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Abstract

A ternary self-dual code can be constructed from a Hadamard
matrix of order congruent to 8 modulo 12. In this paper, we show that
the Paley-Hadamard matrix is the only Hadamard matrix of order 32
which gives an extremal self-dual code of length 64. This gives a coding
theoretic characterization of the Paley-Hadamard matrix of order 32.
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1 Introduction

As described in [7], self-dual codes are an important class of linear codes
for both theoretical and practical reasons. It is a fundamental problem to
classify self-dual codes of modest length and determine the largest minimum
weight among self-dual codes of that length (see [7]). By the Gleason–Pierce
theorem, there are nontrivial divisible self-dual codes over Fq for q = 2, 3 and
4 only, where Fq denotes the finite field of order q (see [7, Theorem 5]), and
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this is one of the reasons why much work has been done concerning self-dual
codes over these fields.

A code C over F3 is called ternary. All codes in this paper are ternary
linear codes. A matrix whose rows are linearly independent and generate
the code C is called a generator matrix of C. A code C of length n is
said to be self-dual if C = C⊥, where the dual code C⊥ of C is defined as
C⊥ = {x ∈ Fn

3 | x · y = 0 for all y ∈ C} under the standard Euclidean inner
product x ·y. A self-dual code of length n exists if and only if n ≡ 0 (mod 4).
It was shown in [6] that the minimum weight d of a self-dual code of length
n is bounded by d ≤ 3[n/12] + 3. If d = 3[n/12] + 3, then the code is called
extremal. Two codes C and C ′ are equivalent if there exists a monomial
matrix P over F3 with C ′ = CP = {xP | x ∈ C}.

A Hadamard matrix H of order n is an n × n matrix whose entries are
from {1,−1} such that HHT = nI, where HT is the transpose of H and
I is the identity matrix. It is known that the order n is necessarily 1, 2,
or a multiple of 4. A Hadamard matrix is normalized if its first row and
column consist entirely of 1’s. Two Hadamard matrices H and H ′ are said
to be equivalent if there exist (0,±1)-signed permutation matrices P,Q with
H ′ = PHQ. All Hadamard matrices of orders up to 28 have been classified
(see [5]), and there are at least 13, 708, 126 inequivalent Hadamard matrices
of order 32 (see [4]).

Let Hn be a Hadamard matrix of order n. Let C(Hn) be the ternary code
with generator matrix ( I , Hn ), where entries of the matrix are regarded as
elements of F3. It is known that if n ≡ 8 (mod 12), then C(Hn) is self-dual
[2]. Moreover, it was shown that if H is the Paley-Hadamard matrix of order
32, then C(H) is an extremal self-dual code of length 64 [2]. The goal of
this paper is to give the following coding theoretic characterization of the
Paley-Hadamard matrix of order 32.

Theorem 1. Let H be a Hadamard matrix of order 32. Let C(H) be the
ternary self-dual code of length 64 with generator matrix ( I , H ). The
code C(H) is extremal if and only if H is equivalent to the Paley-Hadamard
matrix.

Remark 2. Only the above code is a currently known extremal self-dual code
of length 64 (see [7, Table XII]).

In the process of proving the above theorem, we have the following par-
tial classification of Hadamard matrices of order 32 (see Section 3 for the
definition of type 3).
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Proposition 3. Let H be a Hadamard matrix of order 32. If both H and
HT are of type 3, then H is equivalent to the Paley-Hadamard matrix.

2 Self-dual codes constructed from Hadamard

matrices

Let H be a Hadamard matrix of order n. Let C(H) be the ternary code
with generator matrix ( I , H ), where entries of the matrix are regarded as
elements of F3.

Lemma 4 (Dawson [2]). If n ≡ 8 (mod 12), then C(H) is self-dual.

The following lemmas are somewhat trivial, but useful for our approach.

Lemma 5. Let H and H ′ be Hadamard matrices of order n. If H and H ′

are equivalent, then C(H) and C(H ′) are equivalent.

Proof. See e.g., [3, Lemma 3.1].

Thus, for the remainder of this paper, we assume that a Hadamard matrix
is normalized, unless specified otherwise.

Lemma 6. If n ≡ 8 (mod 12), then C(H) and C(HT ) are equivalent.

