be a non-degenerate hyperplane

of U , then there exists a vector w in H such that Q(w) = 1 and

H = 〈w〉⊥ ∩ U.

Fix a vector u in U such that f(u,w) = 1. Then it follows that the only element V of Θ which
satisfies U ∩ V = H and Π(U, V ) = {νi−1, ν−(i−1)} is given by

V := 〈v〉 ⊕ H, where v := u + λiw + µir ∈ V. (20)

To show this, let V be such an element in Θ and let

U = 〈u,w〉⊥W, V = 〈v, w〉⊥W

be a decomposition, where Q(v) = Q(u) and f(v, w) = 1. As is in the proof of Proposition 1.2.2,
u + v = αw + βr for some α, β ∈ Fq, where α ̸= 0, 1, and we may assume

f(u, v)
f(u, v) + 1

= νi−1

without loss of generality. Then we have

νi−1 =
α

α + 1
,

from which it follows α = λi. Also we have Q(u) = Q(v) = Q(u) + λ2
i + λi + β2 so that β = µi, as

desired.
It follows from Proposition 1.1.1 that there is a one-to-one correspondence between non-

degenerate hyperplanes of U and 1-dimensional non-singular subspaces of U . Therefore by Lemma
1.1.3(iii) we obtain

hi = qm−1(qm + 1) (21)

for 2 ≤ i ≤ q
2 . To summarize:

The association scheme X(GO2m+1,Θ) = (Θ, {Si}0≤i≤ q
2
) is a symmetric association scheme of

class q
2 if m ≥ 2, whose relations are defined by

S1 := {(U, V ) ∈ Θ × Θ | U ∩ V : degenerate},
Si :=

{
(U, V ) ∈ Θ × Θ

∣∣ U ∩ V : non-degenerate, Π(U, V ) = {νi−1, ν−(i−1)}
}

(2 ≤ i ≤ q
2 ).

If m = 1 then we have S1 = ∅ so that X(GO3(q),Θ) is a symmetric association scheme of class
q
2 − 1. The valencies of X(GO2m+1,Θ) are given as

h1 = (qm−1 − 1)(qm + 1),

hi = qm−1(qm + 1) (2 ≤ i ≤ q
2 ).
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2 Computation of Parameters

2.1 The Parameters of X(GO2m+1(q), Ω2m+1(q))

In this subsection, we compute the intersection numbers {pk
ij} of X(GO2m+1(q),Ω2m+1(q)).

(i) Suppose first 2 ≤ i, j, k ≤ q
2 . Let U and V be elements in Ω such that (U, V ) ∈ Rk, and let w

denote the vector in H := U ∩ V such that Q(w) = 1 and

H = U ∩ V = 〈w〉⊥ ∩ U = 〈w〉⊥ ∩ V.

First of all, we count the number of elements K in Ω which satisfy (U,K) ∈ Ri, (V,K) ∈ Rj ,
and U ∩ K = V ∩ K = H. Let v be a vector in V with f(v, w) = 1 and define

u := v + λkw + µkr.

Then it follows from (13) that
U = H ⊕ 〈u〉,

and the only element K in Ω such that (V,K) ∈ Rj and V ∩ K = H is given by

K := H ⊕ 〈z〉, where z := v + λjw + µjr.

Since
u + z = (λj + λk)w + (µj + µk)r,

if (U,K) ∈ Ri, then we have
λj + λk

λj + λk + 1
= ν±(i−1),

that is,
λj + λk = λi, or λj + λk = λi + 1,

which is equivalent to
µ2

i + µ2
j + µ2

k = 0.

Thus the number n1 of elements K in Ω which satisfy (U,K) ∈ Ri, (V,K) ∈ Rj , and U ∩ K =
V ∩ K = H is

n1 =

{
1 if µ2

i + µ2
j + µ2

k = 0,

0 if µ2
i + µ2

j + µ2
k ̸= 0.

(22)

Next, fix a vector w′ in V \〈w〉 with Q(w′) = 1, and define two subspaces of V as

H ′ :=〈w′〉⊥ ∩ V,

W :=H ∩ H ′ = 〈w,w′〉⊥ ∩ V.

We need to determine whether there exists an element K in Ω such that (U,K) ∈ Ri, (V,K) ∈
Rj and V ∩ K = H ′. Notice that Rad f |〈w,w′〉 = 0 holds if and only if f(w,w′) ̸= 0, that is, W
is non-degenerate if and only if f(w,w′) ̸= 0. Assume f(w,w′) ̸= 0, then W is positive-type if
and only if the polynomial t2 + f(w,w′)t + 1 ∈ Fq[t] is reducible over Fq, since a 2-dimensional
negative-type subspace has no non-zero singular vector.

Let v be a vector in H such that f(v, w′) = 1, and let v′ be a vector in H ′ such that f(v′, w) = 1.
We define

u :=v′ + λkw + µkr,

z :=v + λjw
′ + µjr,

so that U = H ⊕ 〈u〉, and K := H ′ ⊕ 〈z〉 is the unique element in Ω which satisfies (V,K) ∈ Rj

and V ∩ K = H ′.
Since V = W ⊕ 〈v, v′〉 ⊕ 〈r〉, any vector x in U ∩ K is uniquely written as

x = αv + βv′ + y + γ r,
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for some α, β, γ ∈ Fq and y ∈ W . Then it follows from U = H ⊕ 〈u〉 and K = H ′ ⊕ 〈z〉 that

γ = αµj = βµk. (23)

Notice that there exist two vectors y and y′ in W such that

w = f(w,w′)v + y, w′ = f(w,w′)v′ + y′. (24)

Let w′′ be a vector in U ∩ K such that

U ∩ K = 〈w′′〉⊥ ∩ U = 〈w′′〉⊥ ∩ K.

(a) Suppose f(w,w′) ̸= 0, that is, W is a non-degenerate subspace of V . Since dim W⊥ = 3 by
Proposition 1.1.1, there exist some elements ξ, η, δ ∈ Fq such that

w′′ = ξw + ηw′ + δr.

Then by (24) we have

w′′ = ξf(w,w′)v + ηf(w,w′)v′ + ξy + ηy′ + δr,

so that from (23) we obtain

w′′ = µkϵw + µjϵw
′ + µjµkf(w,w′)ϵr, (25)

for some ϵ ∈ Fq. Since w′′ ̸= 0, we have ϵ ̸= 0.
Now suppose (U,K) ∈ Ri, then Q(w′′) must not be 0. Hence the inner product f(w,w′) must

satisfy
µ2

jµ
2
kf(w,w′)2 + µjµkf(w,w′) + µ2

j + µ2
k ̸= 0,

or equivalently

f(w,w′) ̸= 1
µjµk

(λj + λk),
1

µjµk
(λj + λk + 1).

We may assume Q(w′′) = 1 so that

ϵ2 =
1

µ2
jµ

2
kf(w,w′)2 + µjµkf(w,w′) + µ2

j + µ2
k

. (26)

If (U,K) ∈ Ri then repeating the same argument as before we have

w = µiϵ
′w′′ + µjϵ

′w′ + µiµjf(w′′, w′)ϵ′r, (27)

for some ϵ′ ∈ Fq. Then since it follows from (25) that

w =
1

µkϵ
w′′ +

µj

µk
w′ + µjf(w,w′)r,

we have
ϵ =

1
µi

.

Therefore by (26) the inner product f(w,w′) must satisfy the following condition:

µ2
jµ

2
kf(w,w′)2 + µjµkf(w,w′) + µ2

i + µ2
j + µ2

k = 0,

which is equivalent to

f(w,w′) =
1

µjµk
(λi + λj + λk), or f(w,w′) =

1
µjµk

(λi + λj + λk + 1). (28)

Conversely, if f(w,w′) satisfies (28) then from (11) we deduce that (U,K) ∈ Ri.
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We can now count the number of elements K in Ω such that (U,K) ∈ Ri, (V,K) ∈ Rj , and
W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H. For brevity we let

κijk :=
1

µjµk
(λi + λj + λk)

κ′
ijk :=

1
µjµk

(λi + λj + λk + 1)

for i, j, k ∈ {2, 3, . . . , q
2}, and define

φ(α) :=

{
1 if the polynomial t2 + αt + 1 ∈ Fq[t] is reducible over Fq,

0 otherwise,

for α ∈ Fq. (For α ∈ F∗
q the function φ(α) is also defined by φ(α) = TrFq/F2(α

−1). See Lemma
4.2.4 below.) We need the following lemma:

Lemma 2.1.1. Let W0 be a 2-dimensional positive-type (resp. negative-type) subspace of V, and
let w be a vector in W0 with Q(w) = 1. Then for any α ∈ F∗

q such that φ(α) = 1 (resp. φ(α) = 0)
there exist two vectors w′

1, w
′
2 in W0 such that Q(w′

i) = 1 and f(w,w′
i) = α (i = 1, 2).

Proof. Let y be a vector in W0\〈w〉 with Q(y) = 1, then we have f(w, y) ̸= 0 and φ(f(w, y)) = 1
(resp. φ(f(w, y)) = 0 ). If a vector y′ in W0 satisfies Q(y′) = 1 and f(w, y′) = f(w, y), then y′

must be y or y + f(w, y)w. The number of elements α ∈ F∗
q such that φ(α) = 1 (resp. φ(α) = 0) is

obviously equal to q
2 − 1 (resp. q

2 ), and by Proposition 1.1.3 the number of vectors y in W0 other
than w with Q(y) = 1 is given by q − 2 (resp. q), which proves the lemma.

Suppose for instance κijk ̸= 0 and φ(κijk) = 1 (resp. φ(κijk) = 0). If w′ ∈ V satisfies
Q(w′) = 1 and f(w,w′) = κijk, then as mentioned before, W := 〈w,w′〉⊥ ∩ V is a positive-
type (resp. negative-type) hyperplane of H. On the other hand, let W be a positive-type (resp.
negative-type) hyperplane of H, then by Lemma 2.1.1 the number of vectors w′ in W⊥ ∩ V which
satisfy Q(w′) = 1 and f(w,w′) = κijk is exactly 2. Thus from (2) (resp. (3)), the number of
vectors w′ in V such that Q(w′) = 1 and f(w,w′) = κijk is given by

qm−1(qm−1 + 1)
(
resp. qm−1(qm−1 − 1)

)
.

Since κijk, κ′
ijk ̸= 0 unless µ2

i + µ2
j + µ2

k = 0, the number n2 of elements K in Ω such that
(U,K) ∈ Ri, (V,K) ∈ Rj and W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H, is
obtained as follows:

n2 =



qm−1(qm−1 + 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 1,

qm−1(qm−1 − 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 0,

2qm−1(qm−1 + 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 1,

2qm−1(qm−1 − 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 0,

2q2m−2 if µ2
i + µ2

j + µ2
k ̸= 0 and {φ(κijk), φ(κ′

ijk)} = {0, 1}.

(29)

(b) Suppose f(w,w′) = 0, that is, W is a degenerate subspace of V . Notice that this occurs
only if m ≥ 2. In this case 〈w,w′〉 is a subspace of W . Since dimW⊥∩K = 2 by Proposition 1.1.1
we have W⊥ ∩ K = 〈w,w′〉. Therefore there exist two elements ξ and η in Fq such that

w′′ = ξw + ηw′.

Let x = αv + βv′ + y + γ r be a vector in U ∩ K, then it follows from (23) that

0 = µkf(x,w′′) = βµkξ + αµkη = α(µjξ + µkη),

so that
w′′ = µkϵw + µjϵw

′, (30)
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for some ϵ ∈ Fq.
Now suppose (U,K) ∈ Ri, then Q(w′′) must not be 0, that is, µ2

j + µ2
k ̸= 0. We may assume

Q(w′′) = 1 so that

ϵ2 =
1

µ2
j + µ2

k

.

If (U,K) ∈ Ri then repeating the same argument as before we have

w = µiϵ
′w′′ + µjϵ

′w′, (31)

for some ϵ′ ∈ Fq. Then since it follows from (30) that

w =
1

µkϵ
w′′ +

µj

µk
w′,

we have
ϵ =

1
µi

,

so that
µ2

i + µ2
j + µ2

k = 0. (32)

Conversely, if (32) is satisfied, then from (12) we deduce (U,K) ∈ Ri. By Lemma 1.1.3(i)
there are q2m−2 − 1 vectors w′ in H other than w such that Q(w′) = 1, hence the number n3 of
elements K in Ω such that (U,K) ∈ Ri, (V,K) ∈ Rj and W = U ∩V ∩K = H ∩K is a degenerate
hyperplane of H, is given by

n3 =

{
q2m−2 − 1 if µ2

i + µ2
j + µ2

k = 0,

0 if µ2
i + µ2

j + µ2
k ̸= 0.

(33)

From (22), (29) and (33), we obtain

pk
ij = n1 + n2 + n3

=



qm−1(2qm−1 + 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 1,

qm−1(2qm−1 − 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 0,

2qm−1(qm−1 + 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 1,

2qm−1(qm−1 − 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 0,

2q2m−2 if µ2
i + µ2

j + µ2
k ̸= 0 and {φ(κijk), φ(κ′

ijk)} = {0, 1},

(34)

for i, j, k ∈ {2, 3, . . . , q
2}.

(ii) Suppose i = 1 and 2 ≤ j, k ≤ q
2 . Let U and V be elements in Ω such that (U, V ) ∈ Rk. We use

the same notation as in (i). Notice that if an element K in Ω satisfies (U,K) ∈ R1 and (V,K) ∈ Rj ,
then U ∩ V ∩ K = H ∩ K has dimension 2m − 2, since U ∩ K is degenerate by definition while H
is non-degenerate.

In the same way as (i), fix a vector w′ in V \〈w〉 with Q(w′) = 1, and define two subspaces of
V as

H ′ :=〈w′〉⊥ ∩ V,

W :=H ∩ H ′ = 〈w,w′〉⊥ ∩ V.

Let K be the unique element in Ω which satisfies (V,K) ∈ Rj and V ∩ K = H ′, and let w′′ be a
vector in U ∩ K such that U ∩ K = 〈w′′〉⊥ ∩ U = 〈w′′〉⊥ ∩ K. Then (U,K) ∈ R1 if and only if
Q(w′′) = 0.

(a) Suppose f(w,w′) ̸= 0, that is, W is a non-degenerate subspace of V , then it follows from
(25) that (U,K) ∈ R1 if and only if

µ2
jµ

2
kf(w,w′)2 + µjµkf(w,w′) + µ2

j + µ2
k = 0,

15



which is equivalent to

f(w,w′) =
1

µjµk
(λj + λk), or f(w,w′) =

1
µjµk

(λj + λk + 1). (35)

It follows that

φ

(
1

µjµk
(λj + λk)

)
= φ

(
1

µjµk
(λj + λk + 1)

)
= 1. (36)

In fact,

1
µ2

jµ
2
k

(λ2
j + λ2

k) =
1

(λ2
j + λj)(λ2

k + λk)
(λ2

j + λ2
k)

=
1

(λ2
j + λj)(λ2

k + λk)
(λ2

j(λ
2
k + 1) + λ2

k(λ2
j + 1))

=
( λj

λj + 1

)(λk + 1
λk

)
+

( λk

λk + 1

)(λj + 1
λj

)
= νj−k + ν−(j−k).

Likewise

1
µ2

jµ
2
k

(λ2
j + λ2

k + 1) =
1

(λ2
j + λj)(λ2

k + λk)
(λ2

j + λ2
k + 1)

=
1

(λ2
j + λj)(λ2

k + λk)
(λ2

jλ
2
k + (λ2

j + 1)(λ2
k + 1))

=
( λj

λj + 1

)( λk

λk + 1

)
+

(λj + 1
λj

)(λk + 1
λk

)
= νj+k + ν−(j+k).

