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p-SPECTRUM AND COLLAPSING OF CONNECTED SUMS

COLETTE ANNÉ AND JUNYA TAKAHASHI

Abstract. The goal of the present paper is to calculate the limit of the spec-
trum of the Hodge-de Rham operator under the perturbation of collapse of
one part of a connected sum. It takes place in the general problem of blowing
up conical singularities introduced by R. Mazzeo and J. Rowlett.

1. Introduction

It is a common problem in differential geometry to study the limit of the spectrum
of Laplace type operators under singular perturbations of the metrics, especially for
the Hodge-de Rham operator acting on differential forms. The first reason is the
topological meaning of this operator and the fact that by singular perturbations
of the metric, one can change the topology of the manifold. A general framework
is the so-called collapsing, where the injectivity radius goes to zero while diameter
and curvature are bounded. The case of loss of dimension for the limit space has
been deeply studied by John Lott, following that of K. Fukaya [F87]; see especially
[Lo02a, Lo02b] and the references therein. In fact, this situation appears to gener-
alize the adiabatic limit, studied by Mazzeo and Melrose in [MM90], because in the
situation of collapsing with bounded diameter and curvature to a space of lower
dimension, the manifold must fiber on this space.

J. Lott can prove that the operator whose spectrum is the limit, is the Laplacian
of a flat superconnection defined on a certain fiber bundle on the limit space. In
[Lo04], the hypothesis on curvature is weakened by the curvature bounded only
below, and he can give a lower bound for the number of small positive eigenvalues.

And what if there is no hypothesis on the curvature? Such a situation is given,
for instance, by the “collapse” (in general without bound on curvature) of thin
handles started in [AC95] and accomplished in [ACP09].

Here we study the perturbation when one is shrinking one part of a connected
sum, which is explained by Figure 1.

More precisely, if the manifold M of dimension (n+ 1), n ≥ 2, is the connected
sum of M1 and M2 around the common point p0, endowed with Riemannian met-
rics g1, g2, then, for the collapse of one part of the connected sum, we study the
dependence on ε → 0 for the manifold

Mε := (M1 −B(p0, ε)) ∪ ε.(M2 −B(p0, 1)),

where ε.(M2 −B(p0, 1)) means (M2 −B(p0, 1), ε
2g2).
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ε → 0

Figure 1. Collapsing of Mε

To make this construction clear, we can suppose that the two metrics
are flat around the point p0. Then the boundaries of (M1 − B(p0, ε), g1) and
(M2 − B(p0, 1), ε

2g2) are isometric to the sphere ε.Sn and can be identified. One
can then define geometrically Mε as a piece-wise C∞ Riemannian manifold.

This singular perturbation takes place in the general framework of resolution
blowups presented in Mazzeo [Ma06]. In his terminology, Mε is the resolution
blowup of the (singular) space M1 with link Sn and asymptotically conical manifold

M̃2 if M̃2 is the complete manifold obtained by gluing the exterior of a ball in
the Euclidean space to the boundary of M2 −B(p0, 1). In fact, Rowlett studies, in
[Ro06, Ro08], the convergence of the spectrum of a generalized Laplacian on such
a situation of blowup of one isolated conical singularity (Mazzeo presents more
general singularities in [Ma06]). Her result gives the convergence of the spectrum

to that of an operator on M1, but it requires a hypothesis on M̃2.
Our result is less general, applied only to the case of the Hodge-de Rham operator

and in a non-singular case, but it does not require this hypothesis and the limit

spectrum takes care of M̃2; see Theorem C below.
Maybe, the most interesting part of our study is that we introduce new tech-

niques: to solve this kind of problem we have to identify a good elliptic limit
problem. This means, for the M2 part, a good boundary problem on M2−B(p0, 1)
at the limit. It appears that, in contrast with the problem of thin handles in [AC95]
or the connected sum problem studied in [T02] for functions, this boundary prob-
lem is not a kind of local but ‘global’: we have to introduce a condition of the
Atiyah-Patodi-Singer (APS) type, as defined in [APS75].

Indeed, these APS boundary conditions are related to the Fredholm theory on

the complete manifold M̃2, as explained by Carron in [C01]. Details are given
below.

These techniques can be applied to study more singular situations, i.e. for general
links. It will be the subject of a forthcoming work.

1.1. The results. As mentioned above, the manifold M , of dimension n + 1 ≥ 3
(there is no problem in dimension 2), is the connected sum of two Riemannian
manifolds (M1, g1) and (M2, g2) around the common point p0, and we suppose
that the metrics are such that the boundaries of (M1 − B(p0, ε), g1) and (M2 −
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B(p0, 1), ε
2g2) are isometric for all ε small enough. As a consequence, (M1, g1) is

flat in a neighborhood of p0 and ∂(M2 − B(p0, 1)) is the standard sphere. Indeed
one can write g1 = dr2 + r2h(r) in the polar coordinates around p0 ∈ M1 and the
metric h(r) on the sphere converges, as r → 0, to the standard metric. But if the
boundaries of (M1 − B(p0, ε), g1) and (M2 − B(p0, 1), ε

2g2) are isometric for all ε
small enough, then h(r) is constant for r small enough, and the conclusion follows.

One can then define geometrically Mε := (M1 − B(p0, ε)) ∪ ε.(M2 − B(p0, 1))
as the connected sum obtained by the collapse of M2 (the question of the metric
on Mε is discussed below). On such a manifold, the Gauß-Bonnet operator Dε,
Sobolev spaces and also the Hodge-de Rham operator Δε can be defined as follows
(the details are given in [AC95]): on a manifold X = X1 ∪X2, which is the union
of two Riemannian manifolds with isometric boundaries, if D1 and D2 are the
Gauß-Bonnet “d + d∗” operators acting on the differential forms of each part, the
quadratic form

q(ϕ) :=

∫
X1

|D1(ϕ �X1
)|2 dμX1

+

∫
X2

|D2(ϕ �X2
)|2 dμX2

is well-defined and closed on the domain

Dom(q) := {ϕ = (ϕ1, ϕ2) ∈ H1(ΛT ∗X1)×H1(ΛT ∗X2) |ϕ1 �∂X1

L2= ϕ2 �∂X2
},

where the boundary values ϕi �∂Xi
are considered in the sense of the trace opera-

tor, and on this space the total Gauß-Bonnet operator D(ϕ) = (D1(ϕ1), D2(ϕ2))
is defined and selfadjoint. For this definition, we have, in particular, to identify
(ΛT ∗X1) �∂X1

and (ΛT ∗X2) �∂X2
. This can be done by decomposing the forms in

tangential and normal parts (with inner normal). The equality above then means
that the tangential parts are equal and the normal parts are opposite. This defini-
tion generalizes the definition in the smooth case.

The Hodge-de Rham operator (d + d∗)2 of X is then defined as the operator
obtained by the polarization of the quadratic form q. This gives compatibility
conditions between ϕ1 and ϕ2 on the common boundary. We do not give details
on these facts because, as remarked in the next section, it is sufficient to work with
smooth metrics on M.

The multiplicity of 0 in the spectrum of Δε is given by the cohomology. It is then
independent of ε and can be related to the cohomology of each part by the Mayer-
Vietoris argument. The point is to study the convergence of the other eigenvalues,
the so-called positive spectrum, as ε → 0. The second author has shown in [T03,
Theorem 4.4, p. 21] a result of boundedness.

Proposition A ([T03]). The superior limit of the k-th positive eigenvalue on p-
forms of Mε is bounded, as ε → 0, by the k-th positive eigenvalue on p-forms of
M1.

Here we show that it is also true for the lower bound. Let ϕε be a family of
eigenforms on Mε of degree p for the Hodge-de Rham operator,

Δεϕε = λp(Mε)ϕε,

and take a subsequence εm, m ∈ N such that the following limit exists:

lim
m→∞

λp(Mεm) = λp < +∞.
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Theorem B. If λp(Mεm) �= 0, then λp �= 0 and λp belongs to the spectrum of the
Hodge-de Rham operator acting on the p-forms of (M1, g1).

The first part is a consequence of the application of the so-called McGowan’s
lemma; indeed Mε has no small eigenvalues as is shown in Proposition 1 below.
To prove the convergent part of Theorem B, we shall decompose the eigenforms
using the good control of the APS-boundary term. More precisely, there exist an
elliptic extension D2 of the Gauß-Bonnet operator D2 on M2(1) = M2 − B(p0, 1)
and a family ψεm bounded in H1(M1)×Dom(D2) such that ‖ϕεm − ψεm‖ → 0, as
m → ∞.

This extension is defined by global boundary conditions, the conditions of APS
type, in relation to the works of Carron about operators non-parabolic at infinity
developed in [C01]; see Proposition 5.