Proof. Since the dual code of C(H) has generator matrix ( −HT , I ), C(H)⊥

and C(HT ) are equivalent. Since C(H) is self-dual, C(H) and C(HT ) are
equivalent.

The unique Hadamard matrix of order 8 constructs an extremal self-dual
code of length 16 denoted by 2f8 in [1]. The three inequivalent Hadamard
matrices of order 20 construct three inequivalent extremal self-dual codes of
length 40 [3]. For order 32, if H is the Paley-Hadamard matrix, then C(H)
is an extremal self-dual code of length 64 [2].
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3 Hadamard matrices of order 32

3.1 Types of Hadamard matrices

By permuting and negating rows and columns, any four rows of a Hadamard
matrix of order n can be converted to the following form:

(1)


1a 1a 1a 1a 1b 1b 1b 1b

1a 1a −1a −1a 1b 1b −1b −1b

1a −1a 1a −1a 1b −1b 1b −1b

1a −1a −1a 1a −1b 1b 1b −1b

 ,

where 1m denotes the all-one vector of length m, a + b = n/4 and 0 ≤ a ≤
[n/8]. The set of four rows, which has the above form, is called type a, due
to [5]. A Hadamard matrix is of type a if it has a set of four rows of type a
and no set of four rows of type a′ < a. For order 32, there are five types of
sets of four rows, namely types 0, 1, 2, 3 and 4.

We remark that types of Hadamard matrices given in [4] were defined
for sets of four columns, and it has been shown that there are 13, 680, 757
inequivalent Hadamard matrices of order 32 which are of type 0 and there
is no Hadamard matrix of order 32 which is of type 4. Hence, there are
13, 680, 757 inequivalent Hadamard matrices H of order 32 such that HT

are of type 0, and there is no Hadamard matrix of type 4 in our sense [4].
In the next subsection, we give a proof of the latter result for the sake of
completeness.

In the next subsections, we consider Hadamard matrices of each type.
In the remaining part of the paper, H denotes (K + J)/2, where K is a
normalized Hadamard matrix of order 32 and J is the matrix with all one
entries.

3.2 Type 4

Lemma 7 ([4]). For order 32, there is no Hadamard matrix of type 4.

Proof. Let H be a Hadamard matrix of type 4. We may assume that H has
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the following form:
1111 1111 1111 1111 1111 1111 1111 1111
1111 1111 0000 0000 1111 1111 0000 0000
1111 0000 1111 0000 1111 0000 1111 0000
1111 0000 0000 1111 0000 1111 1111 0000
v0 v1 v2 v3 v4 v5 v6 v7

 ,

where vi (i = 0, 1, . . . , 7) are vectors of length 4. Let ni denote the number
of 1’s in vi. From the orthogonality of the 5-th row to each of the other rows,
we have the following:

n0 + n1 + n2 + n3 + n4 + n5 + n6 + n7 = 16,

n0 + n1 − n2 − n3 + n4 + n5 − n6 − n7 = 0,

n0 − n1 + n2 − n3 + n4 − n5 + n6 − n7 = 0,

n0 − n1 − n2 + n3 − n4 + n5 + n6 − n7 = 0.

Moreover, since the following fours set of four rows

{r1, r2, r3, r5}, {r1, r2, r4, r5}, {r1, r3, r4, r5}, {r2, r3, r4, r5},

are also of type 4, where ri denotes the i-th row in the above matrix, we also
have the following:

n0 + n4 = n1 + n5 = n2 + n6 = n3 + n7 = 4,

n0 + n5 = n1 + n4 = n2 + n7 = n3 + n6 = 4,

n0 + n6 = n1 + n7 = n2 + n4 = n3 + n5 = 4,

n0 + (4 − n7) = n1 + (4 − n6) = (4 − n2) + n5 = (4 − n3) + n4 = 4,

respectively. This system of the equations has the following unique solution:

n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = 2.

Hence, the i-th row of H has n0 = 2 for i = 5, 6, . . . , 32. This gives the
nonexistence of a Hadamard matrix of type 4.

