The 4th workshop on spectral graph theory and related topics Nov. 22, 2015, Univ. of Tsukuba

Complex Fermi surfaces and spectrum of discrete Laplacian on perturbed lattices

Hisashi Morioka Shibaura Institute of Technology

joint works with Kazunori Ando (Ehime University) , Hiroshi Isozaki (University of Tsukuba)

Contents

I'll talk about eigenvalues embedded in the continuous spectrum of discrete Laplacian on lattices with finite rank perturbations :

- discrete Laplacian on periodic lattices
- Fermi surfaces
- unique continuation properties and lattice structures
- Rellich type uniqueness theorem and its applications

프 + + 프 +

э

Recent progress on discrete Laplacian

- Spectrum of Laplacian on infinite graphs (Higuchi-Shirai, 2004 / Higuchi-Nomura, 2009)
- Endpoint embedded eigenvalue for higher dim. (Hiroshima-Sakai-Sasaki-Suzuki, 2012)
- Absence of embedded eigenvalues on the square lattice (Isozaki-Morioka, 2014)
- ► Generalization for some kind of periodic lattices (Ando-Isozaki-Morioka, 2015)
- Endpoint embedded eigenvalue for low dim. (Ogurisu-Higuchi-Nomura, in preparation?)
- Generalization for exponential decaying perturbations (Vesalainen, 2014)
- Generalizations for short-range perturbations (Morioka, in preparation)
- Tree (Colin de Verdiére-Truc, 2013)
- Periodic lattices with pendant vertices (Suzuki, 2013)

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Discrete Laplacian with finite rank perturbations

- ▶ H. Isozaki, H. Morioka, Inverse Problems and Imaging, 8 (2014), 475-489.
- K. Ando, H. Isozaki, H. Morioka, Ann. Henri Poincaré, online first (2015).

イロト イポト イヨト イヨト

3

Example Mathematical definition Essential spectrum of \widehat{H}_0

Periodic lattices

▲□▶ ▲圖▶ ▲注▶ ▲注▶ -

Ξ.

Example Mathematical definition Essential spectrum of \widehat{H}_0

e.g.: Square lattice

 (-2,1) (-1,1)	(0,1)	(1,1)	(2,1)	
	Ĭ			r
 (-2,0) (-1,0)	(0,0)	(1,0)	(2,0)	
	Ĭ			
(-2,-1) (-1,-1)	(0, -1)	(1, -1)	(2, -1)	
	Ĭ			

Figure: Square lattice

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Э.

Example Mathematical definition Essential spectrum of \widehat{H}_0

e.g.: Hexagonal and diamond lattice

Figure: Hexagonal lattice

э

Example Mathematical definition Essential spectrum of \widehat{H}_{Ω}

e.g.: Kagome lattice

Figure: Kagome lattice

Example Mathematical definition Essential spectrum of \widehat{H}_0

e.g.: Ladder

Figure: Ladder of \mathbf{Z}^2

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Example Mathematical definition Essential spectrum of \widehat{H}_0

e.g.: Graphite

Figure: Graphite

・ロト ・ 四ト ・ モト ・ モト …

æ

Example Mathematical definition Essential spectrum of \widehat{H}_{Ω}

e.g.: subdivision of the 2-D square lattice

Figure: subdivision

イロト イポト イヨト イヨト

æ

Definition of lattices

These lattice are constructed as a \mathbf{Z}^d -covering of a finite graph :

We define $\Gamma_0 = \{\mathcal{L}_0, \mathcal{V}_0, \mathcal{E}_0\}$ by :

For the basis \mathbf{v}_j , $j=1,\cdots,d$ of \mathbf{R}^d , we put

$$\mathcal{L}_0 = \{ \mathrm{v}(n) \; ; \; n \in \mathrm{Z}^d \}, \hspace{1em} \mathrm{v}(n) = \sum_{j=1}^d n_j \mathrm{v}_j, \hspace{1em} n \in \mathrm{Z}^d.$$

and, for some points p_1, \cdots, p_s in \mathbf{R}^d , we define the set of vertices by

$$\mathcal{V}_0 = igcup_{j=1}^s (p_j + \mathcal{L}).$$

Moreover, we assume that the set of unoriented edges \mathcal{E}_0 is invariant with respect to Z^d -action.