We can apply this result for lim infε→0 λ
p(Mε), and if we make this construction

for an orthonormal family of the first k eigenforms, we obtain, with the help of
Proposition A, our main theorem.

Theorem C. Let Mε = (M1−B(p0, ε))∪ε.(M2−B(p0, 1)) be the connected sum of
the two Riemannian manifolds M1 and ε.M2 of dimension n+1. For p ∈ {1, . . . , n},
let 0 < λp

1(M1) ≤ λp
2(M1), . . . be the positive spectrum of the Hodge-de Rham

operator on p-forms of M1 and let 0 < λp
1(Mε) ≤ λp

2(Mε), . . . be the positive
spectrum of the Hodge-de Rham operator on p-forms of Mε. Then, for all k ≥ 1,
we obtain

lim
ε→0

λp
k(Mε) = λp

k(M1).

Moreover, the multiplicity of 0 is given by the cohomology and

Hp(Mε;R) ∼= Hp(M1;R)⊕Hp(M2;R).

Remark 1.A. The result of convergence of the positive spectrum is also true for
p = 0 and has been shown in [T02]. Naturally H0(Mε;R) ∼= H0(M1;R) = R. By
the Hodge duality this also solves the case p = n+ 1.

1.2. Applications. Results on spectral convergence in singular situations can be
used to give examples or counterexamples concerning possible links between spectral
and geometric properties. For instance, Colbois and El Soufi have introduced in
[CE03] the notion of conformal spectrum as the supremum, for each integer k, of
the value of the k-th eigenvalue on a conformal class of metrics with fixed volume.
Using the result of [T02], they could show that the conformal spectrum of a compact
manifold is always bounded from below by that of the standard sphere of the same
dimension.

In the same way, applying Theorem C to the case M1 = Sn+1 and M2 = M, we
obtain

Corollary D. Let (M, g) be a compact Riemannian manifold of dimension m =
n + 1, for any degree p, any integer N ≥ 1 and any ε > 0. There exists on M
a metric g conformal to g such that the first N positive eigenvalues on p-forms
are ε-close to those of the standard sphere with the same dimension and the same
volume as (M, g).
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Remark 1.B. For the completion of the panorama on this subject, let us recall
that Jammes has shown, in [J07], that in dimension m ≥ 4 the infimum of the
p-spectrum in a conformal class with fixed volume is 0 for 2 ≤ p ≤ m − 2 and
p �= m

2 , but has a positive lower bound for p = m
2 .

Next, we consider the blowup of a closed complex surface M of real dimension

4. If we blowup M at one point p ∈ M , then the resulting manifold M̂ is also a

compact complex surface which is diffeomorphic to M�CP2, that is, the connected

sum of M and CP
2. Here, CP

2 means the reversed orientation of the complex

projective space CP
2 . Note that M̂ is not biholomorphic to M�CP2.

We study the spectrum of the Hodge-de Rham operator on these manifolds.
Take any Riemannian metric g1 on M which is flat around at point p. Then, from

Theorem C, we can construct a family of C∞ metrics gε on M̂ ∼= M�CP2 such

that the spectrum of the blowup manifold (M̂, gε) is as close as that of the original

manifold (M, g1). In particular, all the positive spectrum of (M̂, gε) converge to
those of (M, g1), as ε → 0. This is one of the expressions of the blow-down from

(M̂, gε) to (M, g1). Indeed, the collapsing part CP2 containing an exceptional (−1)-

curve CP
1 shrinks to a point.

Another example is the prescription of the spectrum. This question was intro-
duced by Colin de Verdière in [CdV86, CdV87] where he shows that he can impose
any finite part of the spectrum of the Laplace-Beltrami operator on certain mani-
folds. To this goal, he introduced a very powerful technique of transversality and
showed that this hypothesis is satisfied on certain graphs and on certain mani-
folds [CdV88]. The other necessary argument is a theorem of convergence. The
solution of the problem of prescription, with limitation concerning multiplicity, has
been given by Guerini in [G04] for the Hodge-de Rham operator, and Jammes has
proven a result of prescription, without multiplicity, in a conformal class of the
metric in [J08], for certain degrees of the differential forms, that is compatible with
the restricted result mentioned above. In this context, our result gives, for example,

Corollary E. Let g0 be a metric on the sphere of dimension m. If g0 satisfies the
Strong Arnol’d Hypothesis by the terminology of [CdV86], for the eigenvalue λ �= 0
on differential forms of degree p on the sphere, then for any closed manifold M,
there exists a metric such that λ belongs to the spectrum of the Hodge-de Rham
operator on p-forms with the same multiplicity.

Indeed, we take a metric g2 on M , and for any metric g1 close to g0, the positive
spectrum of Mε = Sm#ε.M converges, as ε → 0 to the spectrum of Sm. Then, the
Strong Arnol’d Hypothesis assures that the map which associates to g1 the spectral
quadratic form relative to a small interval I around λ also has, for ε small enough,
the matrix λ · Id in its image.

Let us recall what we mean by spectral quadratic form. The linear space spanned
by eigenforms associated with eigenvalues in the interval I is finite dimensional, and
the Hodge-de Rham operator restricted to this linear space defines a quadratic form.
To consider the map which associates, for each metric, this quadratic form, we must
fix the space where it leaves this quadratic form. This is done by the construction
of small isometries between the different eigenspaces when the metric varies. The
existence of such isometries is a consequence of the convergence theorem; the details
of this construction can be found in [CdV88].
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This result could be used to prescribe high multiplicity for the spectrum of the
Hodge-de Rham operator. Recall that Jammes obtained partial results on this
subject in [J11]. His work is based on a convergence theorem (Theorem 2.8) where
the limit is the Hodge-de Rham operator with absolute boundary condition on a
domain. He also uses the fact that the Strong Arnol’d Hypothesis is satisfied on
spheres of dimension 2, as proved in [CdV88]. It would be interesting to obtain such
a result on spheres of larger dimension; the result of [CdV88] uses the conformal
invariance specific to this dimension.

We now proceed to prove the theorems. Let us first describe the metrics precisely.

2. Choice of the metric

From now on, we denote

M2(1) := M2 −B(p0, 1).

It is supposed here that the ball B(p0, 1) can really be embedded in the manifold
M2. This can always be satisfied by a scaling of the metric g2 on M2.

Recall that Dodziuk has proven in [D82, Prop. 3.3] that if two metrics g, g on
the same compact manifold of n dimensions satisfy

(2.1) e−ηg ≤ g ≤ eηg,

then the corresponding eigenvalues of the Hodge-de Rham operator acting on p-
forms satisfy

e−(n+2p)ηλp
k(g) ≤ λp

k(g) ≤ e(n+2p)ηλp
k(g).

This result is based on the fact that the multiplicity of 0 is given by the cohomology
and the positive spectrum is given by exact forms, hence the min-max formula does
not involve derivatives of the metric. It stays valid if one of the two metrics is only
smooth by part, because in the last case the Hodge decomposition still holds true.

Then, for a metric g1 on M1, there exists, for each η > 0, a metric g1 on M1

which is flat on a ball Bη centered at p0 and such that

e−ηg1 ≤ g1 ≤ eηg1.

Then our result can be extended to any other construction which does not suppose
that the metric g1 is flat in a neighborhood of p0.

Now, we regard Mε as the union of M1−B(p0, 3ε) and ε.M2(1), where M2(1) =(
BRn+1(0, 3)−BRn+1(0, 1)

)
∪M2(1) is endowed with a metric only smooth by part:

the Euclidean metric on the first part and the restriction of g2 on the second part.
But this metric can be approached, as close as we want, by a smooth metric which
is still flat on BRn+1(0, 3)−BRn+1(0, 32 ); these two metrics will satisfy the estimate
(2.1). Thus, replacing 3ε by ε for simplicity, we can suppose, without loss of
generality, that we are in the following situation:

The manifold M2(1) is endowed with a metric which is conical (flat) near the
boundary, namely g2 = ds2 + (1− s)2h, h being the canonical metric of the sphere
S
n = ∂(M2(1)) and s ∈ [0, 1

2 ) being the distance from the boundary (M2(1) looks like

a trumpet) and M1(ε) = M1−B(p0, ε) with a conical metric g1 = dr2+ r2h around
the point p0. Thus, Mε = M1(ε) ∪ ε.M2(1) is a smooth Riemannian manifold.

Let Ca,b be the cone (a, b)× Sn endowed with the (conical) metric dr2 + r2h.



COLLAPSING OF CONNECTED SUMS 1717

M1(ε)

︸ ︷︷ ︸
ε.M2(1)

Figure 2. Smoothing of (Mε, gε)

3. Small eigenvalues

Let us show that Mε has no small eigenvalues.

