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Purpose

The purpose of this talk is to explain some examples of Riemannian

metrics on closed manifolds for which the positive eigenvalues of the

Hodge-Laplacian tend to 0 (small eigenvalues).

This talk is based on joint works with Colette Anné (Nantes Univ. in

France) [AT24a], [AT24b].

[AT24a] C. Anné and J. Takahashi,

Small eigenvalues of the rough and Hodge Laplacians under fixed volume,

to appear in Ann. Fac. Sci. Toulouse, (2024). arXiv:2106.12814.

[AT24b] C. Anné and J. Takahashi, (Main Talk)

Small eigenvalues of the Hodge-Laplacian with sectional curvature bounded

below, (202b), in preparation.
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Introduction
Notations
(Mm, g) : m dim. connected, oriented closed Riemann manifold, (m ≥ 2)

∆ = dδ + δd : Hodge-Laplacian acting on p-forms

（δ is the L2-adjoint of d）
λ
(p)
k (M, g) : k-th positive eigenvalue of ∆ (counted with multiplicity)

The spectrum of ∆ consists of non-negative eigenvalues with finite

multiplicity:

0 = · · · = 0︸ ︷︷ ︸
bp(M)

< λ
(p)
1 (M, g) ≤ λ

(p)
2 (M, g) ≤ · · · ≤ λ

(p)
k (M, g) ≤ · · · −→ ∞.

bp(M) = dimKer(∆) : p-th Betti number (Hodge-Kodaira-de Rham)

• The multiplicity of the eigenvalue 0 does not depend on a metric g.

(topological invariant)
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Basic Properties

(1) Hodge duality: For all p = 0, 1, . . . ,m, we have

λ
(m−p)
k (M, g) = λ

(p)
k (M, g), (by ∆∗ = ∗∆).

(2) scaling change of metrics: For a positive constant a > 0, we have

λ
(p)
k (M,ag) = a−1 λ

(p)
k (M, g) (for any p, k).

(3) normalization of the volume: For an m-dim. Riemannian manifold

(M, g), we have

g := vol(M, g)−
2
m g =⇒ vol(M, g) ≡ 1.

Therefore, (2) + (3) imply

λ
(p)
k (M, g) = vol(M, g)

2
m λ

(p)
k (M, g).
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Problem on estimates for eigenvalues

Problem 1 (estimates for eigenvalues)

Estimate λ
(p)
k (M, g) from above and below, in terms of the geometrical

data of (M, g).

Namely, find optimal constants C1(M, g, p, k), C2(M, g, p, k) satisfying

that

0 < C1(M, g, p, k) ≤ λ
(p)
k (M, g) ≤ C2(M, g, p, k).

• case p = 0 (p = m);

Ci(M, g, 0, k) = Ci(m, diam, inf Ric, k). i = 1, 2.

diam = diameter, inf Ric = infimum of the Ricci curvature.

(by Cheeger, Cheng, Gallot, Li-Yau, Gromov, et al. … well-known)

• cases 1 ≤ p ≤ m− 1;

still unknown (important problem) ← very difficult
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Small eigenvalues
In the case of 1 ≤ p ≤ m− 1, the estimate for p = 0 does not hold in

general.

Example 2 (Small eigenvalues)

∃ {(Mm, gi)}∞i=1 : a sequence of m-dim. closed Riem. mfds with

diam(M, gi) ≤ D, Ric(M,gi) ≥ −(m− 1)K2

(D,K are indep. of i) such that

λ
(p)
k (M, gi) −→ 0 (i → ∞).

These are called small eigenvalues.

• These examples are given by collapsing of Riemannian manifolds.

• In our study, under a fixed manifold M , we consider metrics gi.
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Hopf S1-bundle (Colbois-Courtois [CC90])

π : (S2n+1, g)
S1−→ (CPn, h) : the Hopf S1-bundle

(considered as the Riemannian submersion).

For ε > 0, the collapsing metrics gε on S2n+1 are defined as

gε := gH ⊕ ε2 gV ,

where gH and gV are the horizontal and the vertical parts of g, resp.

Then,
diam(S2n+1, gε) ≤ D, |K(S2n+1,gε)| ≤ K.

As ε → 0, we have for q = 0, 1, . . . n,

λ
(2q)
1 (S2n+1, gε) −→ 0 (= λ

(2q)
0 (CPn, h)),

π∗(ωq) −→ ωq

where ωq = ω ∧ · · · ∧ ω︸ ︷︷ ︸
q times

for the Kähler form ω on (CPn, h).

The case of odd degrees follows form the Hodge duality:

λ
(2q+1)
1 = λ

(2(n−q))
1 . □
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Problems on Small eigenvalues

Problem 3 (Small eigenvalues)

When does there exist small eigenvalues ? How many small eigenvalues ?

Then, in what situations are Riemannian manifolds ?

For now, we want to construct many kinds of examples of families of

closed Riemannian manifolds with small eigenvalues.
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Small eigenvalues on m-sphere Sm

Theorem 4 (Anné and T. (2024) [AT24a])

Fix the dim. m ≥ 2 and the degree p with 1 ≤ p ≤ m− 1.