It follows from (2) that the number of positive-type hyperplanes of H is given by

qm−1(qm−1 + 1)
2

.

Hence by Lemma 2.1.1 the number n′
2 of elements K in Ω such that (U,K) ∈ R1, (V,K) ∈ Rj and

W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H, is obtained as

n′
2 =

{
qm−1(qm−1 + 1) if j = k,

2qm−1(qm−1 + 1) if j ̸= k,
(37)

since n′
2 is equal to the number of vectors w′ in V \H with Q(w′) = 1 which satisfies (35).

(b) Suppose f(w,w′) = 0, that is, W is a degenerate subspace of V , which occurs only if m ≥ 2.
Then it follows from (30) that (U,K) ∈ R1 if and only if

µ2
j + µ2

k = 0,

that is, j = k. By Lemma 1.1.3(i), the number of vectors w′ in H other than w with Q(w′) = 1
is equal to q2m−2 − 1, from which it follows that the number n′

3 of elements K in Ω such that
(U,K) ∈ R1, (V,K) ∈ Rj and W = U ∩ V ∩K = H ∩K is a degenerate hyperplane of H, is given
by

n′
3 =

{
q2m−2 − 1 if j = k,

0 if j ̸= k.
(38)

From (37) and (38), we obtain

pk
1j = n′

2 + n′
3 =

{
(2qm−1 − 1)(qm−1 + 1) if j = k,

2qm−1(qm−1 + 1) if j ̸= k.
(39)
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(iii) Suppose 2 ≤ i ≤ q
2 and j = k = 1. Let U and V be elements in Ω such that (U, V ) ∈ R1, and

let w denote a vector in H := U ∩ V such that Q(w) = 0 and

H = U ∩ V = 〈w〉⊥ ∩ U = 〈w〉⊥ ∩ V.

Notice that in this case w is not uniquely determined, and also notice that if an element K in Ω
satisfies (U,K) ∈ Ri and (V,K) ∈ R1, then U ∩V ∩K = H ∩K has dimension 2m−2, since U ∩K
is non-degenerate by definition while H is degenerate. Fix a vector w′ in V \〈w〉 with Q(w′) = 0,
and define two subspaces of V as

H ′ :=〈w′〉⊥ ∩ V,

W :=H ∩ H ′ = 〈w,w′〉⊥ ∩ V.

We determine whether there exists an element K in Ω such that (U,K) ∈ Ri, (V,K) ∈ R1 and
V ∩ K = H ′.

(a) Suppose f(w,w′) ̸= 0, that is, W is a non-degenerate hyperplane of H. Since Q(w) =
Q(w′) = 0, we may assume f(w,w′) = 1 without loss of generality. Define

vα := w + w′ + αr,

for α ∈ F∗
q , then Kα := H ′ ⊕ 〈vα〉 (α ∈ F∗

q) are distinct elements in Ω with Kα ∩ V = H ′. In fact,
since these hyperplanes of V do not contain the vector r, they are non-degenerate. Moreover since
W is positive-type and H ′ = W⊥〈w′〉, we conclude that Kα = W⊥(W⊥ ∩Kα) is positive-type for
all α ∈ F∗

q , and also it follows that they are distinct elements in Ω since we have vα +vβ = (α+β)r

for α, β ∈ F∗
q . The number of hyperplanes K of V which include H ′ is given by q2m+1−q2m−1

q2m−q2m−1 = q+1.
In these q + 1 hyperplanes of V, H ′⊥〈r〉 is the only degenerate hyperplane, that is, there are q − 1
elements K in Ω such that K ∩ V = H ′ and hence each K is written as K = Kα for some α ∈ F∗

q .
By the same reason, there exists an element α0 in F∗

q such that

U = H ⊕ 〈vα0〉.

Fix an element α in F∗
q , then since V = W ⊕ 〈w,w′〉 ⊕ 〈r〉, any vector x in U ∩ Kα is uniquely

written as
x = ξw + ηw′ + y + δr,

for some ξ, η, δ ∈ Fq and y ∈ W . Then it follows from U = H ⊕ 〈vα0〉 and Kα = H ′ ⊕ 〈vα〉 that

δ = ξα = ηα0. (40)

Let w′′ be a vector in U ∩ Kα such that

U ∩ Kα = 〈w′′〉⊥ ∩ U = 〈w′′〉⊥ ∩ Kα.

Since W⊥ = 〈w,w′, r〉, it follows from (40) that

w′′ = α0ϵw + αϵw′ + α0αϵr, (41)

for an element ϵ ∈ Fq. Since w′′ ̸= 0, we have ϵ ̸= 0.
Now suppose (U,Kα) ∈ Ri, then Q(w′′) must not be 0, so that

α2
0α

2 + α0α ̸= 0,

which is equivalent to
α ̸= α−1

0 .

We may assume Q(w′′) = 1 so that

ϵ2 =
1

α2
0α

2 + α0α
.
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Then we have
1
αϵ

w +
1

α0ϵ
w′ =

1
α0αϵ2

w′′ +
1
ϵ
r = (α0α + 1)w′′ +

1
ϵ
r. (42)

From f(w,w′′) = αϵ, f(w′, w′′) = α0ϵ and Q(w) = Q(w′) = 0 it follows that

α0α + 1
α0α

= νi−1 or
α0α + 1

α0α
= ν−(i−1),

or equivalently
α0α = λi or α0α = λi + 1. (43)

Conversely if (43) is satisfied, then from (11) we deduce that (U,K) ∈ Ri. Therefore for each
1-dimensional singular subspace 〈w′〉 in V such that f(w,w′) ̸= 0, there are exactly 2 elements K
in Ω such that (U,K) ∈ Ri, (V,K) ∈ R1 and V ∩ K = H ′ := 〈w′〉⊥ ∩ V . The number of vectors v
in V such that f(v, w) ̸= 0 is q2m − q2m−1, and hence the number of 2-dimensional positive-type
subspaces of V which include 〈w〉 is by Proposition 1.1.2 equal to

q2m − q2m−1

q2 − q
= q2m−2, (44)

which is also equal to the number of 1-dimensional singular subspace 〈w′〉 in V such that f(w,w′) ̸=
0 since any 2-dimensional positive-type subspace of V contains two 1-dimensional singular sub-
spaces. Thus the number m1 of elements K in Ω such that (U,K) ∈ Ri, (V,K) ∈ R1 and
W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H, is given by

m1 = 2q2m−2. (45)

(b) Suppose f(w,w′) = 0, which never happens if m = 1, then 〈w,w′〉 = W⊥ ∩ V is a singular
subspace of W . Hence if an element K in Ω satisfies U ∩ V ∩ K = W , then U ∩ K cannot be
non-degenerate, since (U ∩K)⊥∩K ⊂ W⊥∩K = 〈w,w′〉. This implies that there is no element K
in Ω such that (U,K) ∈ Ri, (V,K) ∈ R1 and W = U ∩V ∩K = H ∩K is a degenerate hyperplane
of H.

Thus by (45)
p1

i1 = m1 = 2q2m−2. (46)

(iv) Finally suppose i = j = k = 1. Let U and V be elements in Ω such that (U, V ) ∈ R1. We use
the same notation as in (iii). In the same way as (iii), fix a vector w′ in V \〈w〉 with Q(w′) = 1,
and define two subspaces of V as

H ′ :=〈w′〉⊥ ∩ V,

W :=H ∩ H ′ = 〈w,w′〉⊥ ∩ V.

(a) Suppose f(w,w′) ̸= 0, that is, W is a non-degenerate hyperplane of H. We may assume
f(w,w′) = 1 without loss of generality, since Q(w) = Q(w′) = 0. Define

vα := w + w′ + αr,

for α ∈ F∗
q , then as mentioned before, U = H ⊕ 〈vα0〉 for some α0 ∈ F∗

q . Also Kα := H ′ ⊕ 〈vα〉
(α ∈ F∗

q) are distinct elements in Ω with Kα ∩ V = H ′, and each element K in Ω such that
K ∩ V = H ′ is written as K = Kα for some α ∈ F∗

q .
Fix an element α in F∗

q and let w′′ be a vector in U ∩ Kα such that U ∩ Kα = 〈w′′〉⊥ ∩ U =
〈w′′〉⊥ ∩ Kα. Then (U,K) ∈ R1 if and only if Q(w′′) = 0, which is by (41) equivalent to

α2
0α

2 + α0α = 0,
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that is, α = α−1
0 . Therefore for each 1-dimensional singular subspace 〈w′〉 in V such that f(w,w′) ̸=

0, there is exactly one element K in Ω such that (U,K) ∈ R1, (V,K) ∈ R1 and V ∩ K = H ′ :=
〈w′〉⊥∩V . Hence it follows from (44) that the number m′

1 of elements K in Ω such that (U,K) ∈ R1,
(V,K) ∈ R1 and W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H, is given by

m′
1 = q2m−2. (47)

(b) Suppose f(w,w′) = 0, that is, W is a degenerate hyperplane of H. This happens only if
m ≥ 2. In this case any element K in Ω such that U ∩ V ∩ K = W satisfies (U,K) ∈ R1, since
(U ∩ K)⊥ ∩ K ⊂ W⊥ ∩ K = 〈w,w′〉 and 〈w,w′〉 is a singular subspace.

The number of singular vectors in H is given by

qm + qm−1(qm−1 − 1). (48)

To show this, let W ′ be a non-degenerate hyperplane of H so that we have H = W ′⊥〈w〉. Since
W ′ is positive-type and Q(w) = 0, it follows from Lemma 1.1.3(ii) that the number of singular
vectors in H is equal to

q{qm−1 + qm−2(qm−1 − 1)} = qm + qm−1(qm−1 − 1),

as desired. Thus by (48) the number m′
2 of elements K in Ω such that (U,K) ∈ R1, (V,K) ∈ R1

and W = U ∩ V ∩ K = H ∩ K is a degenerate hyperplane of H, is given by

m′
2 =

qm + qm−1(qm−1 − 1) − q

q − 1
(q − 1) = qm + qm−1(qm−1 − 1) − q. (49)

(c) We have to count the number m′
3 of the elements K in Ω such that (U,K) ∈ R1, (V,K) ∈ R1

and U ∩ K = H. Since there are exactly q2m+1−q2m−1

q2m−q2m−1 − 1 = q elements in Ω which include H, m′
3

is given by
m′

3 = q − 2. (50)

From (47), (49) and (50) we obtain

p1
11 = m′

1 + m′
2 + m′

3 = qm−1(2qm−1 + q − 1) − 2. (51)

The rest of parameters are directly computed by the following equality (cf. Bannai-Ito [4, p.55,
Proposition 2.2.]):

Proposition 2.1.2. Let {pk
ij} denotes the intersection numbers of a symmetric association scheme

X = (X, {Ri}0≤i≤d). Then for all i, j, k ∈ {0, 1, . . . , q
2} we have kkpk

ij = kjp
j
ki = kip

i
jk.

Hence from (46)

pk
11 =

k1

kk
p1

k1 = 2qm−1(qm−1 + 1) for 2 ≤ k ≤ q
2 . (52)

Also from (39)

p1
ij =

kj

k1
pj
1i =

{
qm−1(2qm−1 − 1) if 2 ≤ i = j ≤ q

2 ,

2q2m−2 if 2 ≤ i, j ≤ q
2 and i ̸= j.

(53)

To summarize:
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Lemma 2.1.3. The intersection numbers pk
ij of X(GO2m+1(q),Ω) are given as follows.

p1
ij = p1

ji =


qm−1(2qm−1 + q − 1) − 2 if i = j = 1,

qm−1(2qm−1 − 1) if 2 ≤ i = j ≤ q
2 ,

2q2m−2 if 1 ≤ i < j ≤ q
2 ,

pk
1j = pk

j1 =

{
(2qm−1 − 1)(qm−1 + 1) if 2 ≤ j = k ≤ q

2 ,

2qm−1(qm−1 + 1) if 1 ≤ j ≤ q
2 , 2 ≤ k ≤ q

2 , j ̸= k.

For other 2 ≤ i, j, k ≤ q
2 ,

pk
ij =



qm−1(2qm−1 + 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 1,

qm−1(2qm−1 − 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 0,

2qm−1(qm−1 + 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 1,

2qm−1(qm−1 − 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 0,

2q2m−2 if µ2
i + µ2

j + µ2
k ̸= 0 and {φ(κijk), φ(κ′

ijk)} = {0, 1}.

2.2 The Parameters of X(GO2m+1(q), Θ2m+1(q))

In this subsection, we compute the intersection numbers {sk
ij} of X(GO2m+1(q),Θ2m+1(q)).

(i) Suppose first 2 ≤ i, j, k ≤ q
2 . Let U and V be elements in Θ such that (U, V ) ∈ Sk, and let w

denote the vector in H := U ∩ V such that Q(w) = 1 and

H = U ∩ V = 〈w〉⊥ ∩ U = 〈w〉⊥ ∩ V.

First of all, we count the number of elements K in Θ which satisfy (U,K) ∈ Si, (V,K) ∈ Sj ,
and U ∩ K = V ∩ K = H. Let v be a vector in V with f(v, w) = 1 and define

u := v + λkw + µkr.

Then it follows from (20) that
U = H ⊕ 〈u〉,

and the only element K in Θ such that (V,K) ∈ Sj and V ∩ K = H is given by

K := H ⊕ 〈z〉, where z := v + λjw + µjr.

Since
u + z = (λj + λk)w + (µj + µk)r,

if (U,K) ∈ Si, then we have
λj + λk

λj + λk + 1
= ν±(i−1),

that is,
λj + λk = λi, or λj + λk = λi + 1,

which is equivalent to
µ2

i + µ2
j + µ2

k = 0.

Thus the number n1 of elements K in Θ which satisfy (U,K) ∈ Si, (V,K) ∈ Sj , and U ∩ K =
V ∩ K = H is

n1 =

{
1 if µ2

i + µ2
j + µ2

k = 0,

0 if µ2
i + µ2

j + µ2
k ̸= 0.

(54)

Next, fix a vector w′ in V \〈w〉 with Q(w′) = 1, and define two subspaces of V as

H ′ :=〈w′〉⊥ ∩ V,

W :=H ∩ H ′ = 〈w,w′〉⊥ ∩ V.
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We need to determine whether there exists an element K in Θ such that (U,K) ∈ Si, (V,K) ∈ Sj

and V ∩ K = H ′. Notice that Rad f |〈w,w′〉 = 0 holds if and only if f(w,w′) ̸= 0, that is, W is
non-degenerate if and only if f(w,w′) ̸= 0. Assume f(w,w′) ̸= 0, then W is negative-type if
and only if the polynomial t2 + f(w,w′)t + 1 ∈ Fq[t] is reducible over Fq, since a 2-dimensional
negative-type subspace has no non-zero singular vector.