Proposition 1. For 1 ≤ p ≤ n, there is a constant λ0 > 0 independent of ε such
that, if λp(Mε) is an eigenvalue of the Hodge-de Rham operator acting on p-forms
such that λp(Mε) �= 0, then

λp(Mε) ≥ λ0.

Proof. We shall use the McGowan lemma stated in [GP95, Lemma 2.3, p. 731].
Recall that this lemma, in the spirit of the Mayer-Vietoris theorem, gives control of
positive eigenvalues in terms of positive eigenvalues of certain covers with certain
boundary conditions. We use the cover Mε = M1(ε) ∪ ε.(M2(1) ∪ C1,2). Set

U1 = M1(ε) and U2 = ε.(M2(1) ∪ C1,2).
Then U1,2 = U1 ∩ U2 = ε.C1,2 and Hp−1(U1 ∩ U2;R) ∼= Hp−1(Sn;R) = 0 for
2 ≤ p ≤ n.

Lemma 1 in [GP95] asserts that, in this case and for these values of p, the
first positive eigenvalue of the Hodge-de Rham operator on exact p-forms of Mε is
bounded from below by

λ0(ε) :=
1

8

{( 1

μp(U1)
+

1

μp(U2)

)( 2ωp,n+1 cρ
μp−1(U1,2)

+ 3
)}−1

,

where μk(U) is the first positive eigenvalue of the Hodge-de Rham operator acting
on exact k-forms on U satisfying absolute boundary conditions, ωp,n+1 is a combi-
natorial constant and cρ is the square of an upper bound of the first derivative of
a partition of unity subordinate to the cover {U1, U2}.

In our case, cρ, μ
p(U2) and μp−1(U1,2) are all of order ε

−2, but μp(U1) is bounded
below for p ≤ n as was shown in [AC93] (remark that the small eigenvalue exhibited
here in degree n is in the coexact spectrum). This gives a uniform bound for the
exact spectrum of degree p with 2 ≤ p ≤ n, but the exact spectrum for 1-forms
comes from the spectrum on functions which has been studied in [T02]. Thus the
exact spectrum is controlled for 1 ≤ p ≤ n; by the Hodge duality it gives a control
for all the positive spectrum in these degrees. Finally we can assert that there
exists λ0 > 0 such that λp(Mε) > λ0 for any ε > 0. �
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The proof of the main theorem, Theorem B, needs some useful notation and
estimates. This is the goal of the following section.

4. Estimates and tools

From now on we suppose, given a family ϕε of normalized eigenforms on Mε of
degree p for the Hodge-de Rham operator,

Δεϕε = λp(Mε)ϕε,

with lim sup
ε→0

λp(Mε) = λp < +∞. As in [ACP09], we use the following change of

variables: for ϕε, we define ϕi,ε as

(4.1) ϕ1,ε := ϕε �M1(ε) and ϕ2,ε := ε
n+1
2 −pϕε �M2(1) .

We write on the cone Cε,1
ϕ1,ε = dr ∧ r−(n

2 −p+1)β1,ε + r−(n
2 −p)α1,ε

and define σ1(r) = (β1(r), α1(r)) = U(ϕ1)(r). The operator U is an isometry, and
its inverse is its adjoint U∗.

On the other hand, it is more convenient to define r := 1 − s for s ∈ [0, 12 ] and
write

ϕ2,ε = dr ∧ r−(n
2 −p+1)β2,ε + r−(n

2 −p)α2,ε

near the boundary. Then we can define, for r ∈ [ 12 , 1] (the boundary of M2(1)
corresponds to r = 1),

σ2(r) = (β2(r), α2(r)) = U(ϕ2)(r).

The L2-norm, for a p-form ϕ supported onM1 in the cone Cε,1, has the expression

‖ϕ‖2L2(Mε)
=

∫
Cε,1

|σ1|2g1 dμg1 +

∫
M2(1)

|ϕ2|2g2 dμg2 ,

and the quadratic form we study is

qε(ϕ) =

∫
Mε

|(d+ d∗)ϕ|2gε dμgε

=

∫
M1(ε)

|UD1U
∗(σ1)|2 dμg1 +

1

ε2

∫
M2(1)

|D2(ϕ2)|2g2 dμg2 ,

(4.2)

where D1, resp. D2, is the Gauß-Bonnet operator of M1, resp. M2, namely Dj =
d + d∗ acting on differential forms. In terms of σ1, which, a priori, belongs to
C∞([ε, 1);C∞(Λp−1T ∗Sn) ⊕ C∞(ΛpT ∗Sn)), the operator has, on the cone of M1,
the expression

UD1U
∗ =

(
0 1
−1 0

)(
∂r +

1

r
A
)

with A =

⎛⎝n

2
− P −D0

−D0 P − n

2

⎞⎠ ,

where P is the operator of degree which multiplies by p a p-form and D0 is the
Gauß-Bonnet operator of the sphere S

n.
The Hodge-de Rham operator has, in these coordinates, the expression

UΔ1U
∗ = −∂2

r +
1

r2
A(A+ 1).

The same expressions are valid for UD2U
∗ and UΔ2U

∗ near the boundary ofM2(1),
but we shall not use them, since we need global estimates on this part.
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The compatibility condition is, for the quadratic form, ε
1
2α1(ε) = α2(1) and

ε
1
2β1(ε) = β2(1) or

(4.3) σ2(1) = ε
1
2σ1(ε).

The compatibility condition for the Hodge-de Rham operator, of the first order,
is obtained by expressing that Dϕ ∼ (UD1U

∗σ1, ε
−1UD2U

∗σ2) belongs to the
domain of D. In terms of σ it gives

(4.4) σ′
2(1) = ε

3
2σ′

1(ε).

Let ξ1 be the cut-off function on M1 around p0:

ξ1(r) :=

{
1 if 0 ≤ r ≤ 1

2 ,

0 if 1 ≤ r.

Proposition 2. For our given family ϕε satisfying Δϕε = λp(Mε)ϕε with λp(Mε)
bounded, the family (1− ξ1).ϕ1,ε is bounded in H1(ΛpM1, g1).

Then it remains to study ξ1.ϕ1,ε, which can be expressed with the polar coordi-
nates. This is the goal of the next section.

Remark 3. The same cannot be done with the component on M2, or more precisely
this does not give what we want to prove, namely that this component goes to 0
with ε. To do so we first have to consider ϕ2,ε in the domain of an elliptic operator.
This is the main difficulty, in contrast with the case of the functions. In fact, we will
decompose ϕ2,ε in a part which clearly goes to 0 and another part which belongs
to the domain of an elliptic operator. This operator is naturally D2, but the point
is to determine the boundary conditions.

4.1. Expression of the quadratic form. For any ϕ such that the component ϕ1

is supported in the cone C1,ε, one has, with σ1 = Uϕ1 and by the same calculations
as in [ACP09],∫

Cε,1

|D1ϕ|2g1dμg1 =

∫ 1

ε

∥∥∥(∂r + 1

r
A
)
σ1

∥∥∥2
L2(Sn)

dr

=

∫ 1

ε

[
‖σ′

1‖2L2(Sn) +
2

r

(
σ′
1, Aσ1

)
L2(Sn)

+
1

r2
‖Aσ1‖2L2(Sn)

]
dr

=

∫ 1

ε

[
‖σ′

1‖2L2(Sn)+∂r

{1
r

(
σ1, Aσ1

)
L2(Sn)

}
+

1

r2

{(
σ1, Aσ1

)
L2(Sn)

+‖Aσ1‖2L2(Sn)

}]
dr

=

∫ 1

ε

[
‖σ′

1‖2L2(Sn) +
1

r2
(
σ1, (A+A2)σ1

)
L2(Sn)

]
dr − 1

ε

(
σ1(ε), Aσ1(ε)

)
L2(Sn)

,

where we remark σ1(1) = 0 and tA = A. We then have

(4.5)

qε(ϕ) =

∫ 1

ε

[
‖σ′

1‖2L2(Sn)+
1

r2
(
σ1, (A+A2)σ1

)
L2(Sn)

]
dr− 1

ε

(
σ1(ε), Aσ1(ε)

)
L2(Sn)

+
1

ε2

∫
M2(1)

|D2ϕ2|2g2 dμg2 .
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On the other hand we have, as well,∫
C 1

2
,1

|D2ϕ|2g2dμg2 =

∫ 1

1
2

∥∥∥∥(∂r + 1

r
A
)
σ2

∥∥∥∥2
L2(Sn)

dr

=

∫ 1

1
2

[
‖σ′

2‖2L2(Sn) +
1

r2
(
σ2, (A+A2)σ2

)
L2(Sn)

]
dr

+
(
σ2(1), Aσ2(1)

)
L2(Sn)

−
(
σ2(

1
2 ), Aσ2(

1
2 )
)
L2(Sn)

.