We assume that Γ_0 has no self-loops nor multiple edges.

(人間) (人) (人) (人) (人)

Discrete Laplacian (transition Laplacian)

For a C-valued function $\widehat{f} = \{\widehat{f}(v)\}_{v \in \mathcal{V}_0}$, we define

$$egin{aligned} &(\widehat{\Delta}_{\Gamma_0}\widehat{f})(v) = rac{1}{\deg(v)}\sum_{w\in\mathcal{V}_0,(v,w)\in\mathcal{E}_0}\widehat{f}(w),\ &\deg(v) := \sharp\{w\in\mathcal{V}_0\ ;\ (v,w)\in\mathcal{E}_0\}. \end{aligned}$$

By a R-valued scalar potential \widehat{V} , we define the discrete Schrödinger equation by

$$(-\widehat{\Delta}_{\Gamma_0}+\widehat{V}-\lambda)\widehat{u}=0$$
 on $\mathcal{V}_0.$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

э

Example Mathematical definition Essential spectrum of \widehat{H}_0

Systems of Schrödinger equation

In view of periodic structure of Γ_0 , we interpret $\ell^2(\mathcal{V}_0)$ as $\bigoplus_{j=1}^s \ell^2(\mathbf{Z}^d) = \ell^2(\mathbf{Z}^d; \mathbf{C}^s)$. (Other function spaces are also dealt with spaces of \mathbf{C}^s -valued functions on \mathbf{Z}^d .) Then we rewrite $\hat{f} = \{\hat{f}(v)\}_{v \in \mathcal{V}_0}$ by

$$\widehat{f}(n)=(\widehat{f}_1(n),\cdots,\widehat{f}_s(n)), \hspace{1em} n\in {
m Z}^d,$$

so that, by the Shift operator $(\widehat{S}_j^{\pm}\widehat{f})(n)=\widehat{f}(n\pm {
m e}_j)$, we have

$$\widehat{H}_0 = -\widehat{\Delta}_{\Gamma_0} = s imes s$$
 symmetric matrix of $\widehat{S}_j^\pm,$

$$\widehat{V} = \operatorname{diag}(\widehat{V}_1, \cdots, \widehat{V}_s).$$

 $\widehat{H} = \widehat{H}_0 + \widehat{V}$ is bounded and self-adjoint on $\ell^2(\mathbf{Z}^d;\mathbf{C}^s).$

- 4 周 ト 4 ヨ ト 4 ヨ ト

Fourier transformation

On $\Gamma_0,$ we can use the Fourier series :

The unitary operator $\mathcal{U}_{\mathcal{L}_0}:\ell^2(\mathrm{Z}^d;\mathrm{C}^s)\to L^2(\mathrm{T}^d;\mathrm{C}^s)$ is defined by

$$ig(\mathcal{U}_{\mathcal{L}_0}\widehat{f}ig)_j(x) = (2\pi)^{-d/2}\sqrt{\deg_0(j)}\sum_{n\in \mathbf{Z}^d}\widehat{f}_j(n)e^{in\cdot x}, \hspace{0.2cm} j=1,\cdots,s,$$

where $\deg_0(j)$ is the degree of vertex in each orbit, and the inner products are

$$(\widehat{f},\widehat{g})_{\ell^{2}(\mathbf{Z}^{d};\mathbf{C}^{s})} = \sum_{j=1}^{s} \sum_{n \in \mathbf{Z}^{d}} \deg_{0}(j)\widehat{f}_{j}(n)\overline{\widehat{g}_{j}(n)},$$

$$(u,v)_{L^2(\mathrm{T}^d;\mathrm{C}^s)} = \sum_{j=1}^s \int_{\mathrm{T}^d} u_j(x) \overline{v_j(x)} dx.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A@

Fourier transform of Discrete Laplacian

In the following, we denote $H = H_0 + V$,

$$H_0=\mathcal{U}_{\mathcal{L}_0}\widehat{H}_0\mathcal{U}^*_{\mathcal{L}_0}=H_0(x),$$

 $H_0(x) = s imes s$ Hermitian matrix with trigonometric-function-entries,

$$V = \mathcal{U}_{\mathcal{L}_0} \widehat{V} \mathcal{U}^*_{\mathcal{L}_0},$$

on the torus \mathbf{T}^{d} .