Let v be a vector in H such that f(v, w′) = 1, and let v′ be a vector in H ′ such that f(v′, w) = 1.
We define

u :=v′ + λkw + µkr,

z :=v + λjw
′ + µjr,

so that U = H ⊕ 〈u〉, and K := H ′ ⊕ 〈z〉 is the unique element in Θ which satisfies (V,K) ∈ Sj

and V ∩ K = H ′.
Since V = W ⊕ 〈v, v′〉 ⊕ 〈r〉, any vector x in U ∩ K is uniquely written as

x = αv + βv′ + y + γ r,

for some α, β, γ ∈ Fq and y ∈ W . Then it follows from U = H ⊕ 〈u〉 and K = H ′ ⊕ 〈z〉 that

γ = αµj = βµk. (55)

Notice that there exist two vectors y and y′ in W such that

w = f(w,w′)v + y, w′ = f(w,w′)v′ + y′. (56)

Let w′′ be a vector in U ∩ K such that

U ∩ K = 〈w′′〉⊥ ∩ U = 〈w′′〉⊥ ∩ K.

(a) Suppose f(w,w′) ̸= 0, that is, W is a non-degenerate subspace of V . Since by Proposition
1.1.1 we have dimW⊥ = 3, there exist some elements ξ, η, δ ∈ Fq such that

w′′ = ξw + ηw′ + δr.

Then by (56) we have

w′′ = ξf(w,w′)v + ηf(w,w′)v′ + ξy + ηy′ + δr,

so that from (55) we obtain

w′′ = µkϵw + µjϵw
′ + µjµkf(w,w′)ϵr, (57)

for some ϵ ∈ Fq. Since w′′ ̸= 0, we have ϵ ̸= 0.
Now suppose (U,K) ∈ Si, then Q(w′′) must not be 0. Hence the inner product f(w,w′) must

satisfy
µ2

jµ
2
kf(w,w′)2 + µjµkf(w,w′) + µ2

j + µ2
k ̸= 0,

or equivalently

f(w,w′) ̸= 1
µjµk

(λj + λk),
1

µjµk
(λj + λk + 1).

We may assume Q(w′′) = 1 so that

ϵ2 =
1

µ2
jµ

2
kf(w,w′)2 + µjµkf(w,w′) + µ2

j + µ2
k

. (58)

If (U,K) ∈ Si then repeating the same argument as before we have

w = µiϵ
′w′′ + µjϵ

′w′ + µiµjf(w′′, w′)ϵ′r, (59)

21



for some ϵ′ ∈ Fq. Then since it follows from (57) that

w =
1

µkϵ
w′′ +

µj

µk
w′ + µjf(w,w′)r,

we have
ϵ =

1
µi

.

Therefore by (58) the inner product f(w,w′) must satisfy the following condition:

µ2
jµ

2
kf(w,w′)2 + µjµkf(w,w′) + µ2

i + µ2
j + µ2

k = 0,

which is equivalent to

f(w,w′) =
1

µjµk
(λi + λj + λk), or f(w,w′) =

1
µjµk

(λi + λj + λk + 1). (60)

Conversely, if f(w,w′) satisfies (60) then from (11) we deduce that (U,K) ∈ Si.

We can now count the number of elements K in Θ such that (U,K) ∈ Si, (V,K) ∈ Sj , and
W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H. We use the same notation as the
previous subsection.

Suppose for instance κijk ̸= 0 and φ(κijk) = 1 (resp. φ(κijk) = 0). If w′ ∈ V satisfies
Q(w′) = 1 and f(w,w′) = κijk, then as mentioned before, W := 〈w,w′〉⊥ ∩ V is a negative-type
(resp. positive-type) hyperplane of H. On the other hand, let W be a negative-type (resp. positive-
type) hyperplane of H, then by Lemma 2.1.1 the number of vectors w′ in W⊥ ∩ V which satisfy
Q(w′) = 1 and f(w,w′) = κijk is exactly 2. Thus from (3) (resp. (2)), the number of vectors w′

in V such that Q(w′) = 1 and f(w,w′) = κijk is given by

qm−1(qm−1 − 1)
(
resp. qm−1(qm−1 + 1)

)
.

Since κijk, κ′
ijk ̸= 0 unless µ2

i + µ2
j + µ2

k = 0, the number n2 of elements K in Θ such that
(U,K) ∈ Si, (V,K) ∈ Sj and W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H, is
obtained as follows:

n2 =



qm−1(qm−1 − 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 1,

qm−1(qm−1 + 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 0,

2qm−1(qm−1 − 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 1,

2qm−1(qm−1 + 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 0,

2q2m−2 if µ2
i + µ2

j + µ2
k ̸= 0 and {φ(κijk), φ(κ′

ijk)} = {0, 1}.

(61)

(b) Suppose f(w,w′) = 0, that is, W is a degenerate subspace of V . Notice that this occurs
only if m ≥ 2. In this case 〈w,w′〉 is a subspace of W . Since dimW⊥∩K = 2 by Proposition 1.1.1
we have W⊥ ∩ K = 〈w,w′〉. Therefore there exist two elements ξ and η in Fq such that

w′′ = ξw + ηw′.

Let x = αv + βv′ + y + γ r be a vector in U ∩ K, then it follows from (55) that

0 = µkf(x,w′′) = βµkξ + αµkη = α(µjξ + µkη),

so that
w′′ = µkϵw + µjϵw

′, (62)

for some ϵ ∈ Fq.
Now suppose (U,K) ∈ Si, then Q(w′′) must not be 0, that is, µ2

j + µ2
k ̸= 0. We may assume

Q(w′′) = 1 so that

ϵ2 =
1

µ2
j + µ2

k

.
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If (U,K) ∈ Si then repeating the same argument as before we have

w = µiϵ
′w′′ + µjϵ

′w′, (63)

for some ϵ′ ∈ Fq. Then since it follows from (62) that

w =
1

µkϵ
w′′ +

µj

µk
w′,

we have
ϵ =

1
µi

,

so that
µ2

i + µ2
j + µ2

k = 0. (64)

Conversely, if (64) is satisfied, then from (12) we deduce (U,K) ∈ Si. By Lemma 1.1.3(i) there
are q2m−2 −1 vectors w′ in H other than w such that Q(w′) = 1, hence the number n3 of elements
K in Θ such that (U,K) ∈ Si, (V,K) ∈ Sj and W = U∩V ∩K = H∩K is a degenerate hyperplane
of H, is given by

n3 =

{
q2m−2 − 1 if µ2

i + µ2
j + µ2

k = 0,

0 if µ2
i + µ2

j + µ2
k ̸= 0.

(65)

From (54), (61) and (65), we obtain

sk
ij = n1 + n2 + n3

=



qm−1(2qm−1 − 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 1,

qm−1(2qm−1 + 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 0,

2qm−1(qm−1 − 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 1,

2qm−1(qm−1 + 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 0,

2q2m−2 if µ2
i + µ2

j + µ2
k ̸= 0 and {φ(κijk), φ(κ′

ijk)} = {0, 1},

(66)

for i, j, k ∈ {2, 3, . . . , q
2}.

Notice that we have computed all the intersection numbers of X(GO3(q),Θ3(q)), since if m = 1
then S1 = ∅. Thus in what follows, we always assume m ≥ 2.

(ii) Suppose i = 1 and 2 ≤ j, k ≤ q
2 . Let U and V be elements in Θ such that (U, V ) ∈ Sk. We use

the same notation as in (i). Notice that if an element K in Θ satisfies (U,K) ∈ S1 and (V,K) ∈ Sj ,
then U ∩ V ∩ K = H ∩ K has dimension 2m − 2, since U ∩ K is degenerate by definition while H
is non-degenerate.

In the same way as (i), fix a vector w′ in V \〈w〉 with Q(w′) = 1, and define two subspaces of
V as

H ′ :=〈w′〉⊥ ∩ V,

W :=H ∩ H ′ = 〈w,w′〉⊥ ∩ V.

Let K be the unique element in Θ which satisfies (V,K) ∈ Sj and V ∩ K = H ′, and let w′′ be a
vector in U ∩ K such that U ∩ K = 〈w′′〉⊥ ∩ U = 〈w′′〉⊥ ∩ K. Then (U,K) ∈ S1 if and only if
Q(w′′) = 0.

(a) Suppose f(w,w′) ̸= 0, that is, W is a non-degenerate subspace of V , then it follows from
(57) that (U,K) ∈ S1 if and only if

µ2
jµ

2
kf(w,w′)2 + µjµkf(w,w′) + µ2

j + µ2
k = 0,

which is equivalent to

f(w,w′) =
1

µjµk
(λj + λk), or f(w,w′) =

1
µjµk

(λj + λk + 1), (67)

23



where as shown in the previous subsection (cf. (36)) we have

φ

(
1

µjµk
(λj + λk)

)
= φ

(
1

µjµk
(λj + λk + 1)

)
= 1.

It follows from (3) that the number of negative-type hyperplanes of H is given by

qm−1(qm−1 − 1)
2

.

Hence by Lemma 2.1.1 the number n′
2 of elements K in Θ such that (U,K) ∈ S1, (V,K) ∈ Sj and

W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H, is obtained as

n′
2 =

{
qm−1(qm−1 − 1) if j = k,

2qm−1(qm−1 − 1) if j ̸= k,
(68)

since n′
2 is equal to the number of vectors w′ in V \H with Q(w′) = 1 which satisfies (67).

(b) Suppose f(w,w′) = 0, that is, W is a degenerate subspace of V . Then it follows from (62)
that (U,K) ∈ S1 if and only if

µ2
j + µ2

k = 0,

that is, j = k. By Lemma 1.1.3(i), the number of vectors w′ in H other than w with Q(w′) = 1
is equal to q2m−2 − 1, from which it follows that the number n′

3 of elements K in Θ such that
(U,K) ∈ S1, (V,K) ∈ Sj and W = U ∩ V ∩ K = H ∩ K is a degenerate hyperplane of H, is given
by

n′
3 =

{
q2m−2 − 1 if j = k,

0 if j ̸= k.
(69)

From (68) and (69), we obtain

sk
1j = n′

2 + n′
3 =

{
(2qm−1 + 1)(qm−1 − 1) if j = k,

2qm−1(qm−1 − 1) if j ̸= k.
(70)

(iii) Suppose 2 ≤ i ≤ q
2 and j = k = 1. Let U and V be elements in Θ such that (U, V ) ∈ S1, and

let w denote a vector in H := U ∩ V such that Q(w) = 0 and

U ∩ V = 〈w〉⊥ ∩ U = 〈w〉⊥ ∩ V.

Notice that in this case w is not uniquely determined, and also notice that if an element K in Θ
satisfies (U,K) ∈ Si and (V,K) ∈ S1, then U ∩V ∩K = H ∩K has dimension 2m−2, since U ∩K
is non-degenerate by definition while H is degenerate. Fix a vector w′ in V \〈w〉 with Q(w′) = 0,
and define two subspaces of V as

H ′ :=〈w′〉⊥ ∩ V,

W :=H ∩ H ′ = 〈w,w′〉⊥ ∩ V.

We determine whether there exists an element K in Θ such that (U,K) ∈ Si, (V,K) ∈ S1 and
V ∩ K = H ′.

(a) Suppose f(w,w′) ̸= 0, that is, W is a non-degenerate hyperplane of H. Since Q(w) =
Q(w′) = 0, we may assume f(w,w′) = 1 without loss of generality. Define

vα := w + w′ + αr,

for α ∈ F∗
q , then Kα := H ′ ⊕ 〈vα〉 (α ∈ F∗

q) are distinct elements in Θ with Kα ∩ V = H ′. In fact,
since these hyperplanes of V do not contain the vector r, they are non-degenerate. Moreover since
W is negative-type and H ′ = W⊥〈w′〉, we conclude that Kα = W⊥(W⊥∩Kα) is negative-type for
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all α ∈ F∗
q , and also it follows that they are distinct elements in Θ since we have vα +vβ = (α+β)r

for α, β ∈ F∗
q . The number of hyperplanes K of V which include H ′ is given by q2m+1−q2m−1

q2m−q2m−1 = q+1.
In these q + 1 hyperplanes of V, H ′⊥〈r〉 is the only degenerate hyperplane, that is, there are q − 1
elements K in Θ such that K ∩ V = H ′ and hence each K is written as K = Kα for some α ∈ F∗

q .
By the same reason, there exists an element α0 in F∗

q such that

U = H ⊕ 〈vα0〉.

Fix an element α in F∗
q , then since V = W ⊕ 〈w,w′〉 ⊕ 〈r〉, any vector x in U ∩ Kα is uniquely

written as
x = ξw + ηw′ + y + δr,

for some ξ, η, δ ∈ Fq and y ∈ W . Then it follows from U = H ⊕ 〈vα0〉 and Kα = H ′ ⊕ 〈vα〉 that

δ = ξα = ηα0. (71)

Let w′′ be a vector in U ∩ Kα such that

U ∩ Kα = 〈w′′〉⊥ ∩ U = 〈w′′〉⊥ ∩ Kα.

Since W⊥ = 〈w,w′, r〉, it follows from (71) that

w′′ = α0ϵw + αϵw′ + α0αϵr, (72)

for an element ϵ ∈ Fq. Since w′′ ̸= 0, we have ϵ ̸= 0.
Now suppose (U,Kα) ∈ Si, then Q(w′′) must not be 0, so that

α2
0α

2 + α0α ̸= 0,

which is equivalent to
α ̸= α−1

0 .

We may assume Q(w′′) = 1 so that

ϵ2 =
1

α2
0α

2 + α0α
.

Then we have
1
αϵ

w +
1

α0ϵ
w′ =

1
α0αϵ2

w′′ +
1
ϵ
r = (α0α + 1)w′′ +

1
ϵ
r. (73)

From f(w,w′′) = αϵ, f(w′, w′′) = α0ϵ and Q(w) = Q(w′) = 0 it follows that

α0α + 1
α0α

= νi−1 or
α0α + 1

α0α
= ν−(i−1),

or equivalently
α0α = λi or α0α = λi + 1. (74)

Conversely if (74) is satisfied, then from (11) we deduce that (U,K) ∈ Si. Therefore for each
1-dimensional singular subspace 〈w′〉 in V such that f(w,w′) ̸= 0, there are exactly 2 elements K
in Θ such that (U,K) ∈ Si, (V,K) ∈ S1 and V ∩ K = H ′ := 〈w′〉⊥ ∩ V . The number of vectors v
in V such that f(v, w) ̸= 0 is q2m − q2m−1, and hence the number of 2-dimensional positive-type
subspaces of V which include 〈w〉 is by Proposition 1.1.2 equal to

q2m − q2m−1

q2 − q
= q2m−2, (75)

which is also equal to the number of 1-dimensional singular subspace 〈w′〉 in V such that f(w,w′) ̸=
0 since any 2-dimensional positive-type subspace of V contains two 1-dimensional singular sub-
spaces. Thus the number m1 of elements K in Θ such that (U,K) ∈ Si, (V,K) ∈ S1 and
W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H, is given by

m1 = 2q2m−2. (76)
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(b) Suppose f(w,w′) = 0, then 〈w,w′〉 = W⊥ ∩ V is a singular subspace of W . Hence if
an element K in Θ satisfies U ∩ V ∩ K = W , then U ∩ K cannot be non-degenerate, since
(U ∩ K)⊥ ∩ K ⊂ W⊥ ∩ K = 〈w,w′〉. This implies that there is no element K in Θ such that
(U,K) ∈ Si, (V,K) ∈ S1 and W = U ∩ V ∩ K = H ∩ K is a degenerate hyperplane of H.

Thus by (76)
s1

i1 = m1 = 2q2m−2. (77)

(iv) Finally suppose i = j = k = 1. Let U and V be elements in Θ such that (U, V ) ∈ S1. We use
the same notation as in (iii). In the same way as (iii), fix a vector w′ in V \〈w〉 with Q(w′) = 1,
and define two subspaces of V as

H ′ :=〈w′〉⊥ ∩ V,

W :=H ∩ H ′ = 〈w,w′〉⊥ ∩ V.