Thus the first boundary terms annihilate, because of the compatibility condition
(4.3) σ2(1) = ε

1
2 σ1(ε), and one also has

(4.6) qε(ϕ) =

∫ 1

ε

[
‖σ′

1‖2L2(Sn) +
1

r2
(σ1, (A+A2)σ1)L2(Sn)

]
dr

+
1

ε2

∫ 1

1
2

[
‖σ′

2‖2L2(Sn)+
1

r2
(σ2, (A+A2)σ2)L2(Sn)

]
dr− 1

ε2
(
σ2(

1
2 ), Aσ2(

1
2 )
)
L2(Sn)

.

We remark that the boundary term −(σ2(
1
2 ), A σ2(

1
2 ))L2(Sn) is positive if σ2 belongs

to the eigenspace of A with negative eigenvalues. In fact we know the spectrum of
A:

4.2. Spectrum of A. The spectrum of A was calculated in Brüning and Seeley
[BS88, p. 703]. By their result, it holds that the spectrum of A is given by the
values

γ =
(−1)p+1

2
±
√
μ2 +

(n− 1

2
− p
)2

,

where 0 ≤ p ≤ n and μ2 runs over the spectrum of the Hodge-de Rham operator
on the standard sphere ΔSn acting on the coclosed p-forms. Since the spectrum
of the standard sphere Sn was calculated in [GM75, p. 283] we see that μ2 =
(p + k + 1)(n − p + k) (k = 0, 1, 2, . . .) if 1 ≤ p ≤ n, or if p = 0 and μ2 is in the
coexact spectrum. Hence, μ2 ≥ (n− p)(p+ 1) and we have

μ2 +
(n− 1

2
− p
)2

≥ (n− p)(p+ 1) +
(n+ 1

2
− (p+ 1)

)2
≥
(n+ 1

2

)2
.

So any eigenvalue γ of A satisfies

(4.7) |γ| ≥ n

2
.

For p = 0, the eigenvalues of A corresponding to the constant function are in fact
±n

2 as we can see with the expression of A, so the lower bound (4.7) is always valid
and, in particular, 0 /∈ Spec(A).

Consequence. The elliptic operator A(A+1) is non-negative (and positive if n ≥ 3).
Indeed A(A + 1) = (A + 1

2 )
2 − 1

4 , and the values of the eigenvalues of A give the
conclusion.
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4.3. Equations satisfied. On the cones, σ = (σ1, σ2) satisfies the equations(
− ∂2

r +
1

r2
A(A+ 1)

)
σ1 = λεσ1,

Δ2 U
∗σ2 = ε2λεU

∗σ2,

and the compatibility conditions have been given in (4.3) and (4.4):

σ2(1) = ε
1
2 σ1(ε), σ′

2(1) = ε
3
2 σ′

1(ε).

We decompose σ1 into a base of eigenvectors of A:

σ1 =
∑

γ∈Spec(A)

σγ
1 and Aσγ

1 = γσγ
1 .

4.4. Boundary control. We know that

∫ 1

ε

∥∥(∂r +
1

r
A) σ1

∥∥2
L2(Sn)

dr ≤ λp + 1

for ε small enough, since λp(Mε) has an upper bound by Proposition A and the
expression of D1, (4.1). This inequality stays valid for ξ1σ1 with a larger constant:
there exists a constant Λ > 0 such that for any ε > 0

(4.8)
∑

γ∈Spec(A)

∫ 1

ε

∥∥∥ ∂r(ξ1σγ
1 ) +

γ

r
(ξ1σ

γ
1 )
∥∥∥2
L2(Sn)

dr ≤ Λ.

We remark that ∂rσ +
γ

r
σ = r−γ∂r(r

γσ). Since γ < 0 implies γ ≤ (−n
2 ), by

ξ1(1) = 0, (4.8) and the Schwarz inequality, we have

‖εγσγ
1 (ε)‖2L2(Sn) =

∥∥∥∥∫ 1

ε

∂r(r
γξ1σ

γ
1 ) dr

∥∥∥∥2
L2(Sn)

≤
∣∣∣∣∫ 1

ε

r2γ dr

∣∣∣∣ · ∫ 1

ε

∥∥∥ ∂r(ξ1σγ
1 ) +

γ

r
(ξ1 σ

γ
1 )
∥∥∥2
L2(Sn)

dr

≤ Λ
ε2γ+1

|2γ + 1| ,

(4.9)

where the last inequality follows from γ ≤ (−n
2 ). Thus we see σγ

1 (ε) =

O(ε
1
2 /
√
|2γ + 1|). This suggests that the limit σ is harmonic on M2(1) with the

boundary condition Π<0σ2 = 0, where Π<0 (resp. Π>0) denotes the spectral pro-
jection of A onto the total eigenspace of negative (resp. positive) eigenvalues. The
limit problem appearing here is a boundary condition of the Atiyah-Patodi-Singer
type [APS75]. Indeed we have

Proposition 4. There exists a constant C > 0 such that the boundary value satis-
fies, for all ε > 0,

‖Π<0(σ1,ε(ε)) ‖2L2(Sn) ≤ Cε.

Proof. We know that q(ξ1ϕ1,ε, ϕ2,ε) is bounded by Λ. On the other hand, the ex-
pression of the quadratic form (4.5) can be done with respect to the decomposition
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into Im(Π>0) and Im(Π<0). Namely,

qε(ξ1ϕ1,ε, ϕ2,ε) =

∫ 1

ε

∥∥∥(∂r + 1

r
A
)
Π<0(ξ1σ1,ε)

∥∥∥2
L2(Sn)

dr

+

∫ 1

ε

∥∥∥(∂r + 1

r
A
)
Π>0(ξ1σ1,ε)

∥∥∥2
L2(Sn)

dr +
1

ε2
‖D2ϕ2‖2L2(M2(1),g2)

≥
∫ 1

ε

∥∥∥(∂r+1

r
A
)
Π<0(ξ1σ1,ε)

∥∥∥2
L2(Sn)

dr

≥
∫ 1

ε

{
‖Π<0(ξ1σ1,ε)

′ ‖2L2(Sn) +
1

r2

(
Π<0(ξ1σ1,ε), (A+A2)Π<0(ξ1σ1,ε)

)
L2(Sn)

}
dr

− 1

ε

(
Π<0σ1(ε), A ◦Π<0σ1(ε)

)
L2(Sn)

≥ n

2ε

∥∥Π<0σ1,ε(ε)
∥∥2
L2(Sn)

,

since A(A+ 1) is non-negative and (−A ◦Π<0) ≥ n
2 . �

4.5. Limit problem. Here we study good candidates for the limit Gauß-Bonnet
operator. On M1 the problem is clear; the question here is to identify the boundary
conditions on M2(1).

• On M1, the natural problem is the Friedrich extension of D1 on the cone. It
is not a real conical singularity, and Δ1 = D∗

1 ◦ D1 is the usual Hodge-de Rham
operator.

• For n ≥ 2, the forms on M2(1) satisfying D2ϕ = 0 and Π<0 ◦ U(ϕ) = 0 on

the boundary are precisely the L2-forms in Ker(D2) on the large manifold (M̃2, g̃2)
obtained from (M2(1), g2) by gluing a conical cylinder [1,∞)× S

n with the metric
dr2 + r2h, i.e. the exterior of the sphere in Rn+1.

Rn+1

M2(1)

Figure 3. (M̃2, g̃2)

Indeed, these L2-forms on (M̃2, g̃2) must satisfy (∂r + 1
rA)σ = 0, i.e. for any

γ ∈ Spec(A), there exists σγ
0 ∈ Ker(A − γ) such that σγ = r−γσγ

0 ∈ L2(M̃2, g̃2),
which is possible only for γ > 1

2 . This limit problem is of the category non-parabolic
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at infinity in the terminology due to Carron [C01]; see particularly Theorem 2.1
there. Then as a consequence of Theorem 0.4 in [C01], we know that its kernel is
of finite dimension. More precisely it gives:

Proposition 5. The operator D2 acting on the forms of M2(1), with the boundary
condition Π<0 ◦ U = 0, is elliptic in the sense that the H1-norm of elements of
the domain is controlled by the norm of the graph. Namely, there exists a constant
C > 0 such that any ϕ ∈ H1(ΛpM2(1), g2) with Π<0 ◦ U(ϕ) = 0 satisfies

‖ϕ‖2H1(M2(1),g2)
≤ C

{
‖ϕ‖2L2(M2(1),g2)

+ ‖D2ϕ‖2L2(M2(1),g2)

}
.

We denote by D2 this operator.

Corollary 6. The kernel of D2 is of finite dimension and can be identified with a

subspace of the total space
n+1∑
p=0

Hp(M2(1);R) of the absolute cohomology.

We shall see in Corollary 16 below that this kernel is in fact the total space
n∑

p=1

Hp(M2;R).