Then the discrete Schrödinger equation on T^d is

$$(H_0(x) - \lambda)u + Vu = 0$$
 on T^d .

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

Diagonalization of $H_0(x) - \lambda$

Multiplying the co-factor of $H_0(x)-\lambda$, we rewrite $H_0(x)-\lambda$ as

$$H_0(x)-\lambda o p(x,\lambda)I_s, \ \ p(x,\lambda):=\det(H_0(x)-\lambda).$$

Putting eigenvalues of $H_0(x)$ for each $x\in \mathrm{T}^d$ as $\lambda_1(x)\leq \cdots \leq \lambda_s(x)$, we have

$$p(x,\lambda) = \prod_{j=1}^{\circ} (\lambda_j(x) - \lambda).$$

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

Example Mathematical definition Essential spectrum of \widehat{H}_0

Essential spectrum of \widehat{H}_0

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Ξ.

Essential spectrum of \widehat{H}_0

The spectrum of \widehat{H}_0 is given by

$$\sigma(\widehat{H}_0) = \sigma(H_0) = igcup_{x \in \mathrm{T}^d}$$
 "eigenvalue of $H_0(x)$ ".

▶ In our cases, $\sigma(\widehat{H}_0) = \sigma_{ess}(\widehat{H}_0)$ is a closed interval $\subset [-1,1]$.

- There may exist $\lambda \in \sigma_p(\widehat{H}_0) \cap \sigma_{ess}(\widehat{H}_0)!$ (e.g. Kagome lattice, subdivision lattices)
- Generally, σ(H
 ₀) may have some spectral gaps, and eigenvalues with ∞-multiplicities. (c.f. Suzuki, 2013 et al.)

- A 🖻 🕨

Examples (1)

- (1) : Square lattice
 - $p(x,\lambda) = -\frac{1}{d} \sum_{j=1}^{d} \cos x_j \lambda$
 - $\sigma(\widehat{H}_0) = [-1,1]$
- (2) : Hexagonal lattice
 - ► $p(x, \lambda) = \lambda^2 \frac{3 + 2(\cos x_1 + \cos x_2 + \cos(x_1 x_2))}{9}$
 - $\sigma(\widehat{H}_0) = [-1,1]$
- (3) : Kagome lattice

$$\begin{array}{l} \triangleright \ p(x,\lambda) = \\ -(\lambda - \frac{1}{2}) \Big(\lambda^2 + \frac{\lambda}{2} - \frac{1 + \cos x_1 + \cos x_2 + \cos(x_1 - x_2)}{8} \Big) \\ \triangleright \ \sigma(\widehat{H}_0) = [-1, 1/2] \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples (2)

(4) : Subdivision lattices

$$\blacktriangleright \ p(x,\lambda) = (-\lambda)^{d-1} \Big(\lambda^2 - \tfrac{1}{2d} \big(d + \textstyle\sum_{j=1}^d \cos x_j \big) \Big)$$

•
$$\sigma(\widehat{H}_0) = [-1,1]$$

(5): (Higher dimensional) ladders

$$p(x,\lambda) = p_{+}(x,\lambda)p_{-}(x,\lambda)$$

$$p_{\pm}(x,\lambda) = \lambda + \frac{1}{2d+1} \Big(2\sum_{j=1}^{d} \cos x_{j} \pm 1 \Big)$$

$$\sigma(\widehat{H}_{0}) = [-1,1]$$

$$\bullet \ \sigma(H_0) = [-1,$$

(6) : Graphite

$$\blacktriangleright p(x,\lambda) = \lambda^4 - \frac{\alpha(x)+1}{8}\lambda^2 + \frac{(\alpha(x)-1)^2}{4^4}$$