(a) Suppose f(w,w′) ̸= 0, that is, W is a non-degenerate hyperplane of H. We may assume
f(w,w′) = 1 without loss of generality, since Q(w) = Q(w′) = 0. Define

vα := w + w′ + αr,

for α ∈ F∗
q , then as mentioned before, U = H ⊕ 〈vα0〉 for some α0 ∈ F∗

q . Also Kα := H ′ ⊕ 〈vα〉
(α ∈ F∗

q) are distinct elements in Θ with Kα ∩ V = H ′, and each element K in Θ such that
K ∩ V = H ′ is written as K = Kα for some α ∈ F∗

q .
Fix an element α in F∗

q and let w′′ be a vector in U ∩ Kα such that U ∩ Kα = 〈w′′〉⊥ ∩ U =
〈w′′〉⊥ ∩ Kα. Then (U,K) ∈ S1 if and only if Q(w′′) = 0, which is by (72) equivalent to

α2
0α

2 + α0α = 0,

that is, α = α−1
0 . Therefore for each 1-dimensional singular subspace 〈w′〉 in V such that f(w,w′) ̸=

0, there is exactly one element K in Θ such that (U,K) ∈ S1, (V,K) ∈ S1 and V ∩ K = H ′ :=
〈w′〉⊥∩V . Hence it follows from (75) that the number m′

1 of elements K in Θ such that (U,K) ∈ S1,
(V,K) ∈ S1 and W = U ∩ V ∩ K = H ∩ K is a non-degenerate hyperplane of H, is given by

m′
1 = q2m−2. (78)

(b) Suppose f(w,w′) = 0, that is, W is a degenerate hyperplane of H. In this case any element
K in Θ such that U ∩ V ∩K = W satisfies (U,K) ∈ S1, since (U ∩K)⊥ ∩K ⊂ W⊥ ∩K = 〈w,w′〉
and 〈w,w′〉 is a singular subspace.

The number of singular vectors in H is given by

qm−1 + qm(qm−2 − 1). (79)

To show this, let W ′ be a non-degenerate hyperplane of H so that we have H = W ′⊥〈w〉. Since
W ′ is negative-type and Q(w) = 0, it follows from Lemma 1.1.3(iii) that the number of singular
vectors in H is equal to

q{qm−2 + qm−1(qm−2 − 1)} = qm−1 + qm(qm−2 − 1),

as desired. Thus by (79) the number m′
2 of elements K in Θ such that (U,K) ∈ S1, (V,K) ∈ S1

and W = U ∩ V ∩ K = H ∩ K is a degenerate hyperplane of H, is given by

m′
2 =

qm−1 + qm(qm−2 − 1) − q

q − 1
(q − 1) = qm−1 + qm(qm−2 − 1) − q. (80)

(c) We have to count the number m′
3 of the elements K in Θ such that (U,K) ∈ S1, (V,K) ∈ S1

and U ∩ K = H. Since there are exactly q2m+1−q2m−1

q2m−q2m−1 − 1 = q elements in Θ which include H, m′
3

is given by
m′

3 = q − 2. (81)
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From (78), (80) and (81) we obtain

s1
11 = m′

1 + m′
2 + m′

3 = qm−1(2qm−1 − q + 1) − 2. (82)

The rest of parameters are directly computed from Proposition 2.1.2:

From (77)

sk
11 =

h1

hk
s1

k1 = 2qm−1(qm−1 − 1) for 2 ≤ k ≤ q
2 . (83)

Also from (70)

s1
ij =

hj

h1
sj
1i =

{
qm−1(2qm−1 + 1) if 2 ≤ i = j ≤ q

2 ,

2q2m−2 if 2 ≤ i, j ≤ q
2 and i ̸= j.

(84)

To summarize:

Lemma 2.2.1. The intersection numbers sk
ij of X(GO2m+1(q),Θ) are given as follows.

s1
ij = s1

ji =


qm−1(2qm−1 − q + 1) − 2 if i = j = 1,

qm−1(2qm−1 + 1) if 2 ≤ i = j ≤ q
2 ,

2q2m−2 if 1 ≤ i < j ≤ q
2 ,

sk
1j = sk

j1 =

{
(2qm−1 + 1)(qm−1 − 1) if 2 ≤ j = k ≤ q

2 ,

2qm−1(qm−1 − 1) if 1 ≤ j ≤ q
2 , 2 ≤ k ≤ q

2 , j ̸= k.

For other 2 ≤ i, j, k ≤ q
2 ,

sk
ij =



qm−1(2qm−1 − 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 1,

qm−1(2qm−1 + 1) if µ2
i + µ2

j + µ2
k = 0 and φ

(
1

µjµk

)
= 0,

2qm−1(qm−1 − 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 1,

2qm−1(qm−1 + 1) if µ2
i + µ2

j + µ2
k ̸= 0 and φ(κijk) = φ(κ′

ijk) = 0,

2q2m−2 if µ2
i + µ2

j + µ2
k ̸= 0 and {φ(κijk), φ(κ′

ijk)} = {0, 1}.

3 Character Tables

3.1 The Character Tables of X(GO2m+1(q), Ω2m+1(q))

In this subsection, we determine the character table of X(GO2m+1(q),Ω2m+1(q)) explicitly. Our
account follows Bannai-Hao-Song [2, §6.] in all essential points. Namely, we prove that the
character table of X(GO2m+1(q),Ω2m+1(q)) is controlled by that of X(GO3(q),Ω3(q)).

First of all, we prove the following lemma which shows the relation between the sets of param-
eters of X(GO2m+1(q),Ω2m+1(q)) and X(GO3(q),Ω3(q)):

Lemma 3.1.1. Let {ak
ij} denotes the set of the intersection numbers of X(GO3(q),Ω3(q)). Then

p1
11 = 2qm−1(qm−1 − 1) + qm−1(a1

11 + 2) − 2

pj
1j = pj

j1 = 2qm−1(qm−1 − 1) + qm−1(aj
1j + 1) − 1 for 2 ≤ j ≤ q

2 ,

for other 1 ≤ i, j, k ≤ q
2 ,

pk
ij = 2qm−1(qm−1 − 1) + qm−1ak

ij .
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Proof. For i = j = k = 1, from a1
11 = q − 1 we have

p1
11 = qm−1(2qm−1 + q − 1) − 2 = 2qm−1(qm−1 − 1) + qm + qm−1 − 2

= 2qm−1(qm−1 − 1) + qm−1(a1
11 + 2) − 2.

For 2 ≤ i = j ≤ q
2 and k = 1, from a1

ii = 1 we have

p1
ii = qm−1(2qm−1 − 1) = 2qm−1(qm−1 − 1) + qm−1

= 2qm−1(qm−1 − 1) + qm−1a1
ii.

For 1 ≤ i < j ≤ q
2 and k = 1, from a1

ij = a1
ji = 2 we have

p1
ij = p1

ji = 2q2m−2 = 2qm−1(qm−1 − 1) + 2qm−1

= 2qm−1(qm−1 − 1) + qm−1a1
ij .

For i = 1 and 2 ≤ j = k ≤ q
2 , from aj

1j = aj
j1 = 2 we have

pj
1j = pj

j1 = (2qm−1 − 1)(qm−1 + 1) = 2qm−1(qm−1 − 1) + 3qm−1 − 1

= 2qm−1(qm−1 − 1) + qm−1(aj
1j + 1) − 1.

For i = 1, 1 ≤ j ≤ q
2 , 2 ≤ k ≤ q

2 and j ̸= k, from ak
1j = ak

j1 = 4 we have

pk
1j = pk

j1 = 2qm−1(qm−1 + 1) = 2qm−1(qm−1 − 1) + 4qm−1

= 2qm−1(qm−1 − 1) + qm−1ak
1j .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k = 0 and φ
(

1
µjµk

)
= 1, from ak

ij = 3 we have

pk
ij = qm−1(2qm−1 + 1) = 2qm−1(qm−1 − 1) + 3qm−1

= 2qm−1(qm−1 − 1) + qm−1ak
ij .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k = 0 and φ
(

1
µjµk

)
= 0, from ak

ij = 1 we have

pk
ij = qm−1(2qm−1 − 1) = 2qm−1(qm−1 − 1) + qm−1

= 2qm−1(qm−1 − 1) + qm−1ak
ij .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k ̸= 0 and φ(κijk) = φ(κ′
ijk) = 1, from ak

ij = 4 we have

pk
ij = 2qm−1(qm−1 + 1) = 2qm−1(qm−1 − 1) + 4qm−1

= 2qm−1(qm−1 − 1) + qm−1ak
ij .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k ̸= 0 and φ(κijk) = φ(κ′
ijk) = 0, from ak

ij = 0 we have

pk
ij = 2qm−1(qm−1 − 1)

= 2qm−1(qm−1 − 1) + qm−1ak
ij .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k ̸= 0 and {φ(κijk), φ(κ′
ijk)} = {0, 1}, from ak

ij = 2 we have

pk
ij = 2q2m−2 = 2qm−1(qm−1 − 1) + 2qm−1

= 2qm−1(qm−1 − 1) + qm−1ak
ij .

This proves Lemma 3.1.1.
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It is known that the character table P̃+ = (p̃j(i)) of X(GO3(q),Ω3(q)) is given as follows (cf.
Tanaka [14]):

P̃+ =


1 2(q − 1) (q − 1) . . . (q − 1)
1 q − 3 −2 . . . −2
1 −2
...

... (χij)2≤i,j≤ q
2

1 −2

 , (85)

for suitable χij ∈ Q (θ) with θ = exp( 2πi
q−1 ). The values of the entries χij are slightly complicated.

The explicit description of these values are given in [14].

Theorem 3.1.2. The character table P+ = (pj(i)) of X(GO2m+1(q),Ω2m+1(q)) is described as

P+ =


1 (qm−1 + 1)(qm − 1) qm−1(qm − 1) . . . qm−1(qm − 1)
1 (q − 2)qm−1 − 1 −2qm−1 . . . −2qm−1

1 −(qm−1 + 1)
...

... (qm−1χij)2≤i,j≤ q
2

1 −(qm−1 + 1)

 .

That is,

p0(i) = 1 for 0 ≤ i ≤ q
2

pj(0) = kj for 0 ≤ j ≤ q
2

p1(i) = qm−1p̃1(i) + qm−1 − 1 for 1 ≤ i ≤ q
2

pj(i) = qm−1p̃j(i) for 1 ≤ i ≤ q
2 , 2 ≤ j ≤ q

2

Proof. The transposition of each row of the character table of X(GO2m+1(q),Ω2m+1(q)) is a com-
mon right eigenvector of the intersection matrices B0, B1, . . . , B q

2
, where Bi is the matrix whose

(j, k)-entry is pk
ij (cf. Bannai-Ito [4, p.91, Proposition 5.3.]). Thus, we have only to show that the

following equality:

Bi


p0(l)
p1(l)

...
p q

2
(l)

 = pi(l)


p0(l)
p1(l)

...
p q

2
(l)

 (86)

for all i and l.
(i) Suppose first i = j = 1 and 1 ≤ l ≤ q

2 , then using the equality (1) and Lemma 3.1.1 we see
that

q
2∑

α=0

pα
11pα(l) = p0

11p0(l) + p1
11p1(l) +

q
2∑

α=2

pα
11pα(l)

= (qm−1 + 1)(qm − 1)

+ 2q2m−2(qm−1 − 1)p̃1(l) + q2m−2a1
11p̃1(l) + 2qm−1(qm−1 − 1)p̃1(l)

+ {qm−1(2qm−1 + q − 1) − 2}(qm−1 − 1)

+ 2q2m−2(qm−1 − 1)

q
2∑

α=0

p̃α(l) + q2m−2

q
2∑

α=0

aα
11p̃α(l)

− 2q2m−2(qm−1 − 1) − 2q2m−2(qm−1 − 1)p̃1(l)

− 2q2m−2(q − 1) − q2m−2a1
11p̃1(l) by a0

11 = 2(q − 1),

= q2m−2p̃1(l)2 + 2qm−1(qm−1 − 1)p̃1(l) + (qm−1 − 1)2

= {qm−1p̃1(l) + qm−1 − 1}2
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= p1(l)2.

(ii) Suppose i = 1, 1 < j ≤ q
2 and 1 ≤ l ≤ q

2 , then

q
2∑

α=0

pα
1jpα(l) = p0

1jp0(l) + p1
1jp1(l) + pj

1jpj(l) +

q
2∑

α=2
α̸=j

pα
1jpα(l)

= 2q2m−2(qm−1 − 1)p̃1(l) + q2m−2a1
1j p̃1(l) + 2q2m−2(qm−1 − 1)

+ 2q2m−2(qm−1 − 1)p̃j(l) + q2m−2aj
1j p̃j(l) + qm−1(qm−1 − 1)p̃j(l)

+ 2q2m−2(qm−1 − 1)

q
2∑

α=0

p̃α(l) + q2m−2

q
2∑

α=0

aα
1j p̃α(l)

− 2q2m−2(qm−1 − 1) − 2q2m−2(qm−1 − 1)p̃1(l) − 2q2m−2(qm−1 − 1)p̃j(l)

− q2m−2a0
1j p̃0(l) − q2m−2a1

1j p̃1(l) − q2m−2aj
1j p̃j(l)

= q2m−2p̃1(l)p̃j(l) + qm−1(qm−1 − 1)p̃j(l)

= {qm−1p̃1(l) + qm−1 − 1}qm−1p̃j(l)
= p1(l)pj(l).

(iii) Suppose 1 < i ≤ q
2 , j = 1 and 1 ≤ l ≤ q

2 , then

q
2∑

α=0

pα
i1pα(l) = p0

i1p0(l) + p1
i1p1(l) + pi

i1pi(l) +

q
2∑

α=2
α̸=i

pα
i1pα(l)

= 2q2m−2(qm−1 − 1)p̃1(l) + q2m−2a1
i1p̃1(l) + 2q2m−2(qm−1 − 1)

+ 2q2m−2(qm−1 − 1)p̃i(l) + q2m−2ai
i1p̃i(l) + qm−1(qm−1 − 1)p̃i(l)

+ 2q2m−2(qm−1 − 1)

q
2∑

α=0

p̃α(l) + q2m−2

q
2∑

α=0

aα
i1p̃α(l)

− 2q2m−2(qm−1 − 1) − 2q2m−2(qm−1 − 1)p̃1(l) − 2q2m−2(qm−1 − 1)p̃i(l)

− q2m−2a0
i1p̃0(l) − q2m−2a1

i1p̃1(l) − q2m−2ai
i1p̃i(l)

= q2m−2p̃i(l)p̃1(l) + qm−1(qm−1 − 1)p̃i(l)

= qm−1p̃i(l){qm−1p̃1(l) + qm−1 − 1}
= pi(l)p1(l).