∃ {gp,L}L≥1 : 1-parameter family of Riem. metrics on m-sphere Sm with

vol(Sm, gp,L) ≡ 1, K(Sm,gp,L)
≥ 0

s.t. for all k = 1, 2, . . . ,

λ
(p)
k (Sm, gp,L) −→ 0 (L −→ ∞).

[Remark]

• the diameter diam(M, gp,L) −→ ∞ (L −→ ∞).
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Construction of the metrics in Thm. 4 (outline)
(1) decompose Sm like a p-dim. surgery:

Sm =
(
Sp × Dm−p

L

)
∪Sp×Sm−p−1

(
Dp+1 × Sm−p−1

)
.

Sm =

Dm−p
L

⋃
Sp×Sm−p−1

Dp+1

(2) take Riemannian metrics gp,L on Dm−p
L such that Dm−p

L looks like a

long cylinder, as L −→ ∞ (see the figure below).

The sectional curvature is non-negative: K ≥ 0.

Dm−p
L

0 2 L+ 2
L
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(3) normalize the volume of Sm: gp,L := vol(Sm, g)−
2
m gp,L.

Note that the sectional curvature is still non-negative. □

We also give lower bounds.

Theorem 5 (large eigenvalues)

In particular, for q ̸= 1, p, p+ 1,m− p− 1,m− p,m− 1,m, we have

λ
(q)
1 (Sm, gp,L) ≥ C

(
AL+B

) 2
m −→ ∞ (L −→ ∞),

where A,B,C > 0 are some constants indep. of L.
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The case of general manifolds
We glue this sphere obtained by Theorem 4 to a general manifold M , by

using a gluing theorem for the eigenvalues [AT12].

But, the sectional curvature on the gluing part diverge to ±∞

Sm (M, ε2 g)

Theorem 6 (Anné and T. [AT24a])

Mm : m ≥ 2 dim. conn. ori. closed manifold.

p : fix a degree of forms with 1 ≤ p ≤ m− 1.

For any ε > 0 and any k ≥ 1, there exists a Riem. metric gp,ε on M with

volume 1 such that

λ
(p)
k (M, gp,ε) < ε .
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Next Problem

Problem 7

For a general manifold M , can we impose any curvature constraints ?

In particular, can we obtain the same results in the case of KM ≥ −K2 ?

[Remark]

• M has a topological obstruction to have a non-negative curvature.

(e.g. Bochner thm.: Ric ≥ 0 =⇒ b1(M) ≤ b1(Tm) = m)

Therefore, we consider the case of sectional curvature KM ≥ −K2.

This case has no topological obstruction.

[Answer] …Yes (Main Theorem))
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Main Theorem A

Theorem 8 (Main Theorem A (Anné and T. [2024b]))

Mm : conn. oriented, closed m-manifold (m ≥ 2)

p (0 ≤ p ≤ m) : the degree of forms.

k ≥ 1 : the number of the eigenvalues.

For any ε > 0, there exist Riem. metrics gε,p,k on M with

vol(M, gε,p,k) ≡ 1, K(M,gε,p,k)
≥ −K2

such that

λ
(p)
k (M, gε,p,k) −→ 0 (ε −→ 0).

[Remarks]

• gε,k,p depends also on the degree p and the number k.

• diam(M, gε,p,k) −→ ∞ (ε −→ 0).

Junya Takahashi (Tôhoku Univ.) Small eigenvalues of the Hodge-Laplacian 21 February 2024 15 / 29



default

Main Theorem B (uniformness for the degree)

We can choose Riem. metrics which do not depend on the degree p of

forms.

Theorem 9 (Main Theorem B (Anné and T. [2024b]))

Mm : m-dim. conn. oriented closed manifold (m ≥ 2)

k ≥ 1 : the number of the eigenvalues.

For any ε > 0, there exist Riem. metrics gε,k on M with

vol(M, gε,k) ≡ 1, K(M,gε,k)
≥ −K2

such that for all p = 0, 1, . . . ,m

λ
(p)
k (M, gε,k) −→ 0 (ε −→ 0).
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Outline of the proof of Main Thm. A
• We may assume 0 ≤ p ≤ m− 2 (by Hodge duality).

(1) Take an embedding Sp ↪→ M whose normal bundle is trivial:

Tub(Sp) ∼= Sp × Dm−p.

gp,M : any Riemannian metric on M which is product on Tub(Sp).

Sp

Dm−p

Tub(Sp)
M

(2) We decompose M into two components: M = H1 ∪H2.

M = H1 ∪H2 =
(
Sp × Dm−p

)
∪
(
M \ (Sp × Dm−p)

)
.
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(3) We glue the connected sums of the k copies of Cε in series to the

disk Dm−p as follows:

(3− 1) The hyperbolic dumbbell Cε (Boulanger-Courtois [BC22])

0 L = − log ε−L

ε

C2C1

The central part of Cε is the hyperbolic cylinder, whose Riemannian metric

gε is expressed as

gε := dr2 ⊕ ε2 cosh2(r)gSm−p−1 (−L ≤ r ≤ L = − log ε).