•
$$\alpha(x) = 3 + 2(\cos x_1 + \cos x_2 + \cos(x_1 - x_2))$$

•
$$\sigma(\widehat{H}_0) = [-1,1]$$

イロン イ団と イヨン イヨン

æ

Example Mathematical definition Essential spectrum of \widehat{H}_0

Remarks

The spectral measure of $\sigma(\widehat{H}_0)$ highly depends on the structure of lattices :

- Geometric structure of complex Fermi surfaces of \widehat{H}_0
- Density of states

- 4 同 6 4 回 6 4 回 6

э

Fermi surfaces

Real Fermi surfaces, complex Fermi surfaces

The set $M_\lambda \subset \operatorname{T}^d$ is defined by

$$M_{\lambda} = \{x \in \operatorname{T}^{d} \; ; \; p(x,\lambda) = 0\}.$$

We extend M_λ to the complex torus $\mathrm{T}^d_\mathrm{C} = \mathrm{C}^d/(2\pi \mathrm{Z})^d$, and denote it by

$$M^{\mathrm{C}}_{\lambda} = \{z \in \mathrm{T}^{d}_{\mathrm{C}} \; ; \; p(z,\lambda) = 0\}.$$

We split $M^{
m C}_{\lambda}$ into two part, one is the regular part and another is the singular part :

$$egin{aligned} M^{\mathrm{C}}_{\lambda,reg} &= \{z \in M^{\mathrm{C}}_{\lambda} \; ; \;
abla_z p(z,\lambda)
eq 0 \}, \ M^{\mathrm{C}}_{\lambda,sng} &= \{z \in M^{\mathrm{C}}_{\lambda} \; ; \;
abla_z p(z,\lambda) = 0 \}. \end{aligned}$$

イロト 不得下 不良下 不良下 一度

Assumption for the Fermi surfaces

Assumption

(A-1) There exists a subset $\mathcal{T}_1 \subset \sigma(\widehat{H}_0)$ such that for $\lambda \in \sigma(\widehat{H}_0) \setminus \mathcal{T}_1$: (A-1-1) $M^{\mathbb{C}}_{\lambda,sng}$ is a discrete set. (A-1-2) Each connected component of $M^{\mathbb{C}}_{\lambda,reg}$ intersects with \mathbf{T}^d . Each intersection is a (d-1)-dimensional real analytic submanifold of \mathbf{T}^d .

% Since M_{λ}^{C} is defined by the trigonometric polynomial $p(z, \lambda)$, we can not define "irreducible factor". However, we can consider an irreducibility in view of the connectivity as complex submanifolds.

|御と (ほと)(ほと

Rellich type uniqueness theorem

・ロト ・ 四ト ・ モト ・ モト …

Э.

Rellich type theorem

Theorem (Ando-Isozaki-Morioka, 2015)

We assume (A-1), and let $\lambda\in\sigma(\widehat{H}_0)\setminus\mathcal{T}_1.$

For a function f whose entries are trigonometric polynomials, suppose a distribution u satisfies the equation

$$(H_0(x)-\lambda)u=f \quad ext{on} \quad \operatorname{T}^d,$$

$$\lim_{R o \infty} rac{1}{R} \sum_{j=1}^s \int_{\mathrm{T}^d} ig| \chi(|\sqrt{-\Delta}| < R) u_j(x) ig|^2 dx = 0.$$

Then entries of \boldsymbol{u} are also trigonometric polynomials.

% Recalling $\hat{f} := \mathcal{U}_{\mathcal{L}_0} f$, we have $\sharp \operatorname{supp} \hat{f} < \infty$. Vesalainen (2014) has generalized our result (Isozaki-Morioka, 2014) for infinite rank perturbations with the condition

$$e^{\gamma\langle n
angle}\widehat{f}\in \ell^2(\mathrm{Z}^d) ext{ for } orall \gamma>0, \ \widehat{f}(n)=0 ext{ for } \sum_{j=1}^{d-1}|n_j|\leq n_d.$$

Complex Fermi surfaces Rellich type uniqueness theorem

Interpretation on the lattice

Corollary

We assume (A-1).

