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Contents

I’ll talk about eigenvalues embedded in the continuous spectrum of discrete
Laplacian on lattices with finite rank perturbations :

▶ discrete Laplacian on periodic lattices

▶ Fermi surfaces

▶ unique continuation properties and lattice structures

▶ Rellich type uniqueness theorem and its applications
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Recent progress on discrete Laplacian

▶ Spectrum of Laplacian on infinite graphs (Higuchi-Shirai, 2004 /
Higuchi-Nomura, 2009)

▶ Endpoint embedded eigenvalue for higher dim.
(Hiroshima-Sakai-Sasaki-Suzuki, 2012)

▶ Absence of embedded eigenvalues on the square lattice (Isozaki-Morioka,
2014)

▶ Generalization for some kind of periodic lattices (Ando-Isozaki-Morioka,
2015)

▶ Endpoint embedded eigenvalue for low dim. (Ogurisu-Higuchi-Nomura, in
preparation?)

▶ Generalization for exponential decaying perturbations (Vesalainen, 2014)

▶ Generalizations for short-range perturbations (Morioka, in preparation)

▶ Tree (Colin de Verdiére-Truc, 2013)

▶ Periodic lattices with pendant vertices (Suzuki, 2013)
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Discrete Laplacian with finite rank perturbations

▶ H. Isozaki, H. Morioka, Inverse Problems and Imaging, 8 (2014), 475-489.

▶ K. Ando, H. Isozaki, H. Morioka, Ann. Henri Poincaré, online first (2015).
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e.g.: Square lattice

Figure: Square lattice
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e.g.: Hexagonal and diamond lattice

Figure: Hexagonal lattice
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e.g.: Kagome lattice

Figure: Kagome lattice
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e.g.: Ladder

Figure: Ladder of Z2
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e.g.: Graphite

Figure: Graphite
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e.g.: subdivision of the 2-D square lattice

Figure: subdivision
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Definition of lattices

These lattice are constructed as a Zd-covering of a finite graph :

We define Γ0 = {L0,V0, E0} by :

For the basis vj , j = 1, · · · , d of Rd, we put

L0 = {v(n) ; n ∈ Zd}, v(n) =

d∑
j=1

njvj, n ∈ Zd.

and, for some points p1, · · · , ps in Rd, we define the set of vertices by

V0 =

s∪
j=1

(pj + L).

Moreover, we assume that the set of unoriented edges E0 is invariant with
respect to Zd-action.

We assume that Γ0 has no self-loops nor multiple edges.

森岡 悠 (CPEI, SIT) Spectra on periodic lattices



. . . . . .

Introduction
Periodic lattices and discrete Laplacian

Rellich type theorem and Fermi surfaces

Example
Mathematical definition
Essential spectrum of Ĥ0

Discrete Laplacian (transition Laplacian)

For a C-valued function f̂ = {f̂(v)}v∈V0 , we define

(∆̂Γ0 f̂)(v) =
1

deg(v)

∑
w∈V0,(v,w)∈E0

f̂(w),

deg(v) := ♯{w ∈ V0 ; (v, w) ∈ E0}.

By a R-valued scalar potential V̂ , we define the discrete Schrödinger equation
by

(−∆̂Γ0 + V̂ − λ)û = 0 on V0.
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Systems of Schrödinger equation

In view of periodic structure of Γ0, we interpret ℓ2(V0) as
⊕s

j=1ℓ
2(Zd) = ℓ2(Zd; Cs). (Other function spaces are also dealt with spaces

of Cs-valued functions on Zd.)

Then we rewrite f̂ = {f̂(v)}v∈V0 by

f̂(n) = (f̂1(n), · · · , f̂s(n)), n ∈ Zd,

so that, by the Shift operator (Ŝ±
j f̂)(n) = f̂(n± ej), we have

Ĥ0 = −∆̂Γ0 = s× s symmetric matrix of Ŝ±
j ,

V̂ = diag(V̂1, · · · , V̂s).