The metric gε on the two-sides bumps C1, C2(∼= Sm−p) does not

depend on ε.
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Properties (⋆)

1 the sectional curvature : Kgε ≥ −1.

2 the volume : 0 < V1 ≤ vol(Cε, gε) ≤ V2 for V1, V2 > 0 indep. of ε.

(3− 2) the connected sums of the k copies of the hyperbolic

dumbbells in series: Ck,ε =
k
]Cε

Ck,ε =
k
]Cε with the metric gCk,ε

: the connected sums of the k copies of

the hyperbolic dumbbells Cε in series (below).

We glue Ck,ε to Dm−p of Tub(Sp).

0 L−L

ε
C2C1 C3 Ck

Dm−p

Ck,ε also satisfies the Properties (?).
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(4) We define Riem. metrics gε,p,k on M as:

gε,p,k :=

{
gSp ⊕ gCk,ε

on H1 = Tub(Sp) = Sp × Dm−p,

gp,M on H2 = M \H1.

(5) Finally, normalize the volume to be 1:

gε,p,k := vol(M, gε,p,k)
− 2

m gε,p,k on M.

Since 0 < V1 ≤ vol(Cε, gε) ≤ V2, the following holds:

1 Kgε,p,k ≥ −K2.

2 vol(M, gε,p,k) ≡ 1.
□
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Small eigenvalues

Lemma 10 (Small eigenvalues)

For all p = 0, 1, 2, . . . ,m− 2 and k ≥ 1, we have

λ
(p)
k (M, gε,p,k) −→ 0 (ε −→ 0)

[Note]

• In the case of p = m− 1,m, by the Hodge duality, we can deduce to the

case of p = 1, 0.

=⇒ Lemma 10，Main Theorem A are ture for p = m− 1,m.
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Outline of the proof of Lemma 10

• To use the min-max principle, we construct k test p-forms.

χi(r) : the linear cut-off function as in the following figure.

supp(χi) ∩ supp(χj) = ∅ (i ̸= j), disjoint.

0 L−L

ε
C2C1 C3 Ck

Dm−p

χ1

−L 0

χ2

L

χ3

χ1 :=


1 on C1,

− r

L
for − L ≤ r ≤ 0,

0 for 0 ≤ r.
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Then, we take the test p-forms ϕi as follows:

ϕi :=

{
χi(r) vSp on H1 = Sp × Dm−p,

0 on H2 = M \H1,

where vSp is the volume form of Sp.

Then, ϕi is co-closed form, from the min-max principle, we obtain our

desired estimate:

λ
(p)
k (M, gε,p,k) ≤ max

i=1,...,k+bp(M)

∥dϕi ∥2L2(M,gε,p,k)

∥ϕi ∥2L2(M,gε,p,k)

≤ · · · · · ·

≤ C

| log ε |
−→ 0 (ε −→ 0).

□
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Outline of the proof of Main Thm. B
• uniformness for the degree p

Riemannian metrics gε,p,k in Main Thm. A depend on the degree p.

We take disjoint embedded spheres S0, S1, . . . , Sm−2, and apply the way of

the construction in Main Thm A to each tubular neighborhood.

=⇒ Riemannian metrics gε,k on M do NOT depend on all the degree

p = 0, 1, 2, . . . ,m.

We obtain Main Thm. B. □

S0

S1

S2

S3
Sp

M
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Further Studies and Related Topics

Remarks
In Main Theorems A, B, the diameters diverge:

diam(M, gε,p,k) −→ ∞ (ε −→ 0).

Problem 11

How about the case of diam(M, g) < ∞ in addition ?

This is a non-collapsing case.

• A non-collapsing case means that the dimension of the limit space is not

decreasing (is unchanged).

In this case, J. Lott posed the following conjecture in 2004, [Lo04].
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Lott conjecture

Conjecture 12 (Lott conjecture (2004, [Lo04]))

(Mm, g) : m-dim. conn. oriented closed Riem. manifold,

If (M, g) satisfies

K(M,g) ≥ −K, diam(M, g) ≤ D, vol(M, g) ≥ v > 0 (])

for some constants K,D, v > 0 (non-collapsing case)，then there would

exist a uniform constant C = C(m,K,D, v) > 0 such that

λ
(p)
1 (M, g) ≥ C(m,K,D, v) > 0.

(In particular, C would be independent of the degree p.).
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Remarks and Comments

• It would be considered that this conjecture holds true.

• If the Lipschitz stability theorem stated by G. Perelman (unpublished)

would hold true, then the Lott conjecture also holds true.

The Lipschitz stability theorem states that:

(Mm
1 , g1) ∼

dGH

(Mm
2 , g2) with (]) =⇒ (M1, g1) ∼=

bi-Lipschitz
(M2, g2).

(This theorem is a statement for Alexandrov spaces.)

The Lipschitzness ensures a control of the norm of all the 1st derivatives.

• The case of Ric(M,g) ≥ −K, instead of K(M,g) ≥ −K.

… It would be considered that the same statement does NOT hold.

(The estimate for the Betti numbers by Gromov does not hold.)
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