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Abstract. We study the ®rst positive eigenvalue l
� p�
1 of the Laplacian on p-forms

for oriented closed Riemannian manifolds. It is known that the inequality l
�1�
1 U l

�0�
1

holds in general. In the present paper, a Riemannian manifold is said to have the gap

if the strict inequality l
�1�
1 < l

�0�
1 holds. We show that any oriented closed manifold M

with the ®rst Betti number b1�M� � 0 whose dimension is bigger than two, admits two

Riemannian metrics, the one with the gap and the other without the gap.

1. Introduction.

Let �M; g� be an m-dimensional connected oriented closed Riemannian

manifold. We denote by l
�p�
k �M; g� the k-th positive eigenvalue of the Laplacian

on the spaces of p-forms. We compare l
�1�
1 �M; g� with l

�0�
1 �M; g�. In gerenal,

the commutativity of the Laplacian D � dd� dd and the exterior di¨erential

operator d implies the inequality l
�1�
1 �M; g�U l

�0�
1 �M; g�. We are interested in a

Riemannian manifold �M; g� satisfying l
�1�
1 �M; g� < l

�0�
1 �M; g�. For convenience,

when a metric g satis®es l
�1�
1 �M; g� < l

�0�
1 �M; g� (resp. l

�1�
1 �M; g� � l

�0�
1 �M; g�), we

call it a metric with (resp. without) the gap.

First of all, we study which closed manifolds M admit metrics g with the

gaps. While no 2-dimensional oriented closed manifold admits such a metric (cf.

Proposition 2.4), we obtain the following two theorems.

Theorem 1.1. For an m-dimensional connected oriented closed manifold

M �mV 3�, there exists a metric g on M without the gap, namely, we have

l
�1�
1 �M; g� � l

�0�
1 �M; g�:

Theorem 1.2. For an m-dimensional connected oriented closed manifold

M �mV 3� with the ®rst Betti number b1�M� � 0, there exists a metric g on M

with the gap, namely, we have

l
�1�
1 �M; g� < l

�0�
1 �M; g�:
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We know some examples of closed manifolds with b1�M�0 0 which admit

metrics with the gaps, e.g., the m-dimensional tori (mV 3) (cf. Theorem 0.2 in

[CC-90]). We conjecture that our Theorem 1.2 is valid for any m-dimensional

closed manifold (mV 3).

Next, we study geometric properties of Riemannian manifolds whose metrics

have the gaps. In the case of Einstein manifolds with positive Ricci curvature,

we obtain the following.

Theorem 1.3. Let �M; g� be a connected oriented closed Einstein manifold

with positive Ricci curvature, and Isom�M; g� the isometry group of �M; g�.

Suppose that �M; g� has the gap.

(i) If dim Isom�M; g� � 0, then the identity map is strongly stable as a

harmonic map.

(ii) If dim Isom�M; g�V 1, then the identity map is weakly stable as a

harmonic map.

The structure of the present paper is as follows: In Section 2, we give a

condition for a manifold to admit a metric with the gap, using the Hodge

decomposition theorem. In Section 3, we prove Theorem 1.1 by constructing a

one-parameter family of metrics including metrics without the gap. In Section

4, we prove Theorem 1.2. We ®rst prove it in the case of the canonical spheres.

For a general case, we do it by gluing this sphere to a given manifold. In

Section 5, we prove Theorem 1.3. Furthermore, for all simply connected

compact simple Lie groups and simply connected irreducible Riemannian

symmetric spaces of compact type we completely determine whether or not their

canonical metrics are metrics with the gaps.
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2. The decompositions of the eigenspaces.