Ĥ = Ĥ0 + V̂ is bounded and self-adjoint on ℓ2(Zd; Cs).
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Fourier transformation

On Γ0, we can use the Fourier series :

The unitary operator UL0 : ℓ2(Zd; Cs) → L2(Td; Cs) is defined by(
UL0 f̂

)
j
(x) = (2π)−d/2

√
deg0(j)

∑
n∈Zd

f̂j(n)e
in·x, j = 1, · · · , s,

where deg0(j) is the degree of vertex in each orbit, and the inner products are

(f̂ , ĝ)ℓ2(Zd;Cs) =

s∑
j=1

∑
n∈Zd

deg0(j)f̂j(n)ĝj(n),

(u, v)L2(Td;Cs) =

s∑
j=1

∫
Td

uj(x)vj(x)dx.
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Fourier transform of Discrete Laplacian

In the following, we denote H = H0 + V ,

H0 = UL0Ĥ0U∗
L0

= H0(x),

H0(x) = s× s Hermitian matrix with trigonometric-function-entries,

V = UL0 V̂ U∗
L0
,

on the torus Td.

Then the discrete Schrödinger equation on Td is

(H0(x) − λ)u+ V u = 0 on Td.
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Diagonalization of H0(x) − λ

Multiplying the co-factor of H0(x) − λ, we rewrite H0(x) − λ as

H0(x) − λ → p(x, λ)Is, p(x, λ) := det(H0(x) − λ).

Putting eigenvalues of H0(x) for each x ∈ Td as λ1(x) ≤ · · · ≤ λs(x), we
have

p(x, λ) =

s∏
j=1

(λj(x) − λ).
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Essential spectrum of Ĥ0

The spectrum of Ĥ0 is given by

σ(Ĥ0) = σ(H0) =
∪

x∈Td

“eigenvalue of H0(x)”.

▶ In our cases, σ(Ĥ0) = σess(Ĥ0) is a closed interval ⊂ [−1, 1].

▶ There may exist λ ∈ σp(Ĥ0) ∩ σess(Ĥ0)! (e.g. Kagome lattice,
subdivision lattices)

▶ Generally, σ(Ĥ0) may have some spectral gaps, and eigenvalues with
∞-multiplicities. (c.f. Suzuki, 2013 et al.)
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Examples (1)

(1) : Square lattice

▶ p(x, λ) = − 1
d

∑d
j=1 cosxj − λ

▶ σ(Ĥ0) = [−1, 1]

(2)：Hexagonal lattice

▶ p(x, λ) = λ2 − 3 + 2(cosx1 + cosx2 + cos(x1 − x2))

9

▶ σ(Ĥ0) = [−1, 1]

(3) : Kagome lattice

▶ p(x, λ) =

−
(
λ− 1

2

)(
λ2+

λ

2
− 1 + cosx1 + cosx2 + cos(x1 − x2)

8

)
▶ σ(Ĥ0) = [−1, 1/2]
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Examples (2)

(4) : Subdivision lattices

▶ p(x, λ) = (−λ)d−1
(
λ2 − 1

2d

(
d+

∑d
j=1 cosxj

))
▶ σ(Ĥ0) = [−1, 1]

(5) : (Higher dimensional) ladders

▶ p(x, λ) = p+(x, λ)p−(x, λ)

▶ p±(x, λ) = λ+
1

2d+ 1

(
2

d∑
j=1

cosxj ± 1
)

▶ σ(Ĥ0) = [−1, 1]

(6) : Graphite

▶ p(x, λ) = λ4 − α(x) + 1

8
λ2 +

(α(x) − 1)2

44

▶ α(x) = 3 + 2(cosx1 + cosx2 + cos(x1 − x2)

▶ σ(Ĥ0) = [−1, 1]
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Remarks

The spectral measure of σ(Ĥ0) highly depends on the structure of lattices :

▶ Geometric structure of complex Fermi surfaces of Ĥ0

▶ Density of states
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Real Fermi surfaces, complex Fermi surfaces

The set Mλ ⊂ Td is defined by

Mλ = {x ∈ Td ; p(x, λ) = 0}.