Proof. We show that there exists a constant C > 0 such that for each ϕ ∈
H1(ΛpM2(1), g2) satisfying Π<0 ◦ U(ϕ) = 0, then

‖ϕ‖2H1(M2(1))
≤ C

{
‖ϕ‖2L2(M2(1))

+ ‖D2ϕ‖2L2(M2(1))

}
.

Thus D2 is a closable operator.

Denote, for such a ϕ, by ϕ̃ its harmonic prolongation on M̃2 −M2(1) = Rn+1 −
B(0, 1). Then ϕ̃ is in the domain of the Dirac operator on (M̃2, g̃2), which is elliptic.

This means that for each smooth function f on M̃2 with compact support, there
exists a constant Cf > 0 such that for any ψ ∈ Dom(D2),

‖f.ψ‖2
H1(˜M2)

≤ Cf{ ‖ψ‖2L2(˜M2)
+ ‖D2ψ‖2L2(˜M2)

}

(it is the fact that an operator ‘non-parabolic at infinity’ is continuous from its
domain to H1

loc, Theorem 1.2 of Carron [C01]).
If we apply this inequality to some f = 1 on M2(1) and ψ = ϕ̃, we obtain in

particular that

‖ϕ‖2H1(M2(1))
≤ C{ ‖ϕ̃‖2

L2(˜M2)
+ ‖D2ϕ̃‖2L2(˜M2)

}

with C = Cf . Since D2ϕ̃ ≡ 0 on M̃2 −M2(1) = Rn+1 −B(0, 1), we see that

‖D2ϕ̃‖2L2(˜M2)
= ‖D2ϕ‖2L2(M2(1))

.

Now we can write, by the use of cut-off functions, ϕ = ϕ0 + ϕ̄, where ϕ0 vanishes
near the boundary and ϕ̄ is supported in 1

2 ≤ r ≤ 1. Then ϕ̃0 = 0 outside of M2(1).
So, for the control of ‖ϕ̃‖

L2(˜M2)
, we can suppose that ϕ = ϕ̄. We write Uϕ = σ and

σ =
∑

γ σ
γ on the eigenspaces of A.

Since σ = U(ϕ̃) is harmonic on Rn+1 −B(0, 1), it follows that for any γ

σγ(r) = r−γσγ(1).
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Thus we have

‖ϕ̃‖2L2(Rn+1−B(0,1)) = ‖U(ϕ̃)‖2L2(Rn+1−B(0,1)) = ‖σ‖2L2([1,∞)×Sn)

= ‖
∑
γ>0

σγ(r)‖2L2([1,∞)×Sn) = ‖
∑
γ>0

r−γσγ(1)‖2L2([1,∞)×Sn)

=
∑
γ>0

∫ ∞

1

r−2γdt · ‖σγ(1)‖2L2(Sn)

=
∑
γ>0

1

2γ − 1
‖σγ(1)‖2L2(Sn).

Now we remark that γ ≥ 1, σγ( 12 ) = 0 and σγ(1) =

∫ 1

1
2

∂r(r
γσγ)dr. By the Cauchy-

Schwarz inequality, we have

‖σγ(1)‖2L2(Sn) =
∥∥∥ ∫ 1

1
2

rγ · r−γ∂r(r
γσγ)dr

∥∥∥2
L2(Sn)

≤
∫ 1

1
2

‖r−γ∂r(r
γσγ)‖2L2(Sn)dr ·

∫ 1

1
2

r2γdr

≤ 1

2γ + 1
‖UD2U

∗σγ‖2L2([ 12 ,1]×Sn).

As a consequence,∑
γ>0

1

2γ − 1
‖σγ(1)‖2L2(Sn) ≤

∑
γ>0

1

4γ2 − 1
‖UD2U

∗σγ‖2L2([ 12 ,1]×Sn)

≤ ‖D2ϕ ‖2L2(M2(1))
.

Hence, changing the constant, we also have

‖ϕ‖2H1(M2(1),g2)
≤ C

{
‖ϕ‖2L2(M2(1),g2)

+ ‖D2ϕ‖2L2(M2(1),g2)

}
. �

Alternative proof of Proposition 5, in the spirit of [APS75]. In order to study this
boundary condition, it is better to again write the p-form near the boundary as
ϕ2 = dr ∧ r−(n/2−p+1)β2 + r−(n/2−p)α2 with, as before, U(ϕ2) = σ2 = (β2, α2).
On the cone r ∈ [ 12 , 1], UD2U

∗ = ∂r +
1
rA and we can construct, as in [APS75],

a parametrix of D2 by gluing an interior parametrix with one constructed on the
‘long’ cone r ∈ (0, 1] as follows:

Given a form ψ on M2(1), if we look for a form ϕ such that D2ϕ = ψ, we write
ψ as the sum of two terms, the first one with support in the neighborhood of the
boundary and the second one vanishing near the boundary. On the second term,
we apply an interior parametrix Q0 of the elliptic operator D2. Let us now suppose
that ϕ is supported in the cone r ∈ [ 12 , 1]. We decompose Uψ into the eigenspaces
of A : Uψ =

∑
γ ψ

γ , and also if Uϕ =
∑

γ ϕ
γ , then ϕγ must satisfy

∂rϕ
γ +

γ

r
ϕγ = r−γ∂r(r

γϕγ) = ψγ .
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We take the solution

ϕγ = r−γ

∫ r

1

ργψγ(ρ) dρ if γ < 0,

ϕγ = r−γ

∫ r

0

ργψγ(ρ) dρ if γ > 0.

Then γ < 0 implies ϕγ(1) = 0. It is now easy to verify that D2 satisfies the singular
elliptic property (SE) of [Le97, p. 54] (with ρ(x) =

√
x).

This fact and the property Spec(A) ∩ (−1,+1) = ∅ assure the construction of
the parametrix on the cone. Here we refer to Büning and Seeley [BS88] who make
this construction and also to Lesch [Le97] for more general settings. In fact, this
parametrix on the cone r ∈ (0, 1] gives only H1-regularity with weight function (as
described in [Le97, Proposition 1.3.12] and the following), but the construction of
a parametrix on M2(1) is made by gluing these two parametrixes with the help of
cut-off functions. This means that the region near the singular point r = 0 of the
cone will be cut off, and we stay in a region where the weight function is controlled
by constants from above and from below. Thus, we finally obtain control of the
usual H1-norm.

4.6. Boundedness. Recall that A(A+ 1) is non-negative.
We define the cut-off function χ supported in [ 34 , 1) as

χ(r) :=

{
0 if 0 ≤ r ≤ 3

4 ,

1 if 7
8 ≤ r ≤ 1.

Proposition 7. Again denoting σ2,ε := U(ϕ2,ε), the family of p-forms,

ψ2,ε := ϕ2,ε − U∗( Π<0(χσ2,ε)
)
,

belongs to the domain of D2 and satisfies the following:

(1) {ψ2,ε}ε>0 is uniformly bounded in H1(M2(1), g2);

(2) lim
ε→0

‖ψ2,ε − ϕ2,ε‖L2(M2(1),g2) = 0;

(3) lim
ε→0

‖D2(ψ2,ε − ϕ2,ε)‖L2(M2(1),g2) = 0.

Remark 8. As a consequence of Proposition 7, there exists a subsequence of ϕ2,ε,
which converges in L2 to a harmonic form satisfying the boundary condition of D2.
That is, there exists ψ2 ∈ Ker(D2) such that

ϕ2,ε → ψ2 ∈ Ker(D2) weakly in H1(M2(1), g2) as ε → 0.

Proof. (1) It is clear that ψ2,ε belongs to the domain of D2 and is a bounded family
for the operator norm. Thus, by Proposition 5, it is also a bounded family in
H1(M2(1), g2).