(iv) Suppose 1 < i = j ≤ q
2 and 1 ≤ l ≤ q

2 , then

q
2∑

α=0

pα
iipα(l) = p0

iip0(l) + p1
iip1(l) +

q
2∑

α=2

pα
iipα(l)

= qm−1(qm − 1)

+ 2q2m−2(qm−1 − 1)p̃1(l) + q2m−2a1
iip̃1(l) + qm−1(2qm−1 − 1)(qm−1 − 1)

+ 2q2m−2(qm−1 − 1)

q
2∑

α=0

p̃α(l) + q2m−2

q
2∑

α=0

aα
iip̃α(l)

− 2q2m−2(qm−1 − 1) − 2q2m−2(qm−1 − 1)p̃1(l)

− q2m−2(q − 1) − q2m−2a1
iip̃1(l) by a0

ii = q − 1,

= q2m−2p̃i(l)2

= pi(l)2.
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(v)Finally, suppose 1 < i, j ≤ q
2 , i ̸= j and 1 ≤ l ≤ q

2 , then
q
2∑

α=0

pα
ijpα(l) = p0

ijp0(l) + p1
ijp1(l) +

q
2∑

α=2

pα
ijpα(l)

= 2q2m−2(qm−1 − 1)p̃1(l) + q2m−2a1
ij p̃1(l) + 2q2m−2(qm−1 − 1)

+ 2q2m−2(qm−1 − 1)

q
2∑

α=0

p̃α(l) + q2m−2

q
2∑

α=0

aα
ij p̃α(l)

− 2q2m−2(qm−1 − 1) − 2q2m−2(qm−1 − 1)p̃1(l)

− q2m−2a0
ij − q2m−2a1

ij p̃1(l)

= q2m−2p̃i(l)p̃j(l)
= pi(l)pj(l).

This completes the proof of Theorem 3.1.2.

3.2 The Character Tables of X(GO2m+1(q), Θ2m+1(q))

We have shown that the character table of X(GO2m+1(q),Ω2m+1(q)) is essentially controlled by
that of a smaller association scheme X(GO3(q),Ω3(q)), by the replacement q → qm−1. Although it
is possible to calculate the character table of X(GO2m+1(q),Θ2m+1(q)) in the same way, we observe
a similar kind of phenomenon which is called an Ennola type duality (cf. Bannai-Kwok-Song [6]),
that is, we will show that the character table of X(GO2m+1(q),Θ2m+1(q)) is essentially obtained
by that of X(GO2m+1(q),Ω2m+1(q)), by the replacement q → −q. Consequently it follows that the
charactr table of X(GO2m+1(q),Θ2m+1(q)) is controlled by that of X(GO3(q),Θ3(q)).

The following lemma shows the relation between the parameters of X(GO2m+1(q),Θ2m+1(q))
and those of X(GO2m+1(q),Ω2m+1(q)) for m ≥ 2, also the relation between the parameters of
X(GO3(q),Θ3(q)) and those of X(GO3(q),Ω3(q)). (Notice that X(GO3(q),Θ3(q)) is of class q

2 − 1
while X(GO2m+1(q),Θ2m+1(q)) is of class q

2 for m ≥ 2.)

Lemma 3.2.1. Let {bk
ij} denotes the set of the intersection numbers of X(GO3(q),Θ3(q)). Then

for m ≥ 2

s1
11 = 4q2m−2 − p1

11 − 4

sj
1j = sj

j1 = 4q2m−2 − pj
1j − 2 for 2 ≤ j ≤ q

2 ,

for other 1 ≤ i, j, k ≤ q
2 ,

sk
ij = 4q2m−2 − pk

ij .

Also
bk
ij = 4 − ak

ij ,

for 2 ≤ i, j, k ≤ q
2 .

Proof. For i = j = k = 1, from p1
11 = qm−1(2qm−1 + q − 1) − 2 we have

s1
11 = qm−1(2qm−1 − q + 1) − 2 = 4q2m−2 − qm−1(2qm−1 + q − 1) − 2

= 4q2m−2 − p1
11 − 4.

For 2 ≤ i = j ≤ q
2 and k = 1, from p1

ii = qm−1(2qm−1 − 1) we have

s1
ii = qm−1(2qm−1 + 1) = 4q2m−2 − qm−1(2qm−1 − 1)

= 4q2m−2 − p1
ii.

For 1 ≤ i < j ≤ q
2 and k = 1, from p1

ij = p1
ji = 2q2m−2 we have

s1
ij = s1

ji = 2q2m−2 = 4q2m−2 − 2q2m−2

= 4q2m−2 − p1
ij .
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For i = 1 and 2 ≤ j = k ≤ q
2 , from pj

1j = pj
j1 = (2qm−1 − 1)(qm−1 + 1) we have

sj
1j = sj

j1 = (2qm−1 + 1)(qm−1 − 1) = 4q2m−2 − (2q2m−2 + qm−1 − 1) − 2

= 4q2m−2 − pj
1j − 2.

For i = 1, 1 ≤ j ≤ q
2 , 2 ≤ k ≤ q

2 and j ̸= k, from pk
1j = pk

j1 = 2qm−1(qm−1 + 1) we have

sk
1j = sk

j1 = 2qm−1(qm−1 − 1) = 4q2m−2 − 2qm−1(qm−1 + 1)

= 4q2m−2 − pk
1j .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k = 0 and φ
(

1
µjµk

)
= 1, from pk

ij = qm−1(2qm−1 + 1) we have

sk
ij = qm−1(2qm−1 − 1) = 4q2m−2 − qm−1(2qm−1 + 1)

= 4q2m−2 − pk
ij .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k = 0 and φ
(

1
µjµk

)
= 0, from pk

ij = qm−1(2qm−1 − 1) we have

sk
ij = qm−1(2qm−1 + 1) = 4q2m−2 − qm−1(2qm−1 − 1)

= 4q2m−2 − pk
ij .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k ̸= 0 and φ(κijk) = φ(κ′
ijk) = 1, from pk

ij = 2qm−1(qm−1 + 1) we
have

sk
ij = 2qm−1(qm−1 − 1) = 4q2m−2 − 2qm−1(qm−1 + 1)

= 4q2m−2 − pk
ij .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k ̸= 0 and φ(κijk) = φ(κ′
ijk) = 0, from pk

ij = 2qm−1(qm−1 − 1) we
have

sk
ij = 2qm−1(qm−1 + 1) = 4q2m−2 − 2qm−1(qm−1 − 1)

= 4q2m−2 − pk
ij .

For 2 ≤ i, j, k ≤ q
2 , µ2

i + µ2
j + µ2

k ̸= 0 and {φ(κijk), φ(κ′
ijk)} = {0, 1}, from pk

ij = 2q2m−2 we have

sk
ij = 2q2m−2 = 4q2m−2 − 2q2m−2

= 4q2m−2 − pk
ij .

This proves Lemma 3.2.1.

Theorem 3.2.2. For m ≥ 2, the character table P− = (sj(i)) of X(GO2m+1(q),Θ) is described
as

P− =


1 (qm−1 − 1)(qm + 1) qm−1(qm + 1) . . . qm−1(qm + 1)
1 −(q − 2)qm−1 − 1 2qm−1 . . . 2qm−1

1 (qm−1 − 1)
...

... (−qm−1χij)2≤i,j≤ q
2

1 (qm−1 − 1)


That is,

s0(i) = 1 for 0 ≤ i ≤ q
2

sj(0) = hj for 0 ≤ j ≤ q
2

s1(i) = −p1(i) − 2 for 1 ≤ i ≤ q
2

sj(i) = −pj(i) for 1 ≤ i ≤ q
2 , 2 ≤ j ≤ q

2
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Proof. In the same way as the proof of Theorem 3.1.2, we verify the following equality:

q
2∑

α=0

sα
ijsα(l) = si(l)sj(l) (87)

for all i, j, l ∈ {0, 1, . . . , q
2}.

(i) Suppose first i = j = 1 and 1 ≤ l ≤ q
2 , then using the equality (1) and Lemma 3.2.1 we see

that
q
2∑

α=0

sα
11sα(l) = s0

11s0(l) + s1
11s1(l) +

q
2∑

α=2

sα
11sα(l)

= (qm−1 − 1)(qm + 1)

− 4q2m−2p1(l) + p1
11p1(l) + 4p1(l) − 2{qm−1(2qm−1 − q + 1) − 2}

− 4q2m−2

q
2∑

α=0

pα(l) +

q
2∑

α=0

pα
11pα(l)

+ 4q2m−2 + 4q2m−2p1(l)

− (qm−1 + 1)(qm − 1) − p1
11p1(l) by p0

11 = (qm−1 + 1)(qm − 1),

= p1(l)2 + 4p1(l) + 4

= (p1(l) + 2)2

= s1(l)2.

(ii) Suppose i = 1, 1 < j ≤ q
2 and 1 ≤ l ≤ q

2 , then

q
2∑

α=0

sα
1jsα(l) = s0

1js0(l) + s1
1js1(l) + sj

1jsj(l) +

q
2∑

α=2
α̸=j

sα
1jsα(l)

= − 4q2m−2p1(l) + p1
1jp1(l) − 4q2m−2

− 4q2m−2pj(l) + pj
1jpj(l) + 2pj(l)

− 4q2m−2

q
2∑

α=0

pα(l) +

q
2∑

α=0

pα
1jpα(l)

+ 4q2m−2 + 4q2m−2p1(l) + 4q2m−2pj(l)

− p0
1jp0(l) − p1

1jp1(l) − pj
1jpj(l)

= p1(l)pj(l) + 2pj(l)
= (p1(l) + 2)pj(l)
= s1(l)sj(l).

(iii) Suppose 1 < i ≤ q
2 , j = 1 and 1 ≤ l ≤ q

2 , then

q
2∑

α=0

sα
i1sα(l) = s0

i1s0(l) + s1
i1s1(l) + si

i1si(l) +

q
2∑

α=2
α̸=i

sα
i1sα(l)

= − 4q2m−2p1(l) + p1
i1p1(l) − 4q2m−2

− 4q2m−2pi(l) + pi
i1pi(l) + 2pi(l)

− 4q2m−2

q
2∑

α=0

pα(l) +

q
2∑

α=0

pα
i1pα(l)
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+ 4q2m−2 + 4q2m−2p1(l) + 4q2m−2pi(l)

− p0
i1p0(l) − p1

i1p1(l) − pi
i1pi(l)

= pi(l)p1(l) + 2pi(l)
= pi(l)(p1(l) + 2)
= si(l)s1(l).

(iv) Suppose 1 < i = j ≤ q
2 and 1 ≤ l ≤ q

2 , then
q
2∑

α=0

sα
iisα(l) = s0

iis0(l) + s1
iis1(l) +

q
2∑

α=2

sα
iisα(l)

= qm−1(qm + 1)

− 4q2m−2p1(l) + p1
iip1(l) − 2qm−1(2qm−1 + 1)

− 4q2m−2

q
2∑

α=0

pα(l) +

q
2∑

α=0

pα
iipα(l)

+ 4q2m−2 + 4q2m−2p1(l)

− qm−1(qm − 1) − p1
iip1(l) by p0

ii = qm−1(qm − 1),

= pi(l)2

= si(l)2.

(v)Finally, suppose 1 < i, j ≤ q
2 , i ̸= j and 1 ≤ l ≤ q

2 , then
q
2∑

α=0

sα
ijsα(l) = s0

ijs0(l) + s1
ijs1(l) +

q
2∑

α=2

sα
ijsα(l)

= − 4q2m−2p1(l) + p1
ijp1(l) − 4q2m−2

− 4q2m−2

q
2∑

α=0

pα(l) +

q
2∑

α=0

pα
ijpα(l)

+ 4q2m−2 + 4q2m−2p1(l)

− p0
ij − p1

ijp1(l)

= pi(l)pj(l)
= si(l)sj(l).

This completes the proof of Theorem 3.2.2.

It is known that the character table P̃− = (s̃j(i)) of X(GO3(q),Θ3(q)) is described as follows
(cf. Bannai-Kwok-Song [6, p.139, Remark 1.]):

P̃− =


1 (q + 1) . . . (q + 1)
1
... (−χij)2≤i,j≤ q

2

1

 . (88)

Thus it follows from Theorem 3.2.2 that the character table of X(GO2m+1(q),Θ2m+1(q)) is con-
trolled by that of X(GO3(q),Θ3(q)), by replacing q → qm−1.

4 Subschemes

4.1 Subschemes of X(GO2m+1(q), Ω2m+1(q))

First of all, we prove the following theorem:
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Theorem 4.1.1. X(GO2m+1(q),Ω2m+1(q)) is a subscheme of X(GO3(qm),Ω3(qm)).

The underlying vector space V is decomposed as

V = 〈e11, e21〉⊥ . . .⊥〈e1m, e2m〉⊥〈r〉,

where {e1i, e2i} (1 ≤ i ≤ m) are hyperbolic pairs and as usual Q(r) = 1. Let

U := 〈e11, e21〉⊥ . . .⊥〈e1m, e2m〉

be an element in Ω2m+1(q), then f |U is a non-degenerate alternating bilinear form on U . The
symplectic group Sp2m(q) is the group of all elements of GL2m(q) = GL(U) which preserve the
non-degenerate alternating bilinear form f |U . More precisely,

Sp2m(q) := {τ ∈ GL(U) | f |U (τ(u), τ(v)) = f |U (u, v) for all u, v ∈ U}.

It is well known that the orthogonal group GO2m+1(q) is isomorphic to the symplectic group
Sp2m(q) for even q, but we review this again in a form convenient for our purpose.

Let E(1) : V −→ U , E(2) : V −→ 〈r〉 be the orthogonal projections, and define a mapping
Φ : GO2m+1(q) −→ Sp2m(q) by

Φ(A) := A(1)|U
for A ∈ GO2m+1(q), where

A(i) := E(i)A (i = 1, 2).

Then we have the following:

Proposition 4.1.2. The mapping Φ : GO2m+1(q) −→ Sp2m(q) is well-defined. Moreover, Φ is an
isomorphism of GO2m+1(q) onto Sp2m(q).

Proof. Let A be an element in GO2m+1(q). Then since A does not move the vector r we have
(A(1))−1(0) = 〈r〉, so that

rankA(1)|U = dimA(1)U = dim U − dimU ∩ 〈r〉 = dimU = 2m.

Thus Φ(A) is an element in GL(U). Also since A(2)V is equal to the radical 〈r〉 of f , we obtain

f(A(1)u,A(1)v) = f(A(1)u + A(2)u,A(1)v + A(2)v) = f(Au,Av) = f(u, v),

for all u, v ∈ U , which implies that Φ(A) belongs to Sp2m(q), namely, the mapping Φ is well-
defined. This mapping Φ is also a homomorphism. To show this, let A and A′ be two elements in
GO2m+1(q). Then since (E(1)AE(2)A′)V = E(1)〈r〉 = 0, we have

E(1)AA′ = E(1)A(E(1) + E(2))A′ = E(1)AE(1)A′ + E(1)AE(2)A′ = E(1)AE(1)A′,

so that Φ(AA′) = Φ(A)Φ(A′).
It remains to show that Φ is a bijection. Suppose Φ(A) = idU . Then for any vector u in U we

have
Q(u) = Q(Au) = Q(u + A(2)u) = Q(u) + Q(A(2)u),

from which it follows that A(2)u = 0, since otherwise Q(A(2)u) cannot be zero by Q(r) = 1.
Consequently Au = u for all u ∈ U , that is A|U = idU . This implies A = idV since V = U⊥〈r〉.
Thus Φ is injective. Finally let B be an element in Sp2m(q) and define an element A in GL(V) by

Aeij := Beij +
√

Q(Beij) r, for i = 1, 2 and 1 ≤ j ≤ m, (89)

Ar := r.
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Then we have Q(Aeij) = 0 for i = 1, 2 and 1 ≤ j ≤ m, and for any vector v =
∑

i,j ξijeij + ξr in
V we have

Q(Av) =
∑

i,j,k,l

ξijξklf(Aeij , Aekl) + ξ2

=
∑

i,j,k,l

ξijξklf(Beij , Bekl) + ξ2

=
∑

i,j,k,l

ξijξklf(eij , ekl) + ξ2

= Q(v),

which implies that A is an element in GO2m+1(q), and clearly we have Φ(A) = B. Thus Φ is
surjective. This completes the proof of Proposition 4.1.2.