We extend Mλ to the complex torus Td
C = Cd/(2πZ)d, and denote it by

MC
λ = {z ∈ Td

C ; p(z, λ) = 0}.

We split MC
λ into two part, one is the regular part and another is the singular

part :
MC

λ,reg = {z ∈ MC
λ ; ∇zp(z, λ) ̸= 0},

MC
λ,sng = {z ∈ MC

λ ; ∇zp(z, λ) = 0}.
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Assumption for the Fermi surfaces

.
Assumption
..

......

(A-1) There exists a subset T1 ⊂ σ(Ĥ0) such that for λ ∈ σ(Ĥ0) \ T1 :
(A-1-1) MC

λ,sng is a discrete set.

(A-1-2) Each connected component of MC
λ,reg intersects with Td. Each

intersection is a (d− 1)-dimensional real analytic submanifold of Td.

※ Since MC
λ is defined by the trigonometric polynomial p(z, λ), we can not

define “irreducible factor”. However, we can consider an irreducibility in view
of the connectivity as complex submanifolds.
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Rellich type uniqueness theorem
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Rellich type theorem

.
Theorem (Ando-Isozaki-Morioka, 2015)
..

......

We assume (A-1), and let λ ∈ σ(Ĥ0) \ T1.
For a function f whose entries are trigonometric polynomials, suppose a
distribution u satisfies the equation

(H0(x) − λ)u = f on Td,

lim
R→∞

1

R

s∑
j=1

∫
Td

∣∣χ(|√−∆| < R)uj(x)
∣∣2dx = 0.

Then entries of u are also trigonometric polynomials.

※ Recalling f̂ := UL0f , we have ♯suppf̂ < ∞. Vesalainen (2014) has
generalized our result (Isozaki-Morioka, 2014) for infinite rank perturbations
with the condition

eγ⟨n⟩f̂ ∈ ℓ2(Zd) for ∀γ > 0, f̂(n) = 0 for

d−1∑
j=1

|nj| ≤ nd.
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Interpretation on the lattice

.
Corollary
..

......

We assume (A-1).

If, for a constant R0 > 0 and λ ∈ σ(Ĥ0) \ T1, û satisfies the equation

(−∆̂Γ0 − λ)û = 0 in |n| > R0,

lim
R→∞

1

R

s∑
j=1

∑
R0<|n|<R

|ûj(n)|2 = 0,

there exists a constant R1 > R0 such that û(n) = 0 for |n| > R1 i.e.
♯suppû < ∞.
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Application for eigenvalue problems (UCP of Helmholtz type eq.)

.
Assumption (unique continuation property on lattices)
..

......

(A-4) If û satisfies

(Ĥ0 + V̂ − λ)û = 0 on V0

and, for a constant R1 > 0, û(n) = 0, |n| > R1, then û = 0 on whole V0.

▶ UCP on lattices is slightly different from elliptic PDE on Rd or manifolds.

▶ If we assume (A-1), λ ̸∈ T1 and V̂ = 0, UCP holds on our examples.

▶ If V̂ ̸= 0, it is not sufficient to assume (A-1) and λ ̸∈ T1. In fact, on
kagome lattice and subdivision lattice, UCP does not holds for any
λ ∈ R. Moreover, for any λ ∈ R, we can construct V̂ such that
λ ∈ σp(Ĥ0 + V̂ ).
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Absence of embedded eigenvalues

.
Theorem
..

......

We assume (A-1) and (A-4).

If λ ∈ σess(Ĥ) \ T1, we have λ ̸∈ σp(Ĥ) i.e.