Let �M; g� be an m-dimensional connected oriented closed Riemannian

manifold. The Hodge decomposition theorem says

Ap�M� � H
p�M; g�l dApÿ1�M�l dAp�1�M�;

where Ap�M� is the space of smooth p-forms on M and H
p�M; g� the space of
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harmonic p-forms on �M; g�. Since D commutes d (resp. d), the Laplacian

leaves the space of exact forms dApÿ1�M� (resp. the space of co-exact forms

dAp�1�M�) invariant. So we denote by l
0�p�
k �M; g� (resp. l

00�p�
k �M; g�) the k-th

eigenvalue of the Laplacian acting on dApÿ1�M� (resp. dAp�1�M�). For l > 0,

let us set E�p��l� � fo A Ap�M� jDo � log, E 0�p��l� � E�p��l�V dApÿ1�M�, and
E 00�p��l� � E�p��l�V dAp�1�M�. Then we have E�p��l� � E 0�p��l�lE 00�p��l�.
The operators �1=

���

l
p

�d and �1=
���

l
p

�d induce the isomorphisms between the

eigenspaces: E 0�p��l�FE 00�pÿ1��l�. Especially, we obtain

l
0�p�
1 �M; g� � l

00�pÿ1�
1 �M; g�: �2:1�

From l
�0�
1 � l

00�0�
1 and (2.1) for p � 1, we have the following.

Proposition 2.1. For every connected oriended closed Riemannian manifold

�M; g�, we have l
�1�
1 �M; g� � minfl�0�1 �M; g�; l 00�1�

1 �M; g�g.

Corollary 2.2. A metric g has the gap if and only if l
00�1�
1 �M; g� <

l
�0�
1 �M; g�.

Remark 2.3. For general p-forms �pV 2�, the opposite inequality

l
�p�
1 �M; g� > l

�pÿ1�
1 �M; g� may hold. The reason why the case of 1-forms is an

exception is that there exists no exact 0-form (except for the dual case p � m�.

Moreover since the Hodge star operator commutes the Laplacian, all the

eigenvalues on p-forms and �mÿ p�-forms coincide (the Hodge duality).

For any oriented 2-dimensional manifold �M; g�, we have the duality

l
�0�
1 �M; g� � l

�2�
1 �M; g� and l

00�1�
1 �M; g� � l

0�2�
1 �M; g� � l

�2�
1 �M; g� by (2.1) for

p � 2. Hence, from Proposition 2.1, we have the following.

Proposition 2.4. For any 2-dimensional connected oriented closed Rieman-

nian manifold �M; g�, we have l
�1�
1 �M; g� � l

�0�
1 �M; g�.

3. Proof of Theorem 1.1.

3.1 The proof using the theorem of AnneÂ and Colbois.

Let M be an m-dimensional connected oriented closed manifold (mV 3).

We construct a one-parameter family of metrics on M as follows: We remove

an m-disk D1 from the sphere Sm and glue Sm ÿD1 to a cylinder C � �0; 1� �
Smÿ1 by identifying q�Sm ÿD1� with f0g � Smÿ1. Similarly, we remove an m-

disk D2 from M and glue M ÿD2 to �Sm ÿD1�UC by identifying q�M ÿD2�
with f1g � Smÿ1. Thus, we obtain the new manifold, denoted by M, which is

di¨eomorphic to M and want to construct a family of metrics on M instead of

M. Take a metric g1 (resp. g2) on Sm (resp. M ) which is ¯at in a neighborhood

of the disk D1 (resp. D2). We de®ne a one-parameter family of continuous
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metrics ge on M such that

ge �

g1 on Sm ÿD1,

dr2 l e2h on �0; 1� � Smÿ1,

g2 on M ÿD2,

8

<

:

where r is the canonical coordinate of �0; 1� and h is the canonical metric of the

sphere Smÿ1�1� (see Figure 1).

Although ge is not smooth, AnneÂ and Colbois [AC-95] de®ned the Lapla-

cian Dge induced from �M; ge� and studied its eigenvalues. We denote by

l
�p�
1 �M; ge�U l

� p�
2 �M; ge�U � � � the eigenvalues of the Laplacian on p-forms on

�M; ge� and by m
�p�
1 U m

�p�
2 U � � � the union of the eigenvalues of the Laplacians

on p-forms on Sm�1�, �M; g� and �0; 1�. Here, the eigenvalues for �0; 1� should be

understood with the relative boundary condition. The following theorem is a

special case of Theorem B in [AC-95].