Let L be the stabilizer of U in GO2m+1(q), then L is isomorphic to GO+
2m(q). From (89) we

have the following:

Corollary 4.1.3. Let B be an element in Sp2m(q). Then Φ−1(B) is contained in L if and only if
Q(Beij) = 0 for all i = 1, 2 and 1 ≤ j ≤ m.

Next, let V0 be a 3-dimensional vector space over Fqm , and let Q0 : V0 −→ Fqm be a non-
degenerate quadratic form on V0 with associated alternating bilinear form f0 : V0 × V0 −→ Fqm .
Then V0 is decomposed as

V0 = 〈e1, e2〉⊥〈r0〉

where {e1, e2} is a hyperbolic pair and Q0(r0) = 1. Let

U0 := 〈e1, e2〉

be an element in Ω3(qm), then f0|U0 is a non-degenerate alternating bilinear form on U0. Seroussi-
Lempel [13] proved that for even q there exists a trace-orthonormal basis {ω1, ω2, . . . , ωm} of Fqm

over Fq, that is,
TrFqm/Fq

(ωiωj) = δij , (90)

where TrFqm/Fq
: Fqm −→ Fq is the trace map from Fqm onto Fq. Since U and U0 are both 2m-

dimensional vector space over Fq, we may identify eij with ωjei for i = 1, 2 and 1 ≤ j ≤ m, and U
with U0. Under this identification, GL2(qm) is naturally embedded in GL2m(q).

Proposition 4.1.4. Sp2(qm) is a subgroup of Sp2m(q).

Proof. Let u =
∑

i,j ξijeij and v =
∑

i,j ηijeij be two vectors in U , and let ξi := ξi1ω1+· · ·+ξimωm

and ηi := ηi1ω1 + · · · + ηimωm for i = 1, 2. Then by (90) we have

TrFqm/Fq
(f0|U0(u, v)) = TrFqm/Fq

(f0|U0(ξ1e1 + ξ2e2, η1e1 + η2e2))

= TrFqm/Fq
(ξ1η2 + ξ2η1)

= TrFqm/Fq
((ξ11ω1 + · · · + ξ1mωm)(η21ω1 + · · · + η2mωm)

+ (ξ21ω1 + · · · + ξ2mωm)(η11ω1 + · · · + η1mωm))
= ξ11η21 + · · · + ξ1mη2m + ξ21η11 + · · · + ξ2mη1m

= f |U (u, v).

Hence any element in Sp2(qm) also preserves the alternating form f |U , which proves Proposition
4.1.4.

It follows immediately from Proposition 4.1.2 and Proposition 4.1.4 that GO3(qm) is a subgroup
of GO2m+1(q). Furthermore we have the following:

Proposition 4.1.5. Let L0 be the stabilizer of U0 in GO3(qm), then GO3(qm) ∩ L = L0.
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Proof. For any element B0 =
(

α β
γ δ

)
in Sp2(qm), let B be the corresponding element in Sp2m(q),

that is, B is the mapping obtained by regarding B0 as a linear mapping over Fq. Then for 1 ≤ j ≤ m
we have

Be1j = B0(ωje1) = αωje1 + γωje2

= αj1e11 + · · · + αjme1m + γj1e21 + · · · + γjme2m

where αωj = αj1ω1 + · · ·+αjmωm, γωj = γj1ω1 + · · ·+γjmωm for some αjk, γjk ∈ Fq (1 ≤ k ≤ m),
from which it follows that

Q(Be1j) = αj1γj1 + · · · + αjmγjm = TrFqm/Fq
(αγω2

j ).

Similarly for 1 ≤ j ≤ m we have

Be2j = B0(ωje2) = βωje1 + δωje2

= βj1e11 + · · · + βjme1m + δj1e21 + · · · + δjme2m

where βωj = βj1ω1 + · · ·+βjmωm, δωj = δj1ω1 + · · ·+ δjmωm for some βjk, δjk ∈ Fq (1 ≤ k ≤ m),
from which it follows that

Q(Be2j) = βj1δj1 + · · · + βjmδjm = TrFqm/Fq
(βδω2

j ).

If αγ = βδ = 0 then clearly TrFqm/Fq
(αγω2

j ) = TrFqm /Fq
(βδω2

j ) = 0 for all 1 ≤ j ≤ m. The converse
is also true. To show this, suppose contrary. Since {ω1, ω2, . . . , ωm} is a basis of Fqm over Fq, so
is {ω2

1 , ω2
2 , . . . , ω2

m}. Thus it follows that for all ξ ∈ Fqm we have TrFqm /Fq
(ξ) = 0 since TrFqm/Fq

is
a linear mapping, which is a contradiction. Therefore by Corollary 4.1.3, Φ−1(B) is contained in
L if and only if αγ = βδ = 0. In the same way as before let E

(1)
0 : V0 −→ U0, E

(2)
0 : V0 −→ 〈r0〉

be the orthogonal projections, and define a mapping Φ0 : GO3(qm) −→ Sp2(qm) by

Φ0(A0) := A
(1)
0 |U0

for A0 ∈ GO3(qm), where
A

(i)
0 := E

(i)
0 A0 (i = 1, 2).

Since actually we chose m arbitrarily, it also follows that Φ−1
0 (B0) is contained in L0 if and only

if αγ = βδ = 0, which proves Proposition 4.1.5.

Remark. As is in the proof of Proposition 4.1.5, GO+
2 (q) is isomorphic to{(

z
z−1

)
,

(
z

z−1

) ∣∣∣∣ z ∈ F∗
q

}
,

which is in turn isomorphic to the dihedral group D2(q−1) of order 2(q − 1).

By Proposition 4.1.5 the containment relations among GO2m+1(q), GO+
2m(q), GO3(qm) and

GO+
2 (qm) are displayed in the following diagram:

GO2m+1(q) ⊃ GO+
2m(q)

∪ ∪

GO3(qm) ⊃ GO+
2 (qm)

where GO3(qm) ∩ GO+
2m(q) = GO+

2 (qm).

Proof of Theorem 4.1.1. It follows from the above diagram that each left coset of GO2m+1(q) by
GO+

2m(q) contains at most one left coset of GO3(qm) by GO+
2 (qm), since for any two elements

A0, A
′
0 in GO3(qm), we have A−1

0 A′
0 ∈ GO+

2 (qm) if and only if A−1
0 A′

0 ∈ GO+
2m(q). Moreover from

(2) it follows that

|GO2m+1(q) : GO+
2m(q)| = |GO3(qm) : GO+

2 (qm)| =
qm(qm + 1)

2
,
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so that each left coset of GO2m+1(q) by GO+
2m(q) contains exactly one left coset of GO3(qm) by

GO+
2 (qm). Therefore the action of GO3(qm) on GO2m+1(q)/GO+

2m(q) is equivalent to the action
on GO3(qm)/GO+

2 (qm), which completes the proof of Theorem 4.1.1.

From now on, we determine how to merge the relations of X(GO3(qm),Ω3(qm)) to get the
subscheme X(GO2m+1(q),Ω2m+1(q)). We use the notation in the proof of Proposition 4.1.5, and
also we mainly use the symbol “ ˜ ” to stand for GO3(qm) case. Namely we let ν̃ be a primitive
element of Fqm , and define

λ̃i :=
ν̃i−1

1 + ν̃i−1
for 2 ≤ i ≤ qm

2 ,

and
µ̃i :=

√
λ̃2

i + λ̃i.

Also we let {R̃i}0≤i≤ qm

2
denotes the set of relations of X(GO3(qm),Ω3(qm)).

(i) Define a mapping A0 : V0 −→ V0 by

A0e1 := e1 + e2 + r0,

A0e2 := e2,

A0r0 := r0.

Then we have Q0(A0e1) = Q0(A0e2) = 0 and f0(A0e1, A0e2) = 1 so that A0 is an element in
GO3(qm). Let V0 := A0U0 ∈ Ω3(qm), then we have

U0 ∩ V0 = 〈e2〉⊥ ∩ U0 = 〈e2〉⊥ ∩ V0,

from which it follows that (U0, V0) ∈ R̃1. By definition, the mapping B0 := Φ0(A0) ∈ Sp2(qm) is
defined by

B0e1 = e1 + e2,

B0e2 = e2.

Let B denotes the element in Sp2m(q) corresponding to B0, then B is given by

Be1j = B0(ωje1) = ωje1 + ωje2 = e1j + e2j ,

Be2j = B0(ωje2) = ωje2 = e2j .

Since Q(Be1j) = 1 and Q(Be2j) = 0, it follows from (89) that A := Φ−1(B) is obtained as

Ae1j = e′1j := e1j + e2j + r for 1 ≤ j ≤ m,

Ae2j = e′2j := e2j for 1 ≤ j ≤ m,

Ar = r.

Let V := AU be an element in Ω2m+1(q), and define a vector w in U ∩ V by

w := e21 + e22 + · · · + e2m = e′21 + e′22 + · · · + e′2m.

Then w ̸= 0 and it follows that

U ∩ V = 〈w〉⊥ ∩ U = 〈w〉⊥ ∩ V.

To show this, let y =
∑

i,j ξije
′
ij be a vector in V orthogonal to w, then the r-component of y with

respect to the basis {eij}i,j ∪ {r} is equal to

ξ11 + ξ12 + · · · + ξ1m = f(w, y) = 0,

so that y belongs to U ∩ V , as desired. Since Q(w) = 0 we have (U, V ) ∈ R1. That is, the relation
R̃1 is merged into the relation R1.
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(ii) Next, for 2 ≤ l ≤ qm

2 define a mapping A0 : V0 −→ V0 by

A0e1 = e′1 := (λ̃l + 1)e1 + λ̃le2 + µ̃l r0,

A0e2 = e′2 := λ̃le1 + (λ̃l + 1)e2 + µ̃l r0,

A0r0 := r0.

Then we have Q0(e′1) = Q0(e′2) = 0 and f0(e′1, e′2) = 1 so that A0 is an element in GO3(qm). Let
V0 := A0U0 ∈ Ω3(qm), and let w0 := e1 + e2 = e′1 + e′2 be a vector in U0 ∩ V0, then we have

U0 ∩ V0 = 〈w0〉⊥ ∩ U0 = 〈w0〉⊥ ∩ V0.

Since Q0(w0) = 1, f0(e1, w0) = f0(e′1, w0) = 1 and e1 + e′1 = λ̃lw0 + µ̃l r0, it follows that (U0, V0) ∈
R̃l. The mapping B0 := Φ0(A0) ∈ Sp2(qm) is defined by

B0e1 = (λ̃l + 1)e1 + λ̃le2,

B0e2 = λ̃le1 + (λ̃l + 1)e2.

Let
λ̃lωj = λlj1ω1 + · · · + λljmωm for 1 ≤ j ≤ m,

and
µ̃l = µl1ω1 + · · · + µlmωm,

for some λljk, µlk ∈ Fq. Notice that the coefficients λljk, µlk are given by

λljk = TrFqm/Fq
(λ̃lωjωk) and µlk = TrFqm /Fq

(µ̃lωk), (91)

for 1 ≤ j, k ≤ m. Let B be the element in Sp2m(q) corresponding to B0. Then we have

Be1j = (λ̃l + 1)ωje1 + λ̃lωje2

= λlj1(e11 + e21) + · · · + λljm(e1m + e2m) + e1j , for 1 ≤ j ≤ m,

Be2j = λ̃lωje1 + (λ̃l + 1)ωje2

= λlj1(e11 + e21) + · · · + λljm(e1m + e2m) + e2j , for 1 ≤ j ≤ m.

Since from (91)

Q(Be1j) = Q(Be2j) = λ2
lj1 + · · · + λ2

ljm + λljj

= TrFqm/Fq
(λ̃2

l ω
2
j ) + TrFqm/Fq

(λ̃lω
2
j )

= TrFqm/Fq
(µ̃2

l ω
2
j )

= µ2
lj ,

it follows from (89) that the mapping A := Φ−1(B) ∈ GO2m+1(q) is given by

Ae1j = e′1j := λlj1(e11 + e21) + · · · + λljm(e1m + e2m) + e1j + µljr, for 1 ≤ j ≤ m,

Ae2j = e′2j := λlj1(e11 + e21) + · · · + λljm(e1m + e2m) + e2j + µljr, for 1 ≤ j ≤ m,

Ar = r.

Let V := AU be an element in Ω2m+1(q). Notice that since µ̃l ̸= 0 the number of µlj equal to 0 is
at most m − 1. Define a vector w′ in U ∩ V by

w′ : = µl1(e11 + e21) + · · · + µlm(e1m + e2m)
= µl1(e′11 + e′21) + · · · + µlm(e′1m + e′2m).

Then w′ ̸= 0 and it follows that

U ∩ V = 〈w′〉⊥ ∩ U = 〈w′〉⊥ ∩ V.
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To show this, let y =
∑

i,j ξije
′
ij be a vector in V orthogonal to w′, then the r-component of y

with respect to the basis {eij}i,j ∪ {r} is equal to

(ξ11 + ξ21)µl1 + · · · + (ξ1m + ξ2m)µlm = f(w′, y) = 0,

so that y is contained in U ∩ V , as desired. Also we have

Q(w′) = µ2
l1 + · · · + µ2

lm = TrFqm/Fq
(µ̃2

l ), (92)

from which it follows that (U, V ) ∈ R1 if and only if

TrFqm /Fq
(µ̃2

l ) = 0, (93)

or equivalently
TrFqm /Fq

(λ̃l) = 0 or TrFqm /Fq
(λ̃l) = 1. (94)

Suppose TrFqm /Fq
(µ̃2

l ) ̸= 0, so that (U, V ) ̸∈ R1. Let

µ̃l

λ̃l

= χl1ω1 + · · · + χlmωm,

for χlk ∈ Fq (1 ≤ k ≤ m), that is,

χlk = TrFqm/Fq

(
µ̃l

λ̃l

ωk

)
(1 ≤ k ≤ m),

and define two vector u′ ∈ U and v′ ∈ V by

u′ : = χl1e11 + · · · + χlme1m,

v′ : = χl1e
′
11 + · · · + χlme′1m.

Then we have Q(u′) = Q(v′) = 0, and

u′ + v′ = χl1(e11 + e′11) + · · · + χlm(e1m + e′1m)

=
m∑

j=1

χlj

( m∑
k=1

λljk(e1k + e2k) + µljr

)

=
m∑

k=1

( m∑
j=1

χljλljk

)
(e1k + e2k) +

( m∑
j=1

χljµlj

)
r.

Now it follows from (91) that

m∑
j=1

χljλljk =
m∑

j=1

χljλlkj = TrFqm /Fq

(
µ̃l

λ̃l

λ̃lωk

)
= TrFqm /Fq

(µ̃lωk) = µlk,

for 1 ≤ k ≤ m. Also

m∑
j=1

χljµlj = TrFqm/Fq

(
µ̃l

λ̃l

µ̃l

)
= TrFqm/Fq

(λ̃l + 1). (95)

Hence we have

u′ + v′ =
m∑

k=1

µlk(e1k + e2k) +
(
TrFqm/Fq

(λ̃l + 1)
)
r

= w′ +
(
TrFqm/Fq

(λ̃l + 1)
)
r, (96)

so that
U = 〈u′, w′〉⊥W, V = 〈v′, w′〉⊥W, (97)
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where W := 〈u′, w′〉⊥ ∩ U ⊂ U ∩ V . It also follows from (95) and (96) that

f(u′, v′) = f(u′, w′) = f(v′, w′) =
m∑

j=1

χljµlj = TrFqm/Fq
(λ̃l + 1). (98)

Here TrFqm /Fq
(λ̃l + 1) ̸= 0 by assumption. Define

w :=
1

TrFqm/Fq
(µ̃l)

w′,

and

u :=
TrFqm/Fq

(µ̃l)

TrFqm/Fq
(λ̃l + 1)

u′, v :=
TrFqm/Fq

(µ̃l)

TrFqm /Fq
(λ̃l + 1)

v′.