If, for a constant $R_0>0$ and $\lambda\in\sigma(\widehat{H}_0)\setminus\mathcal{T}_1$, \widehat{u} satisfies the equation

$$(-\widehat{\Delta}_{\Gamma_0}-\lambda)\widehat{u}=0 \hspace{0.3cm} ext{in} \hspace{0.3cm} |n|>R_0,$$

$$\lim_{R
ightarrow\infty}rac{1}{R}\sum_{j=1}^s\sum_{R_0<|n|< R}\left|\widehat{u}_j(n)
ight|^2=0,$$

there exists a constant $R_1>R_0$ such that $\widehat{u}(n)=0$ for $|n|>R_1$ i.e. $\sharp \mathrm{supp}\widehat{u}<\infty.$

∃ ⊳

Application for eigenvalue problems (UCP of Helmholtz type eq.)

Assumption (unique continuation property on lattices)

(A-4) If \widehat{u} satisfies

$$(\widehat{H}_0+\widehat{V}-\lambda)\widehat{u}=0$$
 on \mathcal{V}_0

and, for a constant $R_1>0$, $\widehat{u}(n)=0$, $|n|>R_1$, then $\widehat{u}=0$ on whole \mathcal{V}_0 .

- UCP on lattices is slightly different from elliptic PDE on \mathbf{R}^d or manifolds.
- If we assume (A-1), $\lambda \not\in \mathcal{T}_1$ and $\widehat{V} = 0$, UCP holds on our examples.
- If V ≠ 0, it is not sufficient to assume (A-1) and λ ∉ T₁. In fact, on kagome lattice and subdivision lattice, UCP does not holds for any λ ∈ R. Moreover, for any λ ∈ R, we can construct V such that λ ∈ σ_p(H₀ + V).

Complex Fermi surfaces Rellich type uniqueness theorem

Absence of embedded eigenvalues

Theorem

We assume (A-1) and (A-4).
If
$$\lambda \in \sigma_{ess}(\widehat{H}) \setminus \mathcal{T}_1$$
, we have $\lambda \not\in \sigma_p(\widehat{H})$ i.e.
 $\sigma_p(\widehat{H}) \cap (\sigma_{ess}(\widehat{H}) \setminus \mathcal{T}_1) = \emptyset$.

Sketch of proof.

- Since $\sharp \operatorname{supp} \widehat{V} < \infty$, we can apply the Rellich type theorem for the eigenfunction $\widehat{\psi}_{\lambda} \in \ell^2(\mathcal{V}_0)$.
- For a sufficiently large $R_1>0,$ $\widehat{\psi}_{\lambda}(n)=0$ for $|n|>R_1.$
- From (A-4), $\widehat{\psi}_{\lambda}(n) = 0$ on \mathcal{V}_0 . This is a contradiction.

< ∃ >

Examples of \mathcal{T}_1 (1)

- (1) : Square lattice
 - $\sigma(\widehat{H}_0) = [-1,1]$
 - $T_1 = \{-1, 1\}$
- (2) : Hexgonal lattice
 - $\sigma(\widehat{H}_0) = [-1,1]$
 - $\mathcal{T}_1 = \{-1, 0, 1\}$
- (3) : Kagome lattice

•
$$\sigma(\widehat{H}_0) = [-1, 1/2]$$

•
$$\mathcal{T}_1 = \{-1, -1/4, 1/2\}, 1/2 \in \sigma_p(\widehat{H}_0).$$

(4) : subdivision

•
$$\sigma(\widehat{H}_0) = [-1,1]$$

$$lacksymbol{ au}$$
 $\mathcal{T}_1=\{-1,0,1\}$, $0\in\sigma_p(\widehat{H}_0)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Examples of \mathcal{T}_1 (2)

(5) : Ladder
•
$$\sigma(\widehat{H}_0) = [-1, 1]$$

• $\mathcal{T}_1 = \left\{ \frac{2d-1}{2d+1} \le |\lambda| \le 1 \right\}$
(6) : Graphite
• $\sigma(\widehat{H}_0) = [-1, 1]$

•
$$\mathcal{T}_1 = \{1/2 \le |\lambda| \le 1\}$$

・ロト ・回 ト ・ヨト ・ヨトー

Э.