3.3 Types 0 and 1

Lemma 8. Let H be a Hadamard matrix of order 32. If H has a set of four
rows of type 1, then HT is of type 0.
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Proof. We may assume that H contains the following five rows:
1 1 1 1 1111111 1111111 1111111 1111111
1 1 0 0 1111111 1111111 0000000 0000000
1 0 1 0 1111111 0000000 1111111 0000000
1 0 0 1 0000000 1111111 1111111 0000000
1 v1 v2 v3 v4 v5 v6 v7

 ,

where vi (i = 1, 2, 3) are vectors of length 1 and vi (i = 4, 5, 6, 7) are vectors
of length 7. Let ni denote the number of 1’s in vi (i = 1, 2, . . . , 7). From the
orthogonality of the 5-th row to each of the other rows, we have the following:

n1 + n2 + n3 + n4 + n5 + n6 + n7 = 15,

n1 − n2 − n3 + n4 + n5 − n6 − n7 = −1,

−n1 + n2 − n3 + n4 − n5 + n6 − n7 = −1,

−n1 − n2 + n3 − n4 + n5 + n6 − n7 = −1.

This implies that

n1 = 1 + n6 − n7, n2 = 1 + n5 − n7, n3 = 7 − n5 − n6, n4 = 6 − n5 − n6 + n7,

then n1 + n2 + n3 = 9− 2n7 ≡ 1 (mod 2). Therefore, we have the following:

(n1, n2, n3) = (1, 0, 0), (0, 1, 0), (0, 0, 1) or (1, 1, 1).

Let ri = (1, v1, v2, v3, v4, v5, v6, v7) denote the i-th row of H. Let s, t, u and v
be the numbers of i (i = 5, 6, . . . , 32) with

(v1, v2, v3) = (1, 1, 1), (1, 0, 0), (0, 1, 0) and (0, 0, 1),

respectively. Note that s + t + u + v = 28. From the orthogonality of among
i-th columns (i = 2, 3, 4),

s + v − t − u = 0, s + u − t − v = 0, s + t − u − v = 0.

Therefore, s = t = u = v = 7, and the set of the first four rows of HT is of
type 0.

Lemma 9. If H is of type 0 or 1, then C(H) is not extremal.
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Proof. There is a codeword of weight 12 corresponding to some linear com-
bination of the four rows of type 0. For a Hadamard matrix H of type 1,
by Lemma 8, HT is of type 0. Hence, C(HT ) contains a codeword of weight
12. Since C(H) is self-dual, C(H) and C(HT ) are equivalent, by Lemma 6.
Hence, if H is of type 0 or 1, then C(H) contains a codeword of weight 12,
that is, C(H) is not extremal.

Remark 10. By Lemmas 6 and 9, the 13, 680, 757 inequivalent Hadamard
matrices found in [4] give no extremal self-dual code.

3.4 Type 2

Suppose that H is of type 2. By Lemma 6, C(H) and C(HT ) are equivalent.
By Lemma 9, if HT is of type 0 or 1, then C(H) is not extremal. Hence, we
may assume that HT has no set of four rows of type 0 or 1. Moreover, we
may assume that H has the following form:

11 11 11 11 111111 111111 111111 111111
11 11 00 00 111111 111111 000000 000000
11 00 11 00 111111 000000 111111 000000
11 00 00 11 000000 111111 111111 000000
v0 v1 v2 v3 v4 v5 v6 v7

 ,

where vi (i = 0, 1, 2, 3) are vectors of length 2 and vi (i = 4, 5, 6, 7) are vectors
of length 6. Let ni denote the number of 1’s in vi. From the orthogonality
of the 5-th row to each of the other rows, we have the following:

n0 + n1 + n2 + n3 + n4 + n5 + n6 + n7 = 16,

n0 + n1 − n2 − n3 + n4 + n5 − n6 − n7 = 0,

n0 − n1 + n2 − n3 + n4 − n5 + n6 − n7 = 0,

n0 − n1 − n2 + n3 − n4 + n5 + n6 − n7 = 0.

We remark that this gives

n4 = 4 +
1

2
(−n0 − n1 − n2 + n3), n5 = 4 +

1

2
(−n0 − n1 + n2 − n3),

n6 = 4 +
1

2
(−n0 + n1 − n2 − n3), n7 = 4 +

1

2
(n0 − n1 − n2 − n3).
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Table 1: (n0, n1, n2, n3) for the solutions si

si n0 n1 n2 n3 si n0 n1 n2 n3 si n0 n1 n2 n3

s1 2 2 2 2 s10 2 0 2 2 s19 1 1 2 2
s2 2 2 2 0 s11 2 0 2 0 s20 1 1 2 0
s3 2 2 1 1 s12 2 0 1 1 s21 1 1 1 1
s4 2 2 0 2 s13 2 0 0 2 s22 1 1 0 2
s5 2 2 0 0 s14 2 0 0 0 s23 1 1 0 0
s6 2 1 2 1 s15 1 2 2 1 s24 1 0 2 1
s7 2 1 1 2 s16 1 2 1 2 s25 1 0 1 2
s8 2 1 1 0 s17 1 2 1 0 s26 1 0 1 0
s9 2 1 0 1 s18 1 2 0 1 s27 1 0 0 1