Then Q(u) = Q(v) = 0, and it follows from (92), (98), (97) that Q(w) = 1, f(u,w) = f(v, w) = 1,
and

U = 〈u,w〉⊥W, V = 〈v, w〉⊥W.

Also by (98) we have

f(u, v) =
TrFqm/Fq

(µ̃2
l )

TrFqm /Fq
(λ̃l + 1)

=
(TrFqm /Fq

(λ̃l))(TrFqm /Fq
(λ̃l) + 1)

TrFqm/Fq
(λ̃l + 1)

=

{
TrFqm /Fq

(λ̃l) if m: odd,

TrFqm /Fq
(λ̃l) + 1 if m: even.

Thus (U, V ) belongs to Rk for some k ∈ {2, 3, . . . , q
2} such that

λk = TrFqm/Fq
(λ̃l), or λk = TrFqm/Fq

(λ̃l) + 1, (99)

which is equivalent to
µk = TrFqm /Fq

(µ̃l). (100)

To summarize we have the following:

Proposition 4.1.6. Define ( q
2 − 1) relations R1, R2, . . . , R q

2
on Ω3(qm) by

Rj :=
∪

i∈Ξj

R̃i (1 ≤ j ≤ q
2 ),

where

Ξ1 :=
{
i ∈ {2, 3, . . . , q

2}
∣∣ TrFqm /Fq

(µ̃i) = 0
}
∪ {1},

Ξj :=
{
i ∈ {2, 3, . . . , q

2}
∣∣ TrFqm /Fq

(µ̃i) = µj

}
(2 ≤ j ≤ q

2 ).

Then these ( q
2 − 1) relations, together with R0 := R̃0, form the subscheme of X(GO3(qm),Ω3(qm))

isomorphic to X(GO2m+1(q),Ω2m+1(q)).

Corollary 4.1.7. X(GO2n+1(q),Ω2n+1(q)) is a subscheme of X(GO2m+1(q
n
m ),Ω2m+1(q

n
m )) when-

ever m devides n.

Proof. This is an immediate consequence of Proposition 4.1.6 and Lemma 4.1.8 below (cf. Lidl-
Niederreiter [10, p.56, Theorem 2.26]). In fact, these two association schemes are both subschemes
of X(GO3(qn),Ω3(qn)) by Theorem 4.1.1.

Lemma 4.1.8. If m devides n, then

TrFqn/Fq
= TrFqm/Fq

◦TrFqn/Fqm .
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4.2 Subschemes of X(GO2m+1(q), Θ2m+1(q))

First of all, we prove the following theorem.

Theorem 4.2.1. X(GO2m+1(q),Θ2m+1(q)) is a subscheme of X(GO3(qm),Θ3(qm)).

Let t2 + t + π be an irreducible polynomial over Fq. Then the underlying vector space V is
decomposed as

V = 〈e11, e21〉⊥ . . .⊥〈e1m, e2m〉⊥〈r〉,

where {e1i, e2i} (1 ≤ i ≤ m − 1) are hyperbolic pairs, Q(e1m) = 1, Q(e2m) = π, f(e1m, e2m) = 1
and as usual Q(r) = 1. Let

U := 〈e11, e21〉⊥ . . .⊥〈e1m, e2m〉

be an element in Θ2m+1(q), then f |U is a non-degenerate alternating bilinear form on U . This
time, we consider the symplectic group Sp2m(q) with respect to f |U , that is,

Sp2m(q) := {τ ∈ GL(U) | f |U (τ(u), τ(v)) = f |U (u, v) for all u, v ∈ U}.

Let E(1) : V −→ U , E(2) : V −→ 〈r〉 be the orthogonal projections, and define a mapping
Ψ : GO2m+1(q) −→ Sp2m(q) by

Ψ(A) := A(1)|U
for A ∈ GO2m+1(q), where

A(i) := E(i)A (i = 1, 2).

Then we have the following:

Proposition 4.2.2. The mapping Ψ : GO2m+1(q) −→ Sp2m(q) is well-defined. Moreover, Ψ is
an isomorphism of GO2m+1(q) onto Sp2m(q).

Proof. Let A be an element in GO2m+1(q). Then since A does not move the vector r we have
(A(1))−1(0) = 〈r〉, so that

rankA(1)|U = dimA(1)U = dim U − dimU ∩ 〈r〉 = dimU = 2m.

Thus Ψ(A) is an element in GL(U). Also since A(2)V is equal to the radical 〈r〉 of f , we obtain

f(A(1)u,A(1)v) = f(A(1)u + A(2)u,A(1)v + A(2)v) = f(Au,Av) = f(u, v),

for all u, v ∈ U , which implies that Ψ(A) belongs to Sp2m(q), namely, the mapping Ψ is well-
defined. This mapping Ψ is also a homomorphism. To show this, let A and A′ be two elements in
GO2m+1(q). Then since (E(1)AE(2)A′)V = E(1)〈r〉 = 0, we have

E(1)AA′ = E(1)A(E(1) + E(2))A′ = E(1)AE(1)A′ + E(1)AE(2)A′ = E(1)AE(1)A′,

so that Ψ(AA′) = Ψ(A)Ψ(A′).
It remains to show that Ψ is a bijection. Suppose Ψ(A) = idU . Then for any vector u in U we

have
Q(u) = Q(Au) = Q(u + A(2)u) = Q(u) + Q(A(2)u),

from which it follows that A(2)u = 0, since otherwise Q(A(2)u) cannot be zero by Q(r) = 1.
Consequently Au = u for all u ∈ U , that is A|U = idU . This implies A = idV since V = U⊥〈r〉.
Thus Ψ is injective. Finally let B be an element in Sp2m(q) and define an element A in GL(V) by

Aeij := Beij +
√

Q(Beij) r, for i = 1, 2 and 1 ≤ j ≤ m − 1,

Ae1m := Be1m + (
√

Q(Be1m) + 1)r, (101)

Ae2m := Be2m + (
√

Q(Be2m) +
√

π)r,
Ar := r.
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Then we have Q(Aeij) = 0 for i = 1, 2 and 1 ≤ j ≤ m − 1, Q(Ae1m) = 1, Q(Ae2m) = π and for
any vector v =

∑
i,j ξijeij + ξr in V we have

Q(Av) =
∑

i,j,k,l

ξijξklf(Aeij , Aekl) + ξ2
1m + πξ2

2m + ξ2

=
∑

i,j,k,l

ξijξklf(Beij , Bekl) + ξ2
1m + πξ2

2m + ξ2

=
∑

i,j,k,l

ξijξklf(eij , ekl) + ξ2
1m + πξ2

2m + ξ2

= Q(v),

which implies that A is an element in GO2m+1(q), and clearly we have Ψ(A) = B. Thus Ψ is
surjective. This completes the proof of Proposition 4.2.2.

Let L be the stabilizer of U in GO2m+1(q), then L is isomorphic to GO−
2m(q). From (101) we

have the following:

Corollary 4.2.3. Let B be an element in Sp2m(q). Then Ψ−1(B) is contained in L if and only if
Q(Beij) = 0 for all i = 1, 2 and 1 ≤ j ≤ m − 1, Q(Be1m) = 1 and Q(Be2m) = π.

Next, let V0 be a 3-dimensional vector space over Fqm , and let Q0 : V0 −→ Fqm be a non-
degenerate quadratic form on V0 with associated alternating bilinear form f0 : V0 × V0 −→ Fqm .
As mentioned before, there exists a trace-orthonormal basis {ω1, ω2, . . . , ωm} of Fqm over Fq, that
is,

TrFqm/Fq
(ωiωj) = δij , (102)

where TrFqm/Fq
: Fqm −→ Fq is the trace map from Fqm onto Fq (cf. (90)). Then the polynomial

ω2
mt2+t+πω2

m ∈ Fqm [t] is irreducible over Fqm . In order to show this, we make use of the following
lemma (cf. Lidl-Niederreiter [10, p.56, Theorem 2.25]):

Lemma 4.2.4. A polynomial t2 + t+α in Fq[t] is irreducible over Fq if and only if TrFq/F2(α) = 1.

Since t2 + t + π is irreducible over Fq, it follows from Lemma 4.1.8 that

TrFqm /F2(πω4
m) = TrFq/F2(TrFqm/Fq

(πω4
m))

= TrFq/F2(π(TrFqm/Fq
(ω2

m))2)

= TrFq/F2(π)

= 1,

so that (t′)2 + t′ +πω4
m ∈ Fqm [t′] is an irreducible polynomial over Fqm . By putting t′ := ω2

mt, this
also implies that ω2

mt2 + t + πω2
m ∈ Fqm [t] is irreducible over Fqm , as desired.

Therefore V0 is decomposed as
V0 = 〈e1, e2〉⊥〈r0〉

where Q0(e1) = ω2
m, Q0(e2) = πω2

m, f0(e1, e2) = 1 and Q0(r0) = 1. Let

U0 := 〈e1, e2〉

be an element in Θ3(qm), then f0|U0 is a non-degenerate alternating bilinear form on U0. Since U
and U0 are both 2m-dimensional vector space over Fq, we may identify eij with ωjei for i = 1, 2
and 1 ≤ j ≤ m, and U with U0. Under this identification, GL2(qm) is naturally embedded in
GL2m(q).

Proposition 4.2.5. Sp2(qm) is a subgroup of Sp2m(q).
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Proof. Let u =
∑

i,j ξijeij and v =
∑

i,j ηijeij be two vectors in U , and let ξi := ξi1ω1+· · ·+ξimωm

and ηi := ηi1ω1 + · · · + ηimωm for i = 1, 2. Then by (102) we have

TrFqm/Fq
(f0|U0(u, v)) = TrFqm/Fq

(f0|U0(ξ1e1 + ξ2e2, η1e1 + η2e2))

= TrFqm/Fq
(ξ1η2 + ξ2η1)

= TrFqm/Fq
((ξ11ω1 + · · · + ξ1mωm)(η21ω1 + · · · + η2mωm)

+ (ξ21ω1 + · · · + ξ2mωm)(η11ω1 + · · · + η1mωm))
= ξ11η21 + · · · + ξ1mη2m + ξ21η11 + · · · + ξ2mη1m

= f |U (u, v).

Hence any element in Sp2(qm) also preserves the alternating form f |U , which proves Proposition
4.2.5.

It follows immediately from Proposition 4.2.2 and Proposition 4.2.5 that GO3(qm) is a subgroup
of GO2m+1(q). Furthermore we have the following:

Proposition 4.2.6. Let L0 be the stabilizer of U0 in GO3(qm), then GO3(qm) ∩ L = L0.

Proof. For any element B0 =
(

α β
γ δ

)
in Sp2(qm), let B be the corresponding element in Sp2m(q),

that is, B is the mapping obtained by regarding B0 as a linear mapping over Fq. Then for 1 ≤ j ≤ m
we have

Be1j = B0(ωje1) = αωje1 + γωje2

= αj1e11 + · · · + αjme1m + γj1e21 + · · · + γjme2m

where αωj = αj1ω1 + · · ·+αjmωm, γωj = γj1ω1 + · · ·+γjmωm for some αjk, γjk ∈ Fq (1 ≤ k ≤ m),
from which it follows that

Q(Be1j) = αj1γj1 + · · · + αjmγjm + α2
jm + πγ2

jm

= TrFqm /Fq
(αγω2

j ) + (TrFqm/Fq
(αωjωm))2 + π(TrFqm/Fq

(γωjωm))2

= TrFqm /Fq
((α2ω2

m + αγ + πγ2ω2
m)ω2

j ).

Similarly for 1 ≤ j ≤ m we have

Be2j = B0(ωje2) = βωje1 + δωje2

= βj1e11 + · · · + βjme1m + δj1e21 + · · · + δjme2m

where βωj = βj1ω1 + · · ·+βjmωm, δωj = δj1ω1 + · · ·+ δjmωm for some βjk, δjk ∈ Fq (1 ≤ k ≤ m),
from which it follows that

Q(Be2j) = βj1δj1 + · · · + βjmδjm + β2
jm + πδ2

jm

= TrFqm/Fq
(βδω2

j ) + (TrFqm/Fq
(βωjωm))2 + π(TrFqm/Fq

(δωjωm))2

= TrFqm/Fq
((β2ω2

m + βδ + πδ2ω2
m)ω2

j ).

Therefore by Corollary 4.2.3, Ψ−1(B) is contained in L if and only if

TrFqm/Fq
((α2ω2

m + αγ + πγ2ω2
m)ω2

j ) =

{
1 if j = m,

0 if j ̸= m,

and

TrFqm/Fq
((β2ω2

m + βδ + πδ2ω2
m)ω2

j ) =

{
π if j = m,

0 if j ̸= m,
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which is equivalent to

α2ω2
m + αγ + πγ2ω2

m = ω2
m, (103)

and

β2ω2
m + βδ + πδ2ω2

m = πω2
m, (104)

since {ω2
1 , ω2

2 , . . . , ω2
m} is also a trace-orthonormal basis of Fqm over Fq. In the same way as before

let E
(1)
0 : V0 −→ U0, E

(2)
0 : V0 −→ 〈r0〉 be the orthogonal projections, and define a mapping

Ψ0 : GO3(qm) −→ Sp2(qm) by
Ψ0(A0) := A

(1)
0 |U0

for A0 ∈ GO3(qm), where
A

(i)
0 := E

(i)
0 A0 (i = 1, 2).

Then in this case A0 = Ψ−1
0 (B0) is given by

A0e1 := B0e1 + (
√

Q0(B0e1) + ωm)r0,

A0e2 := B0e2 + (
√

Q0(B0e2) +
√

π ωm)r0,

A0r0 := r0.

Thus it follows that A0 = Ψ−1
0 (B0) is contained in L0 if and only if (103) and (104) are satisfied,

which proves Proposition 4.2.6.

By Proposition 4.2.6 the containment relations among GO2m+1(q), GO−
2m(q), GO3(qm) and

GO−
2 (qm) are displayed in the following diagram:

GO2m+1(q) ⊃ GO−
2m(q)

∪ ∪

GO3(qm) ⊃ GO−
2 (qm)

where GO3(qm) ∩ GO−
2m(q) = GO−

2 (qm).

Proof of Theorem 4.2.1. It follows from the above diagram that each left coset of GO2m+1(q) by
GO−

2m(q) contains at most one left coset of GO3(qm) by GO−
2 (qm), since for any two elements

A0, A
′
0 in GO3(qm), we have A−1

0 A′
0 ∈ GO−

2 (qm) if and only if A−1
0 A′

0 ∈ GO−
2m(q). Moreover from

(3) it follows that

|GO2m+1(q) : GO−
2m(q)| = |GO3(qm) : GO−

2 (qm)| =
qm(qm − 1)

2
,

so that each left coset of GO2m+1(q) by GO−
2m(q) contains exactly one left coset of GO3(qm) by

GO−
2 (qm). Therefore the action of GO3(qm) on GO2m+1(q)/GO−

2m(q) is equivalent to the action
on GO3(qm)/GO−

2 (qm), which completes the proof of Theorem 4.2.1.