(2) We have

(4.10) ‖ψ2,ε − ϕ2,ε‖2L2(M2(1),g2)
≤
∫ 1

3
4

‖Π<0σ2,ε(r) ‖2L2(Sn) dr,
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but as a consequence of (4.6)

‖Π<0σ2,ε(r) ‖2L2(Sn) =

∫ r

1
2

∂t
{
‖Π<0σ2,ε(t) ‖2L2(Sn)

}
dt+ ‖Π<0σ2,ε(

1
2 )‖2L2(Sn)

= 2

∫ r

1
2

(
Π<0σ

′
2,ε(t), Π<0σ2,ε(t)

)
L2(Sn)

dt+ ‖Π<0σ2,ε(
1
2 )‖2L2(Sn)

≤ 2
{∫ r

1
2

‖Π<0σ
′
2,ε(t) ‖2L2(Sn) dt

} 1
2 ·‖Π<0σ2,ε‖L2([ 12 ,r]×Sn)+‖Π<0(σ2,ε(

1
2 ))‖2L2(Sn)

≤ 2εΛ + ε2
2

n
Λ,

by using the Cauchy-Schwarz inequality, the fact that the L2-norm of ϕε is 1 and
that (−A ◦Π<0) ≥ n

2 .
(3) Finally, we prove lim

ε→0
‖D2(ψ2,ε − ϕ2,ε)‖L2(M2(1),g2) = 0. Since supp(χ) ⊂

[ 34 , 1], we see that

‖D2(ϕ2,ε − ψ2,ε) ‖L2(M2(1),g2) = ‖D2

(
U∗ ◦Π<0(χσ2,ε)

)
‖L2(M2(1),g2)

≤ 2C ‖Π<0(σ2,ε)‖L2([ 34 ,1]×Sn) + ‖D2

(
U∗ ◦Π<0(σ2,ε)

)
‖L2(C 3

4
,1
),

(4.11)

where C > 0 is a constant depending only on χ′.
Now, since equation (4.10) converges to 0 by the result (2), the first term of

(4.11) converges to 0:

‖Π<0(σ2,ε)‖2L2([ 34 ,1]×Sn) =

∫ 1

3
4

‖Π<0(σ2,ε)‖2L2(Sn) dr → 0 (ε → 0).

The second term of (4.11) also converges to 0, since

‖D2

(
U∗◦Π<0(σ2,ε)

)
‖2L2(C 3

4
,1
)

≤ ‖D2

(
U∗ ◦Π<0(σ2,ε)

)
‖2L2(C 3

4
,1
) + ‖D2

(
U∗ ◦Π>0(σ2,ε)

)
‖2L2(C 3

4
,1
)

≤ ‖D2ϕ2,ε ‖2L2(C 3
4
,1
) ≤ ‖D2ϕ2,ε ‖2L2(M2(1),g2)

≤ ε2 ‖Dεϕε ‖2L2(Mε)
= ε2λ(p)(Mε) ≤ O(ε2).

Therefore, we see that lim
ε→0

‖D2(ψ2,ε − ϕ2,ε) ‖L2(M2(1),g2) = 0. �

Since the trace operator from H1(M2(1)) to H
1
2 (∂M2(1)) is bounded, we have

Corollary 9. The family {Π>0σ2,ε(1)} is bounded in H
1
2 (Sn) = H

1
2 (∂M2(1)) as

the boundary value of ψ2,ε.

We now define a better prolongation of Π>0σ2(1) to M1(ε). More generally, we
set

Pε : Π>0

(
H

1
2 (Sn)

)
→ H1(Cε,1)

σ =
∑

γ∈Spec(A)
γ>0

σγ �→ Pε(σ) :=
∑

γ∈Spec(A)
γ>0

εγ−
1
2 r−γσγ .



COLLAPSING OF CONNECTED SUMS 1727

This is a harmonic prolongation, since each εγ−
1
2 r−γσγ is harmonic on the cone

Cε,1. The exponent (− 1
2 ) over ε comes from the compatibility condition (4.3). We

remark that there exists a constant C > 0 such that

(4.12) ‖Pε(σ) ‖2L2(Cε,1)
≤ C

∑
γ>0

‖σγ‖2L2(Sn) = C‖Π>0σ2,ε(1) ‖2L2(Sn).

If ψ2,ε ∈ Dom(D2) for the same cut-off function ξ1 whose value is 1 for 0 ≤ r ≤ 1
2

and 0 for r ≥ 1, then
(
ξ1Pε(ψ2,ε �∂M2(1)), ψ2,ε

)
defines through the isometry U an

element of H1(ΛpMε, gε). Set

ψ̃1,ε := ξ1 · Pε(ψ2,ε �∂M2(1)).

We now decompose ϕ1,ε on the cone Cε,1 as follows:

(4.13) ϕ1,ε = ϕ+
1,ε + ϕ−

1,ε,

according to the decomposition of σ1,ε = U(ϕ1,ε) into the positive and negative

spectrum of A. Then ψ̃1 and ϕ+
ε have the same values on the boundary. So the

difference (ϕ+
ε − ψ̃1,ε) can be viewed in H1(ΛpM1, g1) by a prolongation to 0 on the

ε-ball, while the boundary value of ϕ−
1,ε is small. We introduce the cut-off function

taken in [ACP09]:

ξε(r) :=

⎧⎪⎪⎨⎪⎪⎩
0 if r ≤ 2ε,

log(2ε)− log r

log(
√
ε)

if 2ε ≤ r ≤ 2
√
ε,

1 if 2
√
ε ≤ r.

Lemma 10.
lim
ε→0

‖ (1− ξε) · (ξ1 ϕ−
1,ε) ‖L2(M1(ε),g1) = 0.

This follows from the estimates in Proposition 4.

Proposition 11. The p-forms ψ1,ε := (1 − ξ1)ϕ1,ε + (ξ1ϕ
+
1,ε − ψ̃1,ε) + ξε ξ1 ϕ

−
1,ε

belong to H1(ΛpM1, g1) and define a bounded family.

Proof. We will show that each term is bounded. For the first one, (1− ξ1)ϕ1,ε can
be defined on M1 by a prolongation to 0. So, it is already proven in Proposition 2.
For the second one, we remark that

fε :=
(
∂r +

A

r

)
(ξ1ϕ

+
1,ε − ψ̃1,ε) =

(
∂r +

A

r

)
(ξ1ϕ

+
1,ε)− ∂r(ξ1)Pε(ψ2,ε �∂M2(1)).

(4.14)

Then fε is uniformly bounded in L2(M1, g1) because of (4.12). This estimate also

shows that the L2-norm of (ξ1ϕ
+
1,ε−ψ̃1,ε) is bounded. Thus the family {ξ1ϕ+

1,ε−ψ̃1,ε}
is bounded for the q-norm on (M1, g1), which is equivalent to the H1-norm.

For the third one, we use the estimate due to the expression of the quadratic

form. Since

∫
Cr,1

|D1(ξ1ϕ
−
1,ε)|2g1 dμg1 ≤ Λ, the boundary term is estimated by

(4.15) −1

r

(
σ−
1,ε(r), A σ−

1,ε(r)
)
L2(Sn)

≤ Λ,

by the same argument as in Proposition 4. Now

‖D1(ξεξ1ϕ
−
1,ε) ‖L2(M1) ≤ ‖ ξε D1(ξ1ϕ

−
1,ε) ‖L2(M1) + ‖ |dξε| ξ1ϕ−

1,ε ‖L2(M1)

≤ ‖D1(ξ1ϕ
−
1,ε) ‖L2(Cε,1) + ‖ |dξε|ϕ−

1,ε ‖L2(Cε,1) .
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The first term is bounded and, with (−A ◦ Π<0) ≥ n
2 and the estimate (4.15), we

have

‖ |dξε|ϕ−
1,ε‖2L2(Cε,1)

≤ 8Λ

n | log ε|2
∫ 2

√
ε

2ε

dr

r
≤ 4Λ

n | log ε| .

This completes the proof. �

In fact, the decomposition used here is almost orthogonal:

Lemma 12.

lim
ε→0

(ϕ1,ε − ψ̃1,ε, ψ̃1,ε )L2(M1(ε),g1) = 0.

Proof of Lemma 12. If we decompose the terms into the eigenspaces of A, then
ψ̃1,ε involves only the positive eigenvalues of A. So, for the decomposition ϕ1,ε =
ϕ+
1,ε + ϕ−

1,ε, we see that

(ϕ−
1,ε, ψ̃1,ε )L2(Cε,1) = 0.

Hence we have only to prove that

lim
ε→0

(ϕ+
1,ε − ψ̃1,ε, ψ̃1,ε)L2(Cε,1) = 0.

We now set fε =
∑
γ>0

fγ and ϕ+
1,ε− ψ̃1,ε =

∑
γ>0

ϕγ
0 . Equation (4.14) and the fact that

(ϕ+
1,ε − ψ̃1,ε)(ε) = 0 give

ϕγ
0(r) = r−γ

∫ r

ε

ργfγ(ρ) dρ.