Theorem 3.1. For all k � 1; 2; . . . ; and p � 0; 1, we have

lim
e!0

l
�p�
k �M; ge� � m

�p�
k :

Now we go to the proof of Theorem 1.1.

First, we consider the case of functions. It is easy to see that l
�0�
1 �M; ge� � 0

and l
�0�
2 �M; ge��l

�0�
1 �M; ge�>0. Since l

�0�
1 �M; g��0, l

�0�
2 �M; g�>0, l

�0�
1 �Sm�1���

0, l
�0�
2 �Sm�1��>0, and l

�0�
1 ��0; 1��>0, we have

0 � m
�0�
1 � m

�0�
2 < m

�0�
3 U � � � :

Hence, by Theorem 3.1, we have

l
�0�
1 �M; ge� ! 0; l

�0�
2 �M; ge� ! m

�0�
3 > 0 �3:1�

as e ! 0.

Similarly, we also consider the case of 1-forms. From the de Rham-Hodge

theory, it follows that l
�1�
1 �M; ge� � � � � � l

�1�
b1
�M; ge� � 0 and l

�1�
b1�1�M; ge� �

l
�1�
1 �M; ge� > 0, where b1 is the ®rst Betti number of MGM. Since

l
�1�
1 �M; g� � � � � � l

�1�
b1
�M; g� � 0, l

�1�
b1�1�M; g� > 0, l

�1�
1 ��0; 1�� � 0, l

�1�
2 ��0; 1�� > 0,

Figure 1: �M; ge�
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and l
�1�
1 �Sm�1�� > 0, we have

0 � m
�1�
1 � � � � � m

�1�
b1

� m
�1�
b1�1 < m

�1�
b1�2 U � � � :

Hence, by Theorem 3.1, we have

l
�1�
1 �M; ge� ! 0; l

�1�
2 �M; ge� ! m

�1�
b1�2 > 0; �3:2�

as e ! 0. Since l
0�1�
1 �M; ge� � l

�0�
1 �M; ge� ! 0 as e ! 0 and (3.2), we have

l
00�1�
1 �M; ge� ! m

�1�
b1�l > 0 �some lV 2�; �3:3�

as e ! 0.

Therefore, from (3.1) and (3.3), there is some e0 > 0 such that

l
�0�
1 �M; ge0� < l

00�1�
1 �M; ge0�: �3:4�

Since the eigenvalues of the Laplacian on the space of p-forms depend con-

tinuously on metrics with respect to the C0-topology (cf. [BU-83], and [MG-93],

p. 729), the strict inequality (3.4) still holds for a smooth metric ~ge0 which is close

to ge0 . Hence, by Proposition 2.1, we have l
�0�
1 �M; ~ge0� � l

�1�
1 �M; ~ge0�. r

3.2. The proof using the theorem of Gentile and Pagliara.

Here we give an alternative proof of Theorem 1.1. We consider the family

of metrics according to [GP-95]. We use the notation as in Subsection 3.1.

Take a metric g on M such that g � dr2 l h on C � �0; 1� � Smÿ1. A one-

parameter family of metrics gt �t > 0� is de®ned on M as

gt :�
g on M ÿW,

t2dr2 l h on W,

�

where W :� �1=3; 2=3� � Smÿ1 in C. Note that gt is smooth. Finally, we set

gt :� vol�M; gt�
ÿ2=m

gt

so that the volume is one. Then, as t ! y, we see that l
�0�
1 �M; gt� ! 0 by [Tk-

98] and that l
00�1�
1 �M; gt� � l

0�2�
1 �M; gt� ! y by [GP-95]. Hence, by Proposition

2.1, for a su½ciently large t0 > 0, a metric gt0 has no gap. r

4. Proof of Theorem 1.2.

We ®rst construct a metric with the gap on the sphere. Note that the

canonical metric on the sphere has no gap (cf. Theorem 5.7). Throughout this

section, we use the notation as in Subsection 3.1.