From now on, we determine how to merge the relations of X(GO3(qm),Θ3(qm)) to get the
subscheme X(GO2m+1(q),Θ2m+1(q)). We use the notation in the proof of Proposition 4.2.6, and
in the same manner as previous subsection, we mainly use the symbol “ ˜ ” to stand for GO3(qm)
case. Namely we let ν̃ be a primitive element of Fqm , and define

λ̃i :=
ν̃i−1

1 + ν̃i−1
for 2 ≤ i ≤ qm

2 ,

and
µ̃i :=

√
λ̃2

i + λ̃i.
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Also we let S̃0, S̃2, S̃3, . . . , S̃ qm

2
denotes the relations of X(GO3(qm),Θ3(qm)).

For 2 ≤ l ≤ qm

2 define a mapping A0 : V0 −→ V0 by

A0e1 = e′1 := e1,

A0e2 = e′2 :=
λ̃l

ω2
m

e1 + e2 +
µ̃l

ωm
r0,

A0r0 := r0.

Then we have Q0(e′1) = ω2
m, Q0(e′2) = πω2

m and f0(e′1, e
′
2) = 1 so that A0 is an element in GO3(qm).

Let V0 := A0U0 ∈ Θ3(qm), and define three vectors w0, u0, v0 by

w0 :=
1

ωm
e1 =

1
ωm

e′1, u0 := ωme2, v0 := ωme′2,

then we have Q0(w0) = 1, Q0(u0) = Q0(v0), f0(u0, w0) = f0(v0, w0) = 1, and f0(u0, v0) = λ̃l.
Hence it follows that (U0, V0) ∈ S̃l. The mapping B0 := Ψ0(A0) ∈ Sp2(qm) is defined by

B0e1 = e1,

B0e2 =
λ̃l

ω2
m

e1 + e2.

Let
λ̃lωj

ω2
m

= λ′
lj1ω1 + · · · + λ′

ljmωm for 1 ≤ j ≤ m,

and
µ̃l

ωm
= µ′

l1ω1 + · · · + µ′
lmωm,

for some λ′
ljk, µ′

lk ∈ Fq. Notice that the coefficients λ′
ljk, µ′

lk are given by

λ′
ljk = TrFqm /Fq

( λ̃lωj

ω2
m

ωk

)
and µ′

lk = TrFqm/Fq

( µ̃l

ωm
ωk

)
, (105)

for 1 ≤ j, k ≤ m. Let B be the element in Sp2m(q) corresponding to B0. Then we have

Be1j = ωje1 = e1j , for 1 ≤ j ≤ m,

Be2j =
λ̃l

ω2
m

ωje1 + ωje2

= λ′
lj1e11 + · · · + λ′

ljme1m + e2j , for 1 ≤ j ≤ m.

Since from (105)

Q(Be2j) = (λ′
ljm)2 + λ′

ljj

= TrFqm/Fq

( λ̃2
l ω

2
j

ω2
m

)
+ TrFqm /Fq

( λ̃lω
2
j

ω2
m

)
= TrFqm/Fq

( µ̃2
l ω

2
j

ω2
m

)
= (µ′

lj)
2,

for 1 ≤ j ≤ m − 1, and

Q(Be2m) = (λ′
lmm)2 + λ′

lmm + π

= (µ′
lm)2 + π,
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it follows from (101) that the mapping A := Ψ−1(B) ∈ GO2m+1(q) is given by

Ae1j = e′1j := e1j , for 1 ≤ j ≤ m,

Ae2j = e′2j := λ′
lj1e11 + · · · + λ′

ljme1m + e2j + µ′
ljr, for 1 ≤ j ≤ m,

Ar = r.

Let V := AU be an element in Θ2m+1(q). Notice that since µ̃l ̸= 0 the number of µ′
lj equal to 0 is

at most m − 1. Define a vector w′ in U ∩ V by

w′ : = µ′
l1e11 + · · · + µ′

lme1m

= µ′
l1e

′
11 + · · · + µ′

lme′1m,

then w′ ̸= 0 and it follows that

U ∩ V = 〈w′〉⊥ ∩ U = 〈w′〉⊥ ∩ V.

To show this, let y =
∑

i,j ξije
′
ij be a vector in V orthogonal to w′, then the r-component of y

with respect to the basis {eij}i,j ∪ {r} is equal to

ξ21µ
′
l1 + · · · + ξ2mµ′

lm = f(w′, y) = 0,

so that y is contained in U ∩ V , as desired. Also by (105) we have

Q(w′) = (µ′
lm)2 = TrFqm /Fq

(µ̃2
l ), (106)

from which it follows that (U, V ) ∈ S1 if and only if

TrFqm /Fq
(µ̃2

l ) = 0, (107)

or equivalently
TrFqm /Fq

(λ̃l) = 0 or TrFqm /Fq
(λ̃l) = 1. (108)

Suppose TrFqm /Fq
(µ̃2

l ) ̸= 0, so that (U, V ) ̸∈ S1. Let

µ̃lωm

λ̃l

= χ′
l1ω1 + · · · + χ′

lmωm,

for χ′
lk ∈ Fq (1 ≤ k ≤ m), that is,

χ′
lk = TrFqm/Fq

(
µ̃lωm

λ̃l

ωk

)
(1 ≤ k ≤ m),

and define two vector u′ ∈ U and v′ ∈ V by

u′ : = χ′
l1e21 + · · · + χ′

lme2m,

v′ : = χ′
l1e

′
21 + · · · + χ′

lme′2m.

Then we have Q(u′) = Q(v′) = π(χ′
lm)2, and

u′ + v′ = χ′
l1(e21 + e′21) + · · · + χ′

lm(e2m + e′2m)

=
m∑

j=1

χ′
lj

( m∑
k=1

λ′
ljke1k + µ′

ljr

)

=
m∑

k=1

( m∑
j=1

χ′
ljλ

′
ljk

)
e1k +

( m∑
j=1

χ′
ljµ

′
lj

)
r.

Now it follows from (105) that

m∑
j=1

χ′
ljλ

′
ljk =

m∑
j=1

χ′
ljλ

′
lkj = TrFqm/Fq

( µ̃lωm

λ̃l

λ̃lωk

ω2
m

)
= TrFqm/Fq

( µ̃lωk

ωm

)
= µ′

lk,
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for 1 ≤ k ≤ m. Also
m∑

j=1

χ′
ljµ

′
lj = TrFqm/Fq

( µ̃lωm

λ̃l

µ̃l

ωm

)
= TrFqm /Fq

( µ̃l

λ̃l

µ̃l

)
= TrFqm/Fq

(λ̃l + 1). (109)

Hence we have

u′ + v′ =
m∑

k=1

µ′
lke1k +

(
TrFqm/Fq

(λ̃l + 1)
)
r

= w′ +
(
TrFqm/Fq

(λ̃l + 1)
)
r, (110)

so that
U = 〈u′, w′〉⊥W, V = 〈v′, w′〉⊥W, (111)

where W := 〈u′, w′〉⊥ ∩ U ⊂ U ∩ V . It also follows from (109) and (110) that

f(u′, v′) = f(u′, w′) = f(v′, w′) =
m∑

j=1

χ′
ljµ

′
lj = TrFqm/Fq

(λ̃l + 1). (112)

Here TrFqm /Fq
(λ̃l + 1) ̸= 0 by assumption. Define

w :=
1

TrFqm/Fq
(µ̃l)

w′,

and

u :=
TrFqm/Fq

(µ̃l)

TrFqm/Fq
(λ̃l + 1)

u′, v :=
TrFqm/Fq

(µ̃l)

TrFqm /Fq
(λ̃l + 1)

v′.

Then Q(u) = Q(v), and it follows from (106), (112), (111) that Q(w) = 1, f(u,w) = f(v, w) = 1,
and

U = 〈u,w〉⊥W, V = 〈v, w〉⊥W.

Also by (112) we have

f(u, v) =
TrFqm/Fq

(µ̃2
l )

TrFqm /Fq
(λ̃l + 1)

=
(TrFqm /Fq

(λ̃l))(TrFqm /Fq
(λ̃l) + 1)

TrFqm/Fq
(λ̃l + 1)

=

{
TrFqm /Fq

(λ̃l) if m: odd,

TrFqm /Fq
(λ̃l) + 1 if m: even.

Thus (U, V ) belongs to Sk for some k ∈ {2, 3, . . . , q
2} such that

λk = TrFqm/Fq
(λ̃l), or λk = TrFqm/Fq

(λ̃l) + 1, (113)

which is equivalent to
µk = TrFqm /Fq

(µ̃l). (114)

To summarize we have the following:

Proposition 4.2.7. Define ( q
2 − 1) relations S1, S2, . . . , S q

2
on Θ3(qm) by

Sj :=
∪

i∈Ξ′
j

S̃i (1 ≤ j ≤ q
2 ),

where

Ξ′
1 :=

{
i ∈ {2, 3, . . . , q

2}
∣∣ TrFqm /Fq

(µ̃i) = 0
}
,

Ξ′
j :=

{
i ∈ {2, 3, . . . , q

2}
∣∣ TrFqm /Fq

(µ̃i) = µj

}
(2 ≤ j ≤ q

2 ).

Then these ( q
2 − 1) relations, together with S0 := S̃0, form the subscheme of X(GO3(qm),Θ3(qm))

isomorphic to X(GO2m+1(q),Θ2m+1(q)).
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Corollary 4.2.8. X(GO2n+1(q),Θ2n+1(q)) is a subscheme of X(GO2m+1(q
n
m ),Θ2m+1(q

n
m )) when-

ever m devides n.

Proof. This is an immediate consequence of Proposition 4.2.7 and Lemma 4.1.8. In fact, these two
association schemes are both subschemes of X(GO3(qn),Θ3(qn)) by Theorem 4.2.1.

5 Remarks

Remark 1. The association scheme X(GO3(q),Θ3(q)) (for even q) is a quotient association scheme
(cf. Bannai-Ito [4, §2.9]) of the association scheme X(GL2(q), GL2(q)/GL1(q2)) which is defined
by the action of the general linear group GL2(q) on the finite upper half plane Hq = Fq2\Fq.
Terras [15] gives details on the property of the finite upper half plane. The original motivation
of this research, which was proposed by Professor E. Bannai, was to find a connection between
two association schemes X(GO2m+1(q),Θ2m+1(q)) and X(GL2m(q), GL2m(q)/GLm(q2)), which is
considered as a possible candidate of higher dimensional analogue of the finite upper half plane.
Though I have not found such a connection yet, recently I determined the exact decomposition
of the permutation character 1GL4(q)

GL2(q2) into the irreducible characters. One obtains the list in the
following tables:

The Decomposition of 1GL4(q)
GL2(q2), with q : odd.

Type Degree Frequency

I(1
4) 1 1

I(2
2) q2(q2 + 1) 2

I(4) q6 1

I(1
2)I(1

2) (q2 + 1)(q2 + q + 1) q−3
2

I(2)I(1
2) q(q2 + 1)(q2 + q + 1) 1

I(2)I(2) q2(q2 + 1)(q2 + q + 1) q−3
2

I(1
2)I(1)I(1) (q + 1)(q2 + 1)(q2 + q + 1) q−3

2

I(2)I(1)I(1) q(q + 1)(q2 + 1)(q2 + q + 1) q−3
2

I(1)I(1)I(1)I(1) (q + 1)2(q2 + 1)(q2 + q + 1) (q−3)(q−5)
8

I(1
2)II(1) (q − 1)(q2 + 1)(q2 + q + 1) q−1

2

I(2)II(1) q(q − 1)(q2 + 1)(q2 + q + 1) q−1
2

I(1)I(1)II(1) (q − 1)(q + 1)(q2 + 1)(q2 + q + 1) (q−1)(q−3)
4

II(1
2) (q − 1)2(q2 + q + 1) q−1

2

II(2) q2(q − 1)2(q2 + q + 1) q−1
2

II(1)II(1) (q − 1)2(q2 + 1)(q2 + q + 1) (q−1)(q−3)
8 + (q−1)2

4

IV(1) (q − 1)3(q + 1)(q2 + q + 1) (q−1)(q+1)
4

# of irreducible characters = q(q + 1)
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The Decomposition of 1GL4(q)
GL2(q2), with q : even.

Type Degree Frequency

I(1
4) 1 1

I(2
2) q2(q2 + 1) 1

I(1
2)I(1

2) (q2 + 1)(q2 + q + 1) q−2
2

I(2)I(2) q2(q2 + 1)(q2 + q + 1) q−2
2

I(1
2)I(1)I(1) (q + 1)(q2 + 1)(q2 + q + 1) q−2

2

I(1)I(1)I(1)I(1) (q + 1)2(q2 + 1)(q2 + q + 1) (q−2)(q−4)
8

I(1
2)II(1) (q − 1)(q2 + 1)(q2 + q + 1) q

2

I(1)I(1)II(1) (q − 1)(q + 1)(q2 + 1)(q2 + q + 1) q(q−2)
4

II(1
2) (q − 1)2(q2 + q + 1) q

2

II(2) q2(q − 1)2(q2 + q + 1) q
2

II(1)II(1) (q − 1)2(q2 + 1)(q2 + q + 1) q(q−2)
8 + q(q−2)

4

IV(1) (q − 1)3(q + 1)(q2 + q + 1) q2

4

# of irreducible characters = q(q + 1)

In these tables, types of irreducible characters are described in terms of pairs of monic irreducible
polyomials over Fq and partitions (cf. Macdonald [11, Chapter IV.]). It follows that the association
scheme X(GL4(q), GL4(q)/GL2(q2)) is a (commutative) association scheme of class q(q + 1).

Remark 2. The association scheme X(GO3(q),Ω3(q)) (for even q) is isomorphic to the association
scheme X(PGL2(q), PGL2(q)/D2(q−1)), where D2(q−1) is the dihedral group of order 2(q−1). This
association scheme is obtained by the action of the projective general linear group PGL2(q) on
the set of two-element subsets of the projective geometry PG(1, q), and is studied by de Caen
- van Dam [7]. According to [7], the association scheme X(PGL2(q), PGL2(q)/D2(q−1)) has the
following subschemes:

• subschemes defined by the action of the overgroup PΓL2(q),

• for q = 4f (f ≥ 2), a subscheme of class 4 whose character table P is given as follows:

P =


1 2(4f − 1) (2f−1 − 1)(4f − 1) 2f−1(4f − 1) 2f (2f−1 − 1)(4f − 1)
1 4f − 3 2 − 2f −2f −2f (2f − 2)
1 −2 2f−1(2f − 1) + 1 −2f−1(2f + 1) 2f

1 −2 (2f−1 − 1)(2f − 1) 2f−1(2f − 1) −2f (2f − 2)
1 −2 1 − 2f 0 2f

 ,

where PΓL2(q) is the semidirect product of PGL2(q) with the Galois group Gal(Fq/Fp). More
precisely, the existence of the above 4-class subscheme was a conjecture, and this cojecture was
proved in [14]. It follows from Theorem 4.1.1 and Theorem 4.2.1 that we have found another kind
of subschemes of X(PGL2(q), PGL2(q)/D2(q−1)).

Remark 3. Professor E. Bannai has pointed out that some graphs obtained from the relations
of our association schemes are Ramanujan graphs, that is, regular graphs having good expansion
constants (cf. Terras [15, Chapter 3.]).
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