Then for each positive eigenvalue γ > 3
2 of A, by using integration by parts and

the Schwarz inequality, we have

(ϕγ
0 , ψ̃

γ
1 )L2(Cε,1) =

(
r−γ

∫ r

ε

ργfγ(ρ) dρ, ξ1 ε
γ− 1

2 r−γσγ
2,ε(1)

)
L2(Cε,1)

= εγ−
1
2

∫ 1

ε

r−2γξ1

{∫ r

ε

ργ
(
fγ(ρ), σγ

2,ε(1)
)
L2(Sn)

dρ
}
dr

≤ εγ−
1
2 ‖σγ

2,ε‖L2(Sn)

∫ 1

ε

r−2γdr

∫ r

ε

ργ‖fγ(ρ)‖L2(Sn) dρ

= εγ−
1
2 ‖σγ

2,ε‖L2(Sn)

{[ r1−2γ

1− 2γ

∫ r

ε

ργ ‖fγ(ρ)‖L2(Sn) dρ
]1
r=ε

−
∫ 1

ε

r1−2γ

1− 2γ
rγ ‖fγ(r)‖L2(Sn) dr

}
≤ εγ−

1
2

2γ − 1
‖σγ

2,ε‖L2(Sn)

∫ 1

ε

r−γ+1 ‖fγ(r)‖L2(Sn) dr

≤ εγ−
1
2

2γ − 1
‖σγ

2,ε‖L2(Sn)

{ ∫ 1

ε

r2−2γdr
} 1

2 ·
{∫ 1

ε

‖fγ(r)‖2L2(Sn) dr
} 1

2

≤ εγ−
1
2

2γ − 1
‖σγ

2,ε‖L2(Sn)
ε(−γ+ 3

2 )

√
2γ − 3

‖fγ‖L2(Cε,1)

≤ C ε ‖σγ
2,ε‖L2(Sn) ‖fγ‖L2(Cε,1) ≤ O(ε).

From Corollary 9 and Proposition 11, we proved Lemma 12 in the case of γ > 3
2 .
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By the previous calculus of the spectrum of A, Section 4.2, we know that the
possible values γ ≤ 3

2 are only 3
2 and 1.

By the same calculations as above, we can obtain similar estimates: for γ = 3
2 ,

the order of the bound is ε
√
| log(ε)|, and for γ = 1 it is

√
ε. �

5. Proof of Theorem B

Recall that ϕε is a family of eigenforms on Mε of degree p for the Hodge-de
Rham operator: Δεϕε = λp(Mε)ϕε, the family λp(Mε) is bounded and εm, m ∈ N,
is a sequence converging to zero such that the following limit exists:

lim
m→∞

λp(Mεm) = λp < +∞.

It is the case, for instance, if λp = lim infε→0 λ
p(Mε).

Lemma 13. If λp �= 0, then λp(Mεm) �= 0 for all εm > 0, and

(1) lim
m→∞

‖ ψ̃1,εm ‖L2(M1(εm),g1) = 0,

(2) lim
m→∞

‖ψ2,εm‖L2(M2(1),g2) = 0,

and also lim
m→∞

{
‖D1(ψ̃1,εm) ‖L2(M1(εm),g1) + ‖D2(ψ2,εm) ‖L2(M2(1),g2)

}
= 0.

Proof. We know, by Proposition 1, that there exists a universal lower bound for
positive eigenvalues on Mε, so if λp = lim

m→∞
λp(Mεm) is positive, then it means that

all the λp(Mεm) are also positive!
Next, for any normalized eigen p-form ϕε associated with the positive eigenvalue

λp(Mε) > 0, we define

(5.1) ψε := (ψ̃1,ε, ψ2,ε) ∈ Dom(qε).

Note that ψε satisfies the compatibility condition (4.3), ε
1
2 ψ̃1,ε(ε) = ψ2,ε(1).

Since the dimension of Ker(D2) is finite by Corollary 6, we can decompose ψ2,ε ∈
Dom(D2) into

(5.2) ψ2,ε = ψ0
2,ε + ψ⊥

2,ε,

where ψ0
2,ε ∈ Ker(D2) and ψ⊥

2,ε is its orthogonal part in Dom(D2). In fact, since

ψ2,ε and ψ0
2,ε satisfy the boundary condition, then ψ⊥

2,ε = ψ2,ε − ψ0
2,ε also satisfies

the boundary condition Π− ◦ U = 0.
Now, we can prolong them onto the cone Cε,1 by means of Pε, that is,{

ψ̃0
1,ε := ξ1 Pε(ψ

0
2,ε �∂M2(1)),

ψ̃⊥
1,ε := ξ1 Pε(ψ

⊥
2,ε �∂M2(1)).

So, we set

ψε := (ψ̃1,ε, ψ2,ε) ∈ Dom(qε),

and also set

(5.3)

{
ψ0
ε := (ψ̃0

1,ε, ψ
0
2,ε) ∈ Dom(qε),

ψ⊥
ε := (ψ̃⊥

1,ε, ψ
⊥
2,ε) ∈ Dom(qε).
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Since D2ψ
0
2,ε ≡ 0 and D1(Pε(σ

0
2,ε(1))) ≡ 0, we obtain that

qε(ψ
0
ε) = q1(ψ̃

0
1,ε) +

1

ε2
q2(ψ

0
2,ε)

= ‖D1(ψ̃
0
1,ε) ‖2L2(Cε,1)

=

∫ 1

1
2

‖ ξ′1 Pε(σ
0
2,ε(1)) ‖2L2(Sn)dr

≤ C

∫ 1

1
2

‖
∑
γ>0

εγ−
1
2 r−γ σ0,γ

2,ε (1) ‖2L2(Sn)dr

≤ C

∫ 1

1
2

∑
γ>0

ε2γ−1r−2γ‖σ0,γ
2,ε (1) ‖2L2(Sn)dr

≤ Cεn−1 ‖σ0
2,ε(1) ‖2L2(Sn)

∫ 1

1
2

r−ndr (by γ ≥ n

2
).

We remark here that the boundary term ‖σ0
2,εm(1) ‖2L2(Sn) is uniformly bounded

because of Proposition 4 and the compatibility condition, so

(5.4) qεm(ψ0
εm) = O(εn−1

m ) ≤ O(εm).

Then, we see that

(5.5) (ϕεm , ψ0
εm)L2(Mεm ,gεm ) = O(

√
εm).

In fact, since the eigenvalue λp(Mεm) has a positive lower bound by Proposition 1
and the estimate (5.4) holds, we see that

λp(Mεm) (ϕεm , ψ0
εm)L2(Mεm ) = (Δεmϕεm , ψ0

εm)L2(Mεm ) = qεm(ϕεm , ψ0
εm)

≤
√
qεm(ϕεm) ·

√
qεm(ψ0

εm)

≤
√
λp(Mεm) ·O(

√
εm).

So we have obtained

(ϕεm , ψ0
εm

)L2(Mεm ) ≤
O(

√
εm)√

λp(Mεm)
.

On the other hand, ‖D2(ψ
⊥
2,εm) ‖2L2(M2(1))

= O(εm) implies ‖ψ⊥
2,εm ‖2L2(M2(1))

=

O(
√
εm). In fact, this follows from the min-max type inequality for D2. More pre-

cisely, we set the constant

μ1 := inf
ψ 	=0∈Ker(D2)

⊥

q2(ψ)

‖ψ‖2L2(M2(1),g2)

.

Then we have that μ1 > 0 by using Proposition 5. Thus, from Proposition 7(3), it
follows that for ψ⊥

2,εm
∈ Ker(D2)

⊥,

0 < ‖ψ⊥
2,εm

‖2L2(M2(1),g2)
≤ 1

μ1
q2(ψ

⊥
2,εm

) ≤ 1

μ1
q2(ψ2,εm)

≤ 2

μ1

{
‖D2ϕ2,εm‖2L2(M2(1),g2)

+ ‖D2(ψ2,εm − ϕ2,εm) ‖2L2(M2(1),g2)

}
≤ 2

μ1
{O(εm

2) +O(εm) } ≤ O(εm).
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From the continuity of Pε and the ellipticity of D2, we also obtain that

‖ ψ̃⊥
1,εm ‖2L2(M1(εm),g1)

= O(εm).

Thus, we obtain

(5.6) ‖ψ⊥
εm‖2L2(Mεm ,gεm ) = ‖ψ̃⊥

1,εm‖2L2(M1(εm),g1)
+ ‖ψ⊥

2,εm‖2L2(M2(1),g2)
= O(εm).

From (5.5) and (5.6), it follows that

(ϕεm , ψεm)L2(Mεm ,gεm ) = (ϕεm , ψεm − ψ0
εm)L2(Mεm ) + (ϕεm , ψ0

εm)L2(Mεm )

= (ϕεm , ψ⊥
εm)L2(Mεm ) +O(

√
εm)

≤ ‖ϕεm‖L2(Mεm ) · ‖ψ⊥
εm‖L2(Mεm ) +O(

√
εm)

≤ 1 ·
√
O(εm) +O(

√
εm) = O(

√
εm).