Since H is normalized, v0 = (11) or (10). Hence, n0 = 2 or 1. Under this
condition, this system of equations has 27 solutions si (i = 1, 2, . . . , 27),
where (n0, n1, n2, n3) are listed in Table 1 for each solution si.

By considering the orthogonality of columns, types of sets of four columns
among the first eight columns, and the condition that C(HT ) is extremal, we
determined the sets of the possible solutions si5 , si6 , . . . , si32 corresponding to
the rows r5, r6, . . . , r32, respectively, where rj denotes the j-th row of H. By
permuting rows, it is sufficient to consider the possible solutions under the
following conditions:

1. i5, i6, . . . , i16 ∈ {1, 2, . . . , 14},

2. i17, i18, . . . , i32 ∈ {15, 16, . . . , 27},

3. ij ≤ ij+1 for j = 5, 6, . . . , 31.

Then there are 43 such sets, and the solutions (i5, i6, . . . , i32) are listed in
Table 2. By considering the possible solutions in Table 2, we constructed
32 × 8 submatrices in Figure 1, column by column. Then we found 1045
12 × 6 matrices A1 in Figure 1. For each of the 1045 matrices A1, based on
the possible solutions in Table 2, we tried to construct Hadamard matrices,
row by row under the assumption that H is of type 2, HT has no set of four
rows of type 0 and 1, and C(H) is extremal. However, no Hadamard matrix
is obtained under the above assumption. Therefore, we have the following:

Lemma 11. If H is of type 2, then C(H) is not extremal.

8



Table 2: Possible solutions for each row rj (j = 5, 6, . . . , 32)