Complex Fermi surfaces Rellich type uniqueness theorem

Procedure of UCP

Figure: Unique continuation on lattices

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Example of embedded eigenvalue -Kagome lattice-

If we put $\hat{V}(v) = \alpha$ for $v = x_1, \cdots, x_6$, else $\hat{V}(v) = 0$, an eigenfunction satisfies $\hat{u}(v) = (-1)^j$ for $v = x_1, \cdots, x_6$, else $\hat{u}(v) = 0$ with the eigenvalue $\lambda = \alpha + 1/2$.

Figure: Eigenfunction with an embedded eigenvalue

(人間) (人) (人) (人) (人)

Complex Fermi surfaces Rellich type uniqueness theorem

Example of embedded eigenvalue -Subdivision lattice-

If we put $\widehat{V}(v) = \alpha$ for $v = x_1, \cdots, x_4$, else $\widehat{V}(v) = 0$, an eigenfunction satisfies $\widehat{u}(v) = (-1)^j$ for $v = x_1, \cdots, x_4$, else $\widehat{u}(v) = 0$ with the eigenvalue $\lambda = \alpha$.

Figure: Eigenfunction with an embedded eigenvalue

- A 🖻 🕨

< ∃ >

Example of embedded eigenvalue -ladder-

For any constant $\alpha \neq 0$, we put $\hat{V}(0) = \alpha I_2$ and $\hat{V}(n) = 0$ for $n \neq 0$. For any $\lambda \in \mathcal{T}_1$, we can choose α and construct an eigenfunction which decays at infinity.

Graphite is similar.

- 本間 と く ヨ と く ヨ と

э

Sketch of proof for Rellich type theorem (1)

> Multiplying the co-factor of $H_0(x) - \lambda$, we can diagonalize the equation as

$$p(x,\lambda)I_su=g,$$

so that we pick up a component. In the following, we deal it with a single equation.

- ▶ We obtain $u \in C^{\infty}(\mathbb{T}^d \setminus M^{\mathbb{C}}_{\lambda,sng})$. In particular, we have g(x) = 0 on $M^{\mathbb{C}}_{\lambda,reg} \cap \mathbb{T}^d$.
- In view of (A-1-2), we can extend analytically g(z) = 0 to $M^{ ext{C}}_{\lambda,reg}$.
- Hence $g(z)/p(z,\lambda)$ is analytic in a neighborhood of $M^{\mathrm{C}}_{\lambda,reg}$.
- From (A-1-1), $M^{C}_{\lambda,sng}$ is a removable singularity, so that $g(z)/p(z,\lambda)$ is analytic in $\mathbf{T}^{d}_{\mathbf{C}}$.

イロト 不得下 不良下 不良下 一度

Sketch of proof for Rellich type theorem (2)

 \blacktriangleright Changing the variable $w_j = e^{i z_j}$, we have

$$rac{g(z)}{p(z,\lambda)} = rac{G(w)}{P(w,\lambda)} \prod_{j=1}^d w_j^{\gamma_j - eta_j}, \ \ G,P \in \mathrm{C}[w_1,\cdots,w_d].$$

- Since LHS is analytic, G/P is also analytic. In particular, G(w) = 0 on $\{w \in C^d ; P(w, \lambda) = 0\}.$
- ▶ Hilbert Nullstellensatz implies that *P* divides *G*.
- Therefore u = g/p is a trigonometric polynomial. This implies that $\hat{u} = \mathcal{U}_{\mathcal{L}_{n}}^{*} u$ has a finite support.

・ 置 と ・ ヨ と ・ ヨ と