(5.7)

Next, we estimate the inner product:

(ϕεm − ψεm , ψεm)L2(Mεm ) = (ϕ1,εm − ψ̃1,εm , ψ̃1,εm)L2(M1(εm),g1)

+ (ϕ2,εm − ψ2,εm , ψ2,εm)L2(M2(1),g2).
(5.8)

From Lemma 12, the first term is

(ϕ1,εm − ψ̃1,εm , ψ̃1,εm)L2(M1(εm),g1) = (ϕ1,εm − ψ̃1,εm , ψ̃1,εm)L2(Cεm,1)

= (ϕ+
1,εm

− ψ̃1,εm , ψ̃1,εm)L2(Cεm,1) + (ϕ−
1,εm

, ψ̃1,εm)L2(Cεm,1)

= (ϕ+
1,εm

− ψ̃1,εm , ψ̃1,εm)L2(Cεm,1) → 0 (εm → 0).

(5.9)

From Proposition 7(3), the second term of (5.8) is

(ϕ2,εm − ψ2,εm , ψ2,εm)L2(M2(1),g2) ≤ ‖ϕ2,εm − ψ2,εm‖L2(M2(1),g2)

· ‖ψ2,εm‖L2(M2(1),g2) → 0.
(5.10)

Therefore, from equations (5.9), (5.10) and (5.7), we see that

‖ψεm‖2L2(Mεm ) = (ψεm − ϕεm , ψεm)L2(Mεm ) + (ϕεm , ψεm)L2(Mεm )

= −(ϕ1,εm − ψ̃1,εm , ψ̃1,εm)L2(Cεm,1)

− (ϕ2,εm − ψ2,εm , ψ2,εm)L2(M2(1),g2)

+ (ϕεm , ψεm)L2(Mεm ) → 0 (εm → 0).

Hence, we conclude that

0 = lim
m→∞

‖ψεm‖2L2(Mεm ) = lim
m→∞

{
‖ψ̃1,εm‖2L2(M1(εm),g1)

+ ‖ψ2,εm‖2L2(M2(1),g2)

}
.

Thus, we have finished the proof of Lemma 13. �

As a consequence of Proposition 7 and Lemma 13, we obtain

Corollary 14. lim
m→∞

‖ϕ2,εm‖L2(M2(1),g2) = 0.

Now recall that ψ1,εm = ϕ1,εm − ψ̃1,εm − (1− ξεm) ξ1ϕ
−
εm and that we know, by

Lemma 13 and Lemma 10, that the last two terms converge to 0.
The following corollary can be obtained by the same method as in [AC93, p. 206]

(see also [T02, p. 206]).
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Corollary 15. We can extract from {ψ1,εm} a subsequence which converges strongly
in L2(M1, g1) and weakly in H1(M1, g1), and any such subsequence defines the limit
form ψ1 ∈ H1(M1, g1) such that

ΔM1
ψ1 = λp ψ1 and ‖ψ1‖L2(M1,g1) = 1.

Proof. We take a sequence {ψ1,εm} in H1(ΛpM1, g1). From Proposition 11, this
sequence is uniformly bounded inH1(ΛpM1, g1). By the weak compactness theorem
and the Rellich-Kondrachov theorem, there exist a subsequence {ψ1,εm} (we use the
same notation for simplicity) and the limit ψ1 ∈ H1(ΛpM1, g1) such that ψ1,εm →
ψ1 weakly in H1(M1, g1) and strongly in L2(M1, g1) as m → ∞.

Now, for any smooth p-form ω ∈ Ωp
0(M1 − {x1}) with the support of ω in

(M1 − {x1})◦, we have

(ψ1,Δg1ω)L2(M1,g1) = lim
m→∞

(ψ1,εm ,Δg1ω)L2(M1)

= lim
m→∞

(ϕεm ,Δεmω)L2(M1(εm))

= lim
m→∞

(λp(Mεm)ϕεm , ω)L2(Mεm )

= λp · lim
m→∞

(ϕ1,εm , ω)L2(M1(εm))

= λp · lim
m→∞

(ψ1,εm , ω)L2(M1,g1)

= λp · (ψ1, ω)L2(M1,g1).

Since Ωp
0(M1−{x1}) is dense in H1(ΛpM1, g1) by dimM1 = n+1 ≥ 2, we obtain

Δg1ψ1 = λp ψ1 weakly.

Furthermore, by the regularity theorem of a weak solution to the strong elliptic
equation, the limit form ψ1 in fact is a smooth p-form on M1.

Next, from the normalization ‖ϕεm‖L2(Mεm ) ≡ 1 and Corollary 14, we obtain
that the limit ‖ψ1‖L2(M1) = 1. Hence, the limit ψ1 is a non-zero smooth eigenform
on (M1, g1) with the positive eigenvalue λp. �

Thus, we see that λp = limm→∞ λp(Mεm) belongs to the set of positive spectrum
for p-forms on (M1, g1). Hence, we have finished the proof of Theorem B.

6. The proof of Theorem C

6.1. The multiplicity of 0. The dimension of the kernel of Δε is given by the
cohomology of M which can be calculated with the Mayer-Vietoris sequence asso-
ciated to the covering {U1, U2} introduced in Section 2; see Proposition 1 (recall
that M is of dimension n+ 1).

If we remember that Hp(Mj −B;R) ∼= Hp(Mj ;R) for p ≤ n, where B is a small
ball, then we obtain that

Hp(Mε;R) ∼= Hp(M1;R)⊕Hp(M2;R) for 1 ≤ p ≤ n,

while Hp(Mε;R) ∼= Hp(M1;R) ∼= Hp(M2;R) ∼= R for p = 0, n+ 1.
The transplantation of the harmonic forms of M1 in Mε has been described in

[AC93]. With the previous calculation, we have good candidates for a transplan-
tation of the cohomology of M2: for each ψ2 ∈ Ker(D2) with ‖ψ2‖L2(M2(1),g2) = 1,
we set

ψ̃ε := (ψ̃1, ψ2) = U∗(χ1Pε(σ2 �∂M2(1)), σ2

)
.
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Now take ϕε ∈ Ker(Δε). We apply ϕε to the previous results, Proposition 11
and Remark 8. So, there exists a subsequence such that

ψ1,ε → ψ1 ∈ Ker(Δ1) and ψ2,ε → ψ2 ∈ Ker(D2);

and only one of these two limits can be zero, that is, ψ1 = 0 or ψ2 = 0. The
conclusion is that all the harmonic forms on Mε can be approximated by forms like
ψ̃ε or χεϕ1, with ϕ1 ∈ Ker(Δ1).

As a consequence, we have

Corollary 16. For 1 ≤ p ≤ n, the two spaces Hp(M2;R) and Ker(D2) are isomor-
phic: Hp(M2;R) ∼= Ker(D2).

6.2. The convergence of the positive spectrum. The proof is made by induc-
tion. First we show that lim

ε→0
λp
1(Mε) = λp

1(M1):

Proof. We know by Proposition A that lim sup
ε→0

λp
1(Mε) ≤ λp

1(M1) and by Theorem

B that lim inf
ε→0

λp
1(Mε) is in the positive spectrum of Δ1, and as a consequence

lim inf
ε→0

λp
1(Mε) ≥ λp

1(M1). �

Now suppose that for all j with 1 ≤ j ≤ k one has lim
ε→0

λp
j (Mε) = λp

j (M1). Then,

we have to show that lim
ε→0

λp
k+1(Mε) = λp

k+1(M1).

Proof. We know by Proposition A that lim sup
ε→0

λp
k+1(Mε) ≤ λp

k+1(M1).

Let {ϕ(1)
ε , . . . , ϕ

(k+1)
ε } be an orthonormal family of eigenforms on Mε:

Δεϕ
(j)
ε = λp

j (Mε)ϕ
(j)
ε ,

and choose a sequence εl → 0 (corresponding to l → ∞) such that

lim
l→∞

λp
k+1(Mεl) = lim inf

ε→0
λp
k+1(Mε).

We apply each ϕ
(j)
ε to the same decomposition as in Proposition 11. This gives a

family {ψ(1)
1,ε , . . . , ψ

(k+1)
1,ε } bounded in H1(ΛpM1, g1) and such that for each index j,

lim
ε→0

‖ϕ(j)
1,ε − ψ

(j)
1,ε‖L2(M1(ε),g1) = 0,

while, as in Corollary 14,

lim
ε→0

‖ϕ(j)
2,ε‖L2(M2(1),g2) = 0.

So, by extracting a subsequence, we can suppose that ψ
(1)
1,εl

, . . . , ψ
(k+1)
1,εl

converge

strongly in L2(M1, g1) and weakly inH1(M1, g1) and that the limit {ψ(1)
1 , . . . , ψ

(k+1)
1 }

is orthonormal and satisfies for all j with 1 ≤ j ≤ k,

Δ1ψ
(j)
1 = λp

j (M1)ψ
(j)
1 and Δ1ψ

(k+1)
1 = lim inf

ε→0
λp
k+1(Mε) · ψ(k+1)

1 .

This shows that lim inf
ε→0

λp
k+1(Mε) ≥ λp

k+1(M1) and completes the proof of Theorem

C. �
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