σp(Ĥ) ∩ (σess(Ĥ) \ T1) = ∅.

Sketch of proof.

▶ Since ♯suppV̂ < ∞, we can apply the Rellich type theorem for the
eigenfunction ψ̂λ ∈ ℓ2(V0).

▶ For a sufficiently large R1 > 0, ψ̂λ(n) = 0 for |n| > R1.

▶ From (A-4), ψ̂λ(n) = 0 on V0. This is a contradiction.
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Examples of T1 (1)

(1) : Square lattice

▶ σ(Ĥ0) = [−1, 1]

▶ T1 = {−1, 1}
(2) : Hexgonal lattice

▶ σ(Ĥ0) = [−1, 1]

▶ T1 = {−1, 0, 1}
(3) : Kagome lattice

▶ σ(Ĥ0) = [−1, 1/2]

▶ T1 = {−1,−1/4, 1/2}, 1/2 ∈ σp(Ĥ0).

(4) : subdivision

▶ σ(Ĥ0) = [−1, 1]

▶ T1 = {−1, 0, 1}, 0 ∈ σp(Ĥ0).
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Examples of T1 (2)

(5) : Ladder

▶ σ(Ĥ0) = [−1, 1]

▶ T1 =

{
2d− 1

2d+ 1
≤ |λ| ≤ 1

}
(6) : Graphite

▶ σ(Ĥ0) = [−1, 1]

▶ T1 = {1/2 ≤ |λ| ≤ 1}
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Procedure of UCP

Figure: Unique continuation on lattices
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Example of embedded eigenvalue -Kagome lattice-

If we put V̂ (v) = α for v = x1, · · · , x6, else V̂ (v) = 0, an eigenfunction
satisfies û(v) = (−1)j for v = x1, · · · , x6, else û(v) = 0 with the
eigenvalue λ = α+ 1/2.

Figure: Eigenfunction with an embedded eigenvalue
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Example of embedded eigenvalue -Subdivision lattice-

If we put V̂ (v) = α for v = x1, · · · , x4, else V̂ (v) = 0, an eigenfunction
satisfies û(v) = (−1)j for v = x1, · · · , x4, else û(v) = 0with the
eigenvalue λ = α.

Figure: Eigenfunction with an embedded eigenvalue
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Example of embedded eigenvalue -ladder-

For any constant α ̸= 0, we put V̂ (0) = αI2 and V̂ (n) = 0 for n ̸= 0.
For any λ ∈ T1, we can choose α and construct an eigenfunction which
decays at infinity.

Graphite is similar.
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Sketch of proof for Rellich type theorem (1)

▶ Multiplying the co-factor of H0(x) − λ, we can diagonalize the equation
as

p(x, λ)Isu = g,

so that we pick up a component. In the following, we deal it with a single
equation.

▶ We obtain u ∈ C∞(Td \MC
λ,sng). In particular, we have g(x) = 0 on

MC
λ,reg ∩ Td.

▶ In view of (A-1-2), we can extend analytically g(z) = 0 to MC
λ,reg.

▶ Hence g(z)/p(z, λ) is analytic in a neighborhood of MC
λ,reg.

▶ From (A-1-1), MC
λ,sng is a removable singularity, so that g(z)/p(z, λ) is

analytic in Td
C.
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Sketch of proof for Rellich type theorem (2)

▶ Changing the variable wj = eizj , we have

g(z)

p(z, λ)
=

G(w)

P (w, λ)

d∏
j=1

w
γj−βj

j , G, P ∈ C[w1, · · · , wd].

▶ Since LHS is analytic, G/P is also analytic. In particular, G(w) = 0 on
{w ∈ Cd ; P (w, λ) = 0}.

▶ Hilbert Nullstellensatz implies that P divides G.

▶ Therefore u = g/p is a trigonometric polynomial. This implies that
û = U∗

L0
u has a finite support.
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