Lemma 4.1. The sphere Sm �mV 3� admits a metric with the gap.
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Proof. First, we discuss the case of the odd dimensional sphere

S2n�1�nV 1�. Let gt be the Berger metric on S2n�1, that is,

gt � �t2 ÿ 1�hp h� g �t > 0�;

where hp h is the symmetric product of the dual 1-form h of a unit Killing

vector ®eld with respect to the canonical metric g. Tanno (cf. [Tn-79], [Tn-83])

veri®ed that

l
�p�
1 �S2n�1; gt� !

4�n� 1� �p � 0�,

0 �p � 1�,

�

�4:1�

as t ! 0. Hence, if t is su½ciently small, gt is a metric with the gap.

Next, we discuss the case of the even dimensional sphere M � S2n�nV 2�.

Then M is di¨eomorphic to S2n. So we may construct a metric with the gap on

M. We de®ne a one-parameter family of metrics ht on M such that

ht �
a2dr2 l bgt on W � �1=3; 2=3� � S2nÿ1,

dr2 l bgt on C ÿW,

�

where gt is the Berger metric on S2nÿ1 and a and b are certain positive constants

to be speci®ed later. Note that ht is smooth. Moreover, we may assume that ht
is invariant under the re¯ection T of M with respect to f1=2g � S2nÿ1. For a

su½ciently small e > 0, we can take a sequence of smooth functions fFe; ig
y

i�1 on

M such that for every i � 1; 2; . . . ; eUFe; i U 1 and

Fe; i �

1 on W �
1

3
;
2

3

� �

� S2nÿ1,

e on M ÿ
1

3
ÿ si;

2

3
� si

� �

� S2nÿ1,

8

>

>

>

<

>

>

>

:

where fsig
y

i�1 is a sequence of positive numbers satisfying that si ! 0 as i ! y.

Furthermore, we may also assume that Fe; i depends only on r on C and that Fe; i

is invariant under T. Then, we can de®ne a family of metrics on M by

he; i; t :� Fe; iht:

Now, we estimate l
�1�
1 �M; he; i;t� from above such as (4.3). Let ot be the ®rst

eigen 1-form on �S2nÿ1; gt�. Since gt is a metric with the gap for a su½ciently

small t > 0 by (4.1), ot is co-exact. We set

~ot �
jot on C � �0; 1� � S2nÿ1,

0 on M ÿ C,

�
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where j is a smooth cut-o¨ function on M depending only on r such that

j �
1 on W,

0 on M ÿ C,

�

and that j is invariant under T. Since b1�M� � b1�S
2n� � 0, there is no non-

trivial harmonic 1-form on �M; he; i; t�. Hence, by using the min-max principle,

we obtain

l
�1�
1 �M; he; i; t�U

kd ~otk
2
L2�M;he; i; t�

k ~otk
2
L2�M;he; i; t�

; �4:2�

where we use the fact that ~ot is co-closed. Indeed, from hdFe; i; ~otiht � 0, it

follows that

dhe; i; t� ~ot� � Fÿ1
e; i dht� ~ot� � �1ÿ n�Fÿ2

e; i hdFe; i; ~otiht

� Fÿ1
e; i jb

ÿ1dgtot � 0:

We compute the right-hand side of (4.2). First, the numerator is

kd ~otk
2
L2�M;he; i; t�

� kdotk
2
L2�W;he; i; t�

� kd�jot�k
2
L2�CÿW;he; i; t�

� kdotk
2
L2�W;ht�

� 2kd�jot�k
2
L2��0;1=3��S 2nÿ1;he; i; t�

:

Since ot is a co-exact eigen 1-form on �S2nÿ1; gt�, the ®rst term is

kdotk
2
L2�W;ht�

�
a

3
kdotk

2
L2�S 2nÿ1;bgt�

�
a

3
l
�1�
1 �S2nÿ1; bgt�kotk

2
L2�S 2nÿ1;bgt�

:

The second term is

2kd�jot�k
2
L2��0;1=3��S 2nÿ1;he; i; t�

� 2

�1=3

0

�

S 2nÿ1

F nÿ2
e; i jd�jot�j

2
ht
drdmbgt

U 4

�1=3

0

�

S 2nÿ1

fjdj5otj
2
ht
� jj dotj

2
ht
g drdmbgt

U 4fkj 0k2L2�0;1=3�kotk
2
L2�S 2nÿ1;bgt�

� kjk2L2�0;1=3�kdotk
2
L2�S 2nÿ1;bgt�

g

� 4fkj 0k2L2�0;1=3� � l
�1�
1 �S2nÿ1; bgt�kjk

2
L2�0;1=3�gkotk

2
L2�S 2nÿ1;bgt�

:
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On the other hand, the denominator of the right-hand side of (4.2) is

k ~otk
2
L2�M;he; i; t�

V k ~otk
2
L2�W;he; i; t�

�
a

3
kotk

2
L2�S 2nÿ1;bgt�

:

Hence, substituting the above facts for (4.2), we obtain

l
�1�
1 �M; he; i; t�U 1�

12

a
kjk2L2�0;1=3�

� �

l
�1�
1 �S2nÿ1; bgt� �

12

a
kj 0k2L2�0;1=3�: �4:3�

Since kj 0k2L2�0;1=3� is independent of all the parameters a; b; t; e and i by the

choice of j, we can take two positive numbers a and b such that

12

a
kj 0k2L2�0;1=3� � 4 < min

9p2

a2
;
4n

b

� �

: �4:4�

Moreover, there exists some t0 > 0 such that for all t < t0,

min
9p2

a2
;
4n

b

� �

� n
�0�
1 �W; ht�; �4:5�

where n
�0�
1 �W; ht� is the ®rst eigenvalue on functions on �W; ht� with the Neumann

condition. In fact, by Proposition 4.2 in [Tn-79], there exists some t0 > 0 such

that for all t < t0, l
�0�
1 �S2nÿ1; gt�1 4n. Thus, by using the product formula for

the eigenvalues, we have

n
�0�
1 �W; ht� � min n

�0�
1

1

3
;
2

3

� �

; a2dr2
� �

; l
�0�
1 �S2nÿ1; bgt�

� �

� min
9p2

a2
;
4n

b

� �

:

Since l
�1�
1 �S2nÿ1; bgt� ! 0 as t ! 0, there exists t1 > 0 (0 < t1 < t0) such that

1�
12

a
kjk2L2�0;1=3�

� �

l
�1�
1 �S2nÿ1; bgt1�U

12

a
kj 0k2L2�0;1=3�: �4:6�

Hence, substituting (4.6) for (4.3), we have

l
�1�
1 �M; he; i; t1�U

12

a
kj 0k2L2�0;1=3� � 2 �4:7�

for all e and i.

On the other hand, according to Theorem III.1 in [CV-86] (see also Lemma

2 in [D-94]), there exist a su½ciently small e1 > 0 and a su½ciently large integer i1
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such that

n
�0�
1 �W; ht1� ÿ

12

a
kj 0k2L2�0;1=3� < l

�0�
1 �M; he1; i1; t1�: �4:8�

Therefore, we obtain

l
�0�
1 �M; he1; i1; t1� ÿ l

�1�
1 �M; he1; i1; t1� > n

�0�
1 �W; ht1� ÿ

12

a
kj 0k2L2�0;1=3� � 3

�by �4:7�; �4:8��

>
12

a
kj 0k2L2�0;1=3� > 0

�by �4:4�; �4:5��:

Hence, he1; i1; t1 is a metric with the gap on S2n
GM. r

Proof of Theorem 1.2. Now we give a proof of Theorem 1.2. Let M be

an m-dimensional connected oriented closed manifold (mV 3) with b1�M� � 0.

We construct a metric with the gap on the manifold M in Section 3. By Lemma

4.1, we can take a metric g1 with the gap on Sm. Then A :� l
�0�
1 �Sm; g1�ÿ

l
�1�
1 �Sm; g1� is positive. We consider the disk D1 as the geodesic ball B�x1; r�

with the radius r > 0 centered at x1 A Sm. Set Ur :� Sm ÿ B�x1; r�.

First, from Theorem 2 in [A-87] (see also Lemma 3 in [D-94]), it follows that

lim
r!0

n
�0�
1 �Ur; g1� � l

�0�
1 �Sm; g1�: �4:9�

Furthermore, from p. 193 and (4.2) in [AC-93], it follows that

lim
r!0

~m
�1�
1 �Ur; g1� � l

�1�
1 �Sm; g1�; �4:10�

where ~m
�1�
1 �Ur; g1� is the ®rst positive eigenvalue of the Laplacian on 1-forms on

Ur satisfying the boundary condition (III) in [AC-93], p. 191, i.e. vanishing at

boundary. The spectrum under this boundary condition has no 0-eigenvalue by

[A-89]. By (4.9) and (4.10), there exists an e > 0 such that

l
�0�
1 �Sm; g1� ÿ

1

4
A < n

�0�
1 �Ue; g1�; �4:11�

~m
�1�
1 �Ue; g1� < l

�1�
1 �Sm; g1� �

1

4
A: �4:12�
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Next, by Theorem III.1 in [CV-86] (see also Lemma 2 in [D-94]), there exists

a metric h on M such that

h � g1 on Ue; �4:13�

n
�0�
1 �Ue; g1� ÿ

1

4
A < l

�0�
1 �M; h�: �4:14�

By the inclusion of the Sobolev spaces H 1
0 �L

1T �Ue; g1�HH 1�L1T �M; h� via the

0-extension and the assumption b1�M� � 0, the min-max principle implies

l
�1�
1 �M; h�U ~m

�1�
1 �Ue; g1�: �4:15�

Therefore, we obtain

l
�0�
1 �M; h� ÿ l

�1�
1 �M; h� > n

�0�
1 �Ue; g1� ÿ

1

4
Aÿ ~m

�1�
1 �Ue; g1�

�by �4:14�; �4:15��

> l
�0�
1 �Sm

; g1� ÿ l
�1�
1 �Sm

; g1� ÿ
3

4
A

�by �4:11�; �4:12��

>
1

4
A > 0:

Hence, h is a metric with the gap on M. r

5. Gap and stability of Einstein manifolds.

First of all, let us recall the de®nition of the stability of the identity map of

Riemannian manifolds (see [EL-83], [U-87]). Let �M; g� be a connected oriented

closed Riemannian manifold. Since the identity map id : �M; g� ! �M; g� is a

harmonic map, the Jacobi operator Jid acting on vector ®elds can be de®ned.

Definition 5.1. The identity map is unstable (resp. weakly stable, or

strongly stable) if the ®rst eigenvalue l1�Jid� of Jid is negative (resp. non-negative,

or positive).

From now on, by the duality of vector ®elds and 1-forms with respect to g,

we can regard for Jid to act on the spase of 1-forms. The following lemma

immediately follows.

Lemma 5.2. Let �M; g� be a connected oriented closed Einstein manifold with

Einstein constant a. For any 1-form o, we have Jid�o� � Doÿ 2ao. Hence,

l 0
1�Jid� � l

�0�
1 ÿ 2a and l 00

1 �Jid� � l
00�1�
1 ÿ 2a, where l 0

1�Jid� (resp. l
00
1 �Jid�� is the ®rst
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eigenvalue of the Jacobi operator acting on the space of exact (resp. co-exact)

1-forms.

The following lemma due to Nagano (cf. [N-61]) is very crucial in our

argument.

Lemma 5.3. Let �M; g� be a connected oriented closed Einstein manifold with

positive Einstein constant a. Then l
00�1�
1 �M; g�V 2a. Moreover, the equality holds

if and only if the isometry group Isom�M; g� is not discrete.

Proof. We give a proof which is di¨erent from Nagano's original proof

by using the results in [GM-75] and [TY-80]. From the WeitzenboÈck formula, it

follows that for any 1-form o,

�Do;o�L2 � k`ok2L2 �

�
M

Ric�o];o]� dmg

� k`ok2L2 � akok2L2 : �5:1�

On the other hand, Lemme 6.8 in [GM-75] showed that for any p-form o on M,

j`oj2 V
1

p� 1
jdoj2 �

1

mÿ p� 1
jdoj2: �5:2�

Furthermore, Lemma 2.5 in [TY-80] showed that the equality in (5.2) holds if

and only if o is a conformal Killing. Especially, if o is a co-closed 1-form, this

condition is equivalent to that o is a Killing 1-form.

For a co-exact 1-form o, from (5.1) and (5.2), it follows that

�Do;o�L2 V
1

2
kdok2L2 � akok2L2 :

Considering that kdok2L2 � �Do;o�L2, we have �Do;o�L2 V 2akok2L2 , that is,

l
00�1�
1 �M; g�V 2a.

Finally, the equality holds if and only if �M; g� has a non-trivial Killing

vector ®eld, that is, dim Isom�M; g�V 1. r

Proposition 5.4. Let �M; g� be as in Lemma 5.3.

(i) In the case of dim Isom�M; g� � 0, the metric g has the gap only if

l 0
1�Jid� > 0.

(ii) In the case of dim Isom�M; g�V 1, the metric g has the gap if and only if

l 0
1�Jid� > 0.

Proof. From Lemma 5.3, if dim Isom�M; g� � 0 (resp. dim Isom�M; g�V

1), we have l
00�1�
1 �M; g� > 2a (resp. l

00�1�
1 �M; g� � 2a). Since l 0

1�Jid� � l
�0�
1 ÿ 2a

by Lemma 5.2, we see Proposition 5.4, immediately. r
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Similarly, we have the following proposition.

Proposition 5.5. Let �M; g� be as in Lemma 5.3.

(i) If dim Isom�M; g� � 0, we have l
00
1 �Jid� > 0.

(ii) If dim Isom�M; g�V 1, we have l
00
1 �Jid� � 0.

Since a > 0, there is no non-trivial harmonic 1-form by the Bochner

vanishing theorem. Hence, l1�Jid� � minfl 0
1�Jid�; l

00
1 �Jid�g. Therefore, by using

Propositions 5.4 and 5.5, we can prove Theorem 1.3.

Finally, we determine whether or not the metrics of well-known special

Einstein manifolds have the gaps.

Proposition 5.6. Let G be a simply connected compact simple Lie group

and let g be the bi-invariant metric induced from the Killing form. The metric g

on G has the gap if and only if l1�G; g� > 1=2, i.e. G is one of the following types:

Bl �lV 3�, Dl �lV 4�, El �l � 6; 7; 8�, F4.

Proof. From Lemma 5.3 and a � 1=4, it follows that l
00�1�
1 �G; g� � 1=2.

On the other hand, the ®rst eigenvalues on functions are computed in Table A.1

[U-86]. Hence, by Corollary 2.2, we obtain Proposition 5.6. r

Proposition 5.7. Let �G=K ; g� be a simply connected irreducible Riemannian

symmetric space of compact type with the canonical metric. The metric g on G=K

is one with the gap if and only if l1�G=K ; g� > 1, i.e. G=K is one of the following

types:

AI SU�q� 1�=SO�q� 1� �qV 2�

BI SO�2l � 1�=SO�2l � 1ÿ q� � SO�q� �lV qV 3�

DI SO�2l�=SO�2l ÿ q� � SO�q� �lV qV 3�

EI �E6=Sp�4��
@

EII �E6=SU�2� � SU�6��@

EV �E7=SU�8��@

EVI �E7=SO�12� � SU�2��@

EVIII E8=SO�16�

EIX �E8=E7 � SU�2��@

FI �F4=Sp�3� � SU�2��@

G G2=SU�2� � SU�2�

Here, M@ means the universal covering of M.
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Proof. We can prove this proposition by the same way as Proposition 5.6.

Namely, since a � 1=2, we have l
00�1�
1 �G=K ; g� � 1. On the other hand, we also

know l
�0�
1 �G=K ; g� due to Table A.2 in [U-86]. Here, the ®rst eigenvalue of the

symmetric space of type EIII was dropped in the table but it is 1 because the

symmetric space of type EIII is hermitian. Hence, by Corollary 2.2, we obtain

Proposition 5.7. r
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