
A doubly non-negative relaxation
for modularity density maximization

Yoichi Izunaga† Tomomi Matsui‡ Yoshitsugu Yamamoto†

†University of Tsukuba
‡Tokyo Institute of Technology

November 22, 2015

1 / 25

Introduction

Formulations

Relaxation problem (Upper bounding)

Heuristics based on the spectrum (Lower bounding)

Computational experiment

Conclusion

2 / 25

Introduction

Formulations

Relaxation problem (Upper bounding)

Heuristics based on the spectrum (Lower bounding)

Computational experiment

Conclusion

3 / 25

Introduction (Community detection)

Community detection is grouping nodes of a graph into several parts:

▶ each part (community) consists of tightly connected nodes

▶ communities are loosely connected each other

4 / 25

Introduction (Quality measure)

Ratio cut (Cheng and Wei ’91)

Normalized cut (Shi and Malik ’00)

Min-max cut (Ding et al. ’01)

Modularity (Newman and Girvan ’04)

▶ degeneracy

▶ resolution limit (Fortunato and Barthelemy ’07)

▶ NP-hard (Brandes et al. ’08)

Modularity density (Li et al. ’08)

▶ avoids the resolution limit

▶ NP-hard？

5 / 25

Introduction (Quality measure)

Resolution limit

leaves small communities not identified and hidden inside larger ones

5 / 25

Introduction (Quality measure)

Resolution limit

leaves small communities not identified and hidden inside larger ones

5 / 25

Introduction (Quality measure)

Resolution limit

leaves small communities not identified and hidden inside larger ones

5 / 25

Introduction (Quality measure)

Ratio cut (Cheng and Wei ’91)

Normalized cut (Shi and Malik ’00)

Min-max cut (Ding et al. ’01)

Modularity (Newman and Girvan ’04)

▶ degeneracy

▶ resolution limit (Fortunato and Barthelemy ’07)

▶ NP-hard (Brandes et al. ’08)

Modularity density (Li et al. ’08)

▶ avoids the resolution limit

▶ NP-hard？

5 / 25

Introduction (Modularity & Modularity density)

▶ undirected graph G = (V,E) (n = |V |, m = |E|)
▶ E(C,C ′) = { {i, j} ∈ E | i ∈ C, j ∈ C ′ } for C, C ′ ⊆ V

(when C = C ′，we abbreviate it to E(C))

▶ Π : a partition of the node set V

Modularity

M(Π) =
∑
C∈Π

(
|E(C)|

m
−
(∑

C′∈Π |E(C,C ′)|
2m

)2
)

Modularity density

MD(Π) =
∑
C∈Π

(
2 |E(C)| −

∑
C′∈Π |E(C,C ′)|
|C|

)

6 / 25

Modularity density maximization

(P)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max.
∑
p∈T

(
2
∑

i∈V
∑

j∈V aijxipxjp −
∑

i∈V dixip∑
i∈V xip

)
s.t.

∑
p∈T

xip = 1 (i ∈ V)∑
i∈V

xip ≥ 1 (p ∈ T)

xip ∈ {0, 1} (i ∈ V, p ∈ T).

▶ T = { 1, . . . , t } : index set of communities (t is unknown a priori)

▶ A = (aij)i,j∈V : adjacency matrix of G

▶ di : degree of node i（ i.e., di =
∑

j∈V aij ）

▶ xip : decision variable

xip =

{
1 (i ∈ Cp)

0 (i /∈ Cp)
7 / 25

Introduction (Overview)

Costa ’15

▶ formulated the problem as Mixed-Integer-Linear-Programming
(MILP)

▶ made use of the McCormick inequalities
⇒ need to solve an auxiliary problem

▶ solved the instances up to n = 40 by branch-and-bound alg.

Izunaga, Matsui, and Yamamoto

▶ show that the problem can be modeled as 0-1SDP
⇒ does not require the number of communities t

▶ solve a relaxation problem to obtain an upper bound

▶ develop a heuristics to obtain a lower bound

8 / 25

Introduction

Formulations

Relaxation problem (Upper bounding)

Heuristics based on the spectrum (Lower bounding)

Computational experiment

Conclusion

9 / 25

Mixed-Integer-Linear-Programming (MILP)

MILP formulation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max.
∑
p∈T

αp

s.t.
∑
p∈T

xip = 1 (i ∈ V)∑
i∈V

xip ≥ 1 (p ∈ T)

yijp ≤ xip, yijp ≤ xjp ({i, j} ∈ E, p ∈ T)∑
i∈V

γip ≤ 4
∑

{i,j}∈E

yijp −
∑
i∈V

dixip (p ∈ T)

Lαxip ≤ γip ≤ Uαxip (i ∈ V, p ∈ T)
αp − Uα(1− xip) ≤ γip ≤ αp − Lα(1− xip) (i ∈ V, p ∈ T)
xip ∈ {0, 1} (i ∈ V, p ∈ T)
yijp ∈ R ({i, j} ∈ E, p ∈ T)
Lα ≤ αp ≤ Uα (p ∈ T)
γip ∈ R (i ∈ V, p ∈ T).

10 / 25

0-1 semidefinite programming (0-1SDP)

S+
n = {Y ∈ Rn×n | Y ⊤ = Y, ∀d ∈ Rn,d⊤Y d ≥ 0 }

Nn = {Y ∈ Rn×n | Y ⊤ = Y, ∀i, j, yij ≥ 0 }
A = (aij)i,j∈V

D = Diag(d1, . . . , dn) ∈ Rn×n

ek = (1, . . . , 1)⊤ ∈ Rk

Introducing a matrix X ∈ { 0, 1 }n×t, we have the following problem:

Matrix representation

(P)

∣∣∣∣∣∣∣∣∣∣

max. Tr((2A−D)Z)

s.t. Xet = en
X⊤en ≥ et
Z = X(X⊤X)−1X⊤

X ∈ { 0, 1 }n×t.

∑
p∈T

xip = 1 (i ∈ V) ⇔ Xet = en

∑
i∈V

xip ≥ 1 (p ∈ T) ⇔ X⊤en ≥ et

11 / 25

▶ (X,Z) is feasible for the problem (P)
⇒ Zen = en, Z

2 = Z, Z ∈ Nn

Matrix representation

(P)

∣∣∣∣∣∣∣∣∣∣

max. Tr((2A−D)Z)

s.t. Xet = en
X⊤en ≥ et
Z = X(X⊤X)−1X⊤

X ∈ {0, 1}n×t.

0-1SDP formulation

(P̄)

∣∣∣∣∣∣∣∣
max. Tr((2A−D)Z)

s.t. Zen = en
Z2 = Z
Z ∈ Nn.

Lemma 1.

For any feasible solution Z of (P̄), we can construct a feasible
solution X which satisfies Z = X(X⊤X)−1X⊤

⇒ the problem (P̄) is equivalent to (P)

12 / 25

sketch of proof

Z2 = Z ⇒ Z ⪰ 0 ⇒ ∃i1 ∈ V, zi1i1 = max{zij | i, j ∈ V }.
Let I1 = {j ∈ V | zi1j > 0}, then ∀i, j ∈ I1, zij = 1/|I1|.
By using an appropriate permutation matrix P , we obtain

P⊤ZP =

(
ZI1 O
O ZĪ1

)
, where Ī1 = V \ I1.

The sub-matrix ZĪ1
satisfies that ZĪ1

e = e, Z2
Ī1

= Z, ZĪ1
∈ N .

Repeating the process described above, we can convert Z to a block
diagonal matrix P⊤ZP = Diag(ZĪ1

, . . . , ZĪt
).

We construct a matrix X = (xip) such that

xip =

{
1 (i ∈ Ip)

0 (i /∈ Ip)
,

then X is feasible for (P) and Z = X(X⊤X)−1X⊤.

13 / 25

sketch of proof

Z2 = Z ⇒ Z ⪰ 0 ⇒ ∃i1 ∈ V, zi1i1 = max{zij | i, j ∈ V }.
Let I1 = {j ∈ V | zi1j > 0}, then ∀i, j ∈ I1, zij = 1/|I1|.
By using an appropriate permutation matrix P , we obtain

P⊤ZP =

(
ZI1 O
O ZĪ1

)
, where Ī1 = V \ I1.

The sub-matrix ZĪ1
satisfies that ZĪ1

e = e, Z2
Ī1

= Z, ZĪ1
∈ N .

Repeating the process described above, we can convert Z to a block
diagonal matrix P⊤ZP = Diag(ZĪ1

, . . . , ZĪt
).

We construct a matrix X = (xip) such that

xip =

{
1 (i ∈ Ip)

0 (i /∈ Ip)
,

then X is feasible for (P) and Z = X(X⊤X)−1X⊤.

13 / 25

sketch of proof

Z2 = Z ⇒ Z ⪰ 0 ⇒ ∃i1 ∈ V, zi1i1 = max{zij | i, j ∈ V }.
Let I1 = {j ∈ V | zi1j > 0}, then ∀i, j ∈ I1, zij = 1/|I1|.
By using an appropriate permutation matrix P , we obtain

P⊤ZP =

(
ZI1 O
O ZĪ1

)
, where Ī1 = V \ I1.

The sub-matrix ZĪ1
satisfies that ZĪ1

e = e, Z2
Ī1

= Z, ZĪ1
∈ N .

Repeating the process described above, we can convert Z to a block
diagonal matrix P⊤ZP = Diag(ZĪ1

, . . . , ZĪt
).

We construct a matrix X = (xip) such that

xip =

{
1 (i ∈ Ip)

0 (i /∈ Ip)
,

then X is feasible for (P) and Z = X(X⊤X)−1X⊤.

13 / 25

sketch of proof

Z2 = Z ⇒ Z ⪰ 0 ⇒ ∃i1 ∈ V, zi1i1 = max{zij | i, j ∈ V }.
Let I1 = {j ∈ V | zi1j > 0}, then ∀i, j ∈ I1, zij = 1/|I1|.
By using an appropriate permutation matrix P , we obtain

P⊤ZP =

(
ZI1 O
O ZĪ1

)
, where Ī1 = V \ I1.

The sub-matrix ZĪ1
satisfies that ZĪ1

e = e, Z2
Ī1

= Z, ZĪ1
∈ N .

Repeating the process described above, we can convert Z to a block
diagonal matrix P⊤ZP = Diag(ZĪ1

, . . . , ZĪt
).

We construct a matrix X = (xip) such that

xip =

{
1 (i ∈ Ip)

0 (i /∈ Ip)
,

then X is feasible for (P) and Z = X(X⊤X)−1X⊤.

13 / 25

sketch of proof

Z2 = Z ⇒ Z ⪰ 0 ⇒ ∃i1 ∈ V, zi1i1 = max{zij | i, j ∈ V }.
Let I1 = {j ∈ V | zi1j > 0}, then ∀i, j ∈ I1, zij = 1/|I1|.
By using an appropriate permutation matrix P , we obtain

P⊤ZP =

(
ZI1 O
O ZĪ1

)
, where Ī1 = V \ I1.

The sub-matrix ZĪ1
satisfies that ZĪ1

e = e, Z2
Ī1

= Z, ZĪ1
∈ N .

Repeating the process described above, we can convert Z to a block
diagonal matrix P⊤ZP = Diag(ZĪ1

, . . . , ZĪt
).

We construct a matrix X = (xip) such that

xip =

{
1 (i ∈ Ip)

0 (i /∈ Ip)
,

then X is feasible for (P) and Z = X(X⊤X)−1X⊤.

13 / 25

sketch of proof

Z2 = Z ⇒ Z ⪰ 0 ⇒ ∃i1 ∈ V, zi1i1 = max{zij | i, j ∈ V }.
Let I1 = {j ∈ V | zi1j > 0}, then ∀i, j ∈ I1, zij = 1/|I1|.
By using an appropriate permutation matrix P , we obtain

P⊤ZP =

(
ZI1 O
O ZĪ1

)
, where Ī1 = V \ I1.

The sub-matrix ZĪ1
satisfies that ZĪ1

e = e, Z2
Ī1

= Z, ZĪ1
∈ N .

Repeating the process described above, we can convert Z to a block
diagonal matrix P⊤ZP = Diag(ZĪ1

, . . . , ZĪt
).

We construct a matrix X = (xip) such that

xip =

{
1 (i ∈ Ip)

0 (i /∈ Ip)
,

then X is feasible for (P) and Z = X(X⊤X)−1X⊤.

13 / 25

sketch of proof

Z2 = Z ⇒ Z ⪰ 0 ⇒ ∃i1 ∈ V, zi1i1 = max{zij | i, j ∈ V }.
Let I1 = {j ∈ V | zi1j > 0}, then ∀i, j ∈ I1, zij = 1/|I1|.
By using an appropriate permutation matrix P , we obtain

P⊤ZP =

(
ZI1 O
O ZĪ1

)
, where Ī1 = V \ I1.

The sub-matrix ZĪ1
satisfies that ZĪ1

e = e, Z2
Ī1

= Z, ZĪ1
∈ N .

Repeating the process described above, we can convert Z to a block
diagonal matrix P⊤ZP = Diag(ZĪ1

, . . . , ZĪt
).

We construct a matrix X = (xip) such that

xip =

{
1 (i ∈ Ip)

0 (i /∈ Ip)
,

then X is feasible for (P) and Z = X(X⊤X)−1X⊤.

13 / 25

sketch of proof

Z2 = Z ⇒ Z ⪰ 0 ⇒ ∃i1 ∈ V, zi1i1 = max{zij | i, j ∈ V }.
Let I1 = {j ∈ V | zi1j > 0}, then ∀i, j ∈ I1, zij = 1/|I1|.
By using an appropriate permutation matrix P , we obtain

P⊤ZP =

(
ZI1 O
O ZĪ1

)
, where Ī1 = V \ I1.

The sub-matrix ZĪ1
satisfies that ZĪ1

e = e, Z2
Ī1

= Z, ZĪ1
∈ N .

Repeating the process described above, we can convert Z to a block
diagonal matrix P⊤ZP = Diag(ZĪ1

, . . . , ZĪt
).

We construct a matrix X = (xip) such that

xip =

{
1 (i ∈ Ip)

0 (i /∈ Ip)
,

then X is feasible for (P) and Z = X(X⊤X)−1X⊤.

13 / 25

0-1 semidefinite programming (0-1SDP)

0-1SDP formulation

(P̄)

∣∣∣∣∣∣∣∣∣
max. Tr((2A−D)Z)

s.t. Zen = en
Z2 = Z
Z ∈ Nn.

▶ Laplacian:
L = D −A ∈ S+

n

▶ Z2 = Z
⇒ ∀i, λi ∈ {0, 1}.
(λi：eigenvalue of Z)

▶ the objective function is linear with respect to Z

▶ the idempotence constraint makes the problem difficult
⇒ relax the constraint Z2 = Z to a more tractable constraint

D−2A =

 1 −2 0
−2 2 −2
0 −2 1

 /∈ S+
3

14 / 25

0-1 semidefinite programming (0-1SDP)

0-1SDP formulation

(P̄)

∣∣∣∣∣∣∣∣∣
max. Tr((2A−D)Z)

s.t. Zen = en
Z2 = Z
Z ∈ Nn.

▶ Laplacian:
L = D −A ∈ S+

n

▶ Z2 = Z
⇒ ∀i, λi ∈ {0, 1}.
(λi：eigenvalue of Z)

▶ the objective function is linear with respect to Z

▶ the idempotence constraint makes the problem difficult
⇒ relax the constraint Z2 = Z to a more tractable constraint

D−2A =

 1 −2 0
−2 2 −2
0 −2 1

 /∈ S+
3

14 / 25

Introduction

Formulations

Relaxation problem (Upper bounding)

Heuristics based on the spectrum (Lower bounding)

Computational experiment

Conclusion

15 / 25

Doubly Non-Negative relaxation
▶ DNN relaxation

⇒ provides a tight bound for combinatorial optimization problems

0-1SDP formulation

(P̄)

∣∣∣∣∣∣∣∣
max. Tr((2A−D)Z)

s.t. Zen = en
Z2 = Z
Z ∈ Nn.

DNN relaxation

(DNN)

∣∣∣∣∣∣
max. Tr((2A−D)Z)

s.t. Zen = en
Z ∈ S+

n ∩Nn.

▶ the interior-point method solves the problem over a symmetric cone
efficiently

▶ we cannot directly apply the interior-point method to solve (DNN)
since doubly non-negative cone is not symmetric

Z ∈ S+
n ∩Nn ⇔

(
Z O
O Diag(vec(Z))

)
∈ S+

n+n2

16 / 25

Valid inequality

Lemma 2.

The following inequalities are valid for (P̄)

zii ≥ zij (i, j ∈ V).

DNN relaxation

(DNN)

∣∣∣∣∣∣
max. Tr((2A−D)Z)

s.t. Zen = en
Z ∈ S+

n ∩Nn.

DNN with valid inequalities

(DNN)

∣∣∣∣∣∣∣∣
max. Tr((2A−D)Z)

s.t. Zen = en
zii ≥ zij (i, j ∈ V)
Z ∈ S+

n ∩Nn.

17 / 25

Introduction

Formulations

Relaxation problem (Upper bounding)

Heuristics based on the spectrum (Lower bounding)

Computational experiment

Conclusion

18 / 25

Permutation based on spectrum
Z∗：solution of the relaxation problem

▶ 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 : eigenvalues of Z∗

▶ ui ∈ Rn : eigenvector corresponding to λi

Permuting the rows and columns of Z∗ consistent with the
decreasing order of values of elements of u2, we have

Figure: Original matrix
19 / 25

Permutation based on spectrum
Z∗：solution of the relaxation problem

▶ 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 : eigenvalues of Z∗

▶ ui ∈ Rn : eigenvector corresponding to λi

Permuting the rows and columns of Z∗ consistent with the
decreasing order of values of elements of u2, we have

Figure: Original matrix Figure: Permuted matrix
19 / 25

V : sequence consistent with the decreasing order of u2

(we write V = [1 . . . n] for the sake of simplicity)

▶ q(k, ℓ) =
2
∑ℓ

i=k

∑ℓ
j=k aij −

∑ℓ
i=k di

ℓ− (k − 1)
for k, ℓ of V with k ≤ ℓ

▶ µ(s) : the maximum value that is achieved by partitioning of [1. . . s]
into several consecutive subsequences
(assume µ(0) = 0 for notational convenience)

Recursive equation

µ(s) = max{µ(k) + q(k + 1, s) | k ∈ { 0, 1, . . . , s− 1 } }.

⇒ µ(1) = q(1, 1)
µ(2) = max{ q(1, 2), µ(1) + q(2, 2) }
µ(3) = max{ q(1, 3), µ(1) + q(2, 3), µ(2) + q(3, 3) } · · ·

20 / 25

V : sequence consistent with the decreasing order of u2

(we write V = [1 . . . n] for the sake of simplicity)

▶ q(k, ℓ) =
2
∑ℓ

i=k

∑ℓ
j=k aij −

∑ℓ
i=k di

ℓ− (k − 1)
for k, ℓ of V with k ≤ ℓ

▶ µ(s) : the maximum value that is achieved by partitioning of [1. . . s]
into several consecutive subsequences
(assume µ(0) = 0 for notational convenience)

Recursive equation

µ(s) = max{µ(k) + q(k + 1, s) | k ∈ { 0, 1, . . . , s− 1 } }.

⇒ µ(1) = q(1, 1)
µ(2) = max{ q(1, 2), µ(1) + q(2, 2) }
µ(3) = max{ q(1, 3), µ(1) + q(2, 3), µ(2) + q(3, 3) } · · ·

20 / 25

V : sequence consistent with the decreasing order of u2

(we write V = [1 . . . n] for the sake of simplicity)

▶ q(k, ℓ) =
2
∑ℓ

i=k

∑ℓ
j=k aij −

∑ℓ
i=k di

ℓ− (k − 1)
for k, ℓ of V with k ≤ ℓ

▶ µ(s) : the maximum value that is achieved by partitioning of [1. . . s]
into several consecutive subsequences
(assume µ(0) = 0 for notational convenience)

Recursive equation

µ(s) = max{µ(k) + q(k + 1, s) | k ∈ { 0, 1, . . . , s− 1 } }.

⇒ µ(1) = q(1, 1)
µ(2) = max{ q(1, 2), µ(1) + q(2, 2) }
µ(3) = max{ q(1, 3), µ(1) + q(2, 3), µ(2) + q(3, 3) } · · ·

20 / 25

V : sequence consistent with the decreasing order of u2

(we write V = [1 . . . n] for the sake of simplicity)

▶ q(k, ℓ) =
2
∑ℓ

i=k

∑ℓ
j=k aij −

∑ℓ
i=k di

ℓ− (k − 1)
for k, ℓ of V with k ≤ ℓ

▶ µ(s) : the maximum value that is achieved by partitioning of [1. . . s]
into several consecutive subsequences
(assume µ(0) = 0 for notational convenience)

Recursive equation

µ(s) = max{µ(k) + q(k + 1, s) | k ∈ { 0, 1, . . . , s− 1 } }.

⇒ µ(1) = q(1, 1)
µ(2) = max{ q(1, 2), µ(1) + q(2, 2) }
µ(3) = max{ q(1, 3), µ(1) + q(2, 3), µ(2) + q(3, 3) } · · ·

20 / 25

Introduction

Formulations

Relaxation problem (Upper bounding)

Heuristics based on the spectrum (Lower bounding)

Computational experiment

Conclusion

21 / 25

Computational experiment

▶ Computational environment
CPU : Intel Core i7 3.70GHz
Memory : 32.0 GB
SDP Solver : SeDuMi 1.2
MILP Solver : Gurobi 6.0.0

▶ The instances we tested :

ID name n m t OPT
1 Strike 24 38 4 8.8611
2 Karate 34 78 3 7.8451
3 Mexico 35 117 3 8.7180
4 Sawmill 36 62 4 8.6233
5 Dolphins 62 159 5 12.12521

6 Books 105 441 7 21.96521

1the best lower bound reported in Costa et al. ’15
22 / 25

Table: Comparison of obtained lower and upper bounds

(DNN) (DNN) (MILP)
ID UB LB UB LB UB LB

1 9.5808 8.8611 9.3049 8.8611 8.8611 8.8611
2 8.9548 7.8424 8.4141 7.8451 7.8451 7.8451
3 10.3151 8.5580 9.9570 8.5227 8.7180 8.7180
4 10.5048 7.0486 10.0311 7.3587 8.6223 8.6233
5 15.0218 9.8286 14.3552 11.4610 17.1252 12.1252
6 26.5387 20.2470 24.7749 20.3150 56.8739 21.0815

Table: Comparison of computational time in seconds

ID (DNN) (DNN) (MILP)

1 1.05 3.54 0.50
2 5.83 36.04 0.74
3 7.64 43.48 7.84
4 7.75 54.21 6.10
5 316.61 1681.81 OT2

6 4626.11 60437.45 OT2

2more than 10,000 seconds
23 / 25

Introduction

Formulations

Relaxation problem (Upper bounding)

Heuristics based on the spectrum (Lower bounding)

Computational experiment

Conclusion

24 / 25

Conclusion

Conclusion

▶ We proved the equivalence between the modularity density
maximization and 0-1SDP

▶ obtained a tight upper bound by DNN relaxation

▶ developed a heuristics to obtain a lower bound

However, there is no theoretical validity of using the second largest
eigenvector. Here still remains room for further research.

Thank you for your attention.

25 / 25

Conic programming

▶ K : a nonempty closed convex cone

▶ ⟨·, ·⟩ : an inner product

▶ K∗ : the dual cone of K, i.e., K∗ = {x | ∀y ∈ K, ⟨x,y⟩ ≥ 0 }
▶ A : Rn → Rm : a linear operator

▶ A∗ : the adjoint operator of A, i.e., ⟨Ax,y⟩ = ⟨x, A∗y⟩

Primal∣∣∣∣∣ min. ⟨c,x⟩
s.t. Ax = b,x ∈ K.

Dual∣∣∣∣∣ max. ⟨b,y⟩
s.t. c−A∗y ∈ K∗.

Roughly speaking, K is called a symmetric cone if K∗ = K.

▶ symmetric cones :
non-negative orthant Rn

+, semidefinite cone S+
n , second-order cone, etc.

26 / 25

Conic programming

▶ Copositive cone Cn = {Y ∈ Rn×n | Y ⊤ = Y, ∀d ∈ Rn
+,d

⊤Y d ≥ 0 }
▶ Completely positive cone C∗

n = conv({yy⊤ | y ∈ Rn
+ })

▶ Doubly non-negative cone S+
n ∩Nn

Properties

▶ (S+
n ∩Nn)

∗ = S+
n +Nn

▶ C∗
n ⊆ S+

n ∩Nn ⊆ S+
n ⊆ S+

n +Nn ⊆ Cn

▶ C∗
n = S+

n ∩Nn ⊆ S+
n ⊆ S+

n +Nn = Cn for n ≤ 4

Strong results on Cn, C∗
n

▶ the maximum clique number:

min{α ∈ N | α(E −A)− E ∈ Cn } where E = ee⊤.

▶ non-convex quadratic programming:

min{Tr(QX) | Tr(EX) = 1, X ∈ C∗
n } where E = ee⊤.

27 / 25

	Introduction
	Formulations
	Relaxation problem (Upper bounding)
	Heuristics based on the spectrum (Lower bounding)
	Computational experiment
	Conclusion