(1, 3, 3, 3, 6, 8, 8, 9, 12, 12, 12, 13, 16, 17, 19, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24)
(1, 3, 3, 3, 6, 8, 8, 9, 12, 12, 12, 13, 16, 18, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 25)
(1, 3, 3, 3, 6, 8, 9, 9, 11, 12, 12, 13, 16, 17, 19, 20, 21, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 25)
(1, 3, 3, 3, 6, 8, 9, 9, 11, 12, 12, 13, 16, 18, 19, 20, 20, 21, 21, 21, 21, 21, 21, 21, 23, 23, 25, 25)
(1, 3, 3, 3, 6, 8, 9, 9, 12, 12, 12, 12, 16, 17, 19, 20, 20, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 25)
(1, 3, 3, 3, 6, 8, 9, 9, 12, 12, 12, 12, 16, 18, 19, 20, 20, 20, 21, 21, 21, 21, 21, 22, 23, 23, 25, 25)
(1, 3, 3, 3, 6, 9, 9, 9, 11, 12, 12, 12, 16, 17, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 25, 25)
(1, 3, 3, 5, 6, 6, 9, 9, 11, 12, 12, 13, 16, 16, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 23, 23, 25, 25)
(1, 3, 3, 5, 6, 6, 9, 9, 11, 12, 12, 13, 16, 17, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 25, 26)
(1, 3, 3, 5, 6, 6, 9, 9, 12, 12, 12, 12, 16, 16, 20, 20, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 25, 25)
(1, 3, 3, 5, 6, 6, 9, 9, 12, 12, 12, 12, 16, 17, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 25, 26)
(1, 3, 3, 5, 6, 7, 8, 9, 11, 12, 12, 13, 15, 16, 20, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 25)
(1, 3, 3, 5, 6, 7, 8, 9, 11, 12, 12, 13, 15, 18, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 25, 26)
(1, 3, 3, 5, 6, 7, 8, 9, 12, 12, 12, 12, 15, 16, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 25)
(1, 3, 3, 5, 6, 7, 8, 9, 12, 12, 12, 12, 15, 17, 19, 20, 21, 21, 21, 21, 21, 21, 22, 22, 22, 23, 24, 26)
(1, 3, 3, 5, 6, 7, 8, 9, 12, 12, 12, 12, 15, 18, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 25, 26)
(1, 3, 3, 6, 6, 8, 8, 9, 9, 12, 12, 13, 16, 16, 17, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 25)
(1, 3, 3, 6, 6, 8, 8, 9, 9, 12, 12, 13, 16, 16, 18, 20, 20, 21, 21, 21, 21, 21, 21, 23, 23, 24, 25, 25)
(1, 3, 3, 6, 6, 8, 8, 9, 9, 12, 12, 13, 16, 17, 18, 19, 20, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26)
(1, 3, 3, 6, 6, 8, 9, 9, 9, 12, 12, 12, 16, 16, 17, 20, 20, 21, 21, 21, 21, 21, 22, 23, 23, 24, 25, 25)
(1, 3, 3, 6, 6, 8, 9, 9, 9, 12, 12, 12, 16, 16, 18, 20, 20, 20, 21, 21, 21, 21, 21, 23, 23, 25, 25, 25)
(1, 3, 3, 6, 6, 8, 9, 9, 9, 12, 12, 12, 16, 17, 17, 19, 20, 21, 21, 21, 21, 21, 22, 22, 23, 24, 25, 26)
(1, 3, 3, 6, 7, 8, 8, 8, 9, 12, 12, 13, 15, 16, 17, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 24)
(1, 3, 3, 6, 7, 8, 8, 8, 9, 12, 12, 13, 15, 16, 18, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 25)
(1, 3, 3, 6, 7, 8, 8, 8, 9, 12, 12, 13, 15, 18, 18, 19, 20, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26)
(1, 3, 3, 6, 7, 8, 8, 9, 9, 11, 12, 13, 15, 16, 17, 21, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 25)
(1, 3, 3, 6, 7, 8, 8, 9, 9, 11, 12, 13, 15, 17, 18, 19, 21, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26)
(1, 3, 3, 6, 7, 8, 8, 9, 9, 12, 12, 12, 15, 16, 17, 20, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25)
(1, 3, 3, 6, 7, 8, 8, 9, 9, 12, 12, 12, 15, 17, 17, 19, 21, 21, 21, 21, 21, 22, 22, 22, 23, 24, 24, 26)
(1, 3, 3, 6, 7, 8, 8, 9, 9, 12, 12, 12, 15, 17, 18, 19, 20, 21, 21, 21, 21, 21, 22, 22, 23, 24, 25, 26)
(1, 3, 3, 6, 7, 8, 8, 9, 9, 12, 12, 12, 15, 18, 18, 19, 20, 20, 21, 21, 21, 21, 21, 22, 23, 25, 25, 26)
(3, 3, 3, 3, 6, 6, 9, 9, 12, 12, 12, 12, 16, 16, 19, 20, 20, 20, 21, 21, 21, 21, 22, 23, 23, 23, 25, 25)
(3, 3, 3, 3, 6, 6, 9, 9, 12, 12, 12, 12, 16, 17, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 25, 26)
(3, 3, 3, 3, 6, 7, 8, 9, 12, 12, 12, 12, 15, 16, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 23, 24, 25)
(3, 3, 3, 3, 6, 7, 8, 9, 12, 12, 12, 12, 15, 18, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 25, 26)
(3, 3, 3, 6, 6, 6, 9, 9, 9, 12, 12, 12, 16, 16, 16, 20, 20, 20, 21, 21, 21, 21, 23, 23, 23, 25, 25, 25)
(3, 3, 3, 6, 6, 6, 9, 9, 9, 12, 12, 12, 16, 16, 17, 19, 20, 20, 21, 21, 21, 21, 22, 23, 23, 25, 25, 26)
(3, 3, 3, 6, 6, 7, 8, 9, 9, 12, 12, 12, 15, 16, 16, 20, 20, 21, 21, 21, 21, 22, 23, 23, 23, 24, 25, 25)
(3, 3, 3, 6, 6, 7, 8, 9, 9, 12, 12, 12, 15, 16, 17, 19, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 25, 26)
(3, 3, 3, 6, 6, 7, 8, 9, 9, 12, 12, 12, 15, 16, 18, 19, 20, 20, 21, 21, 21, 21, 22, 23, 23, 25, 25, 26)
(3, 3, 6, 6, 7, 7, 8, 8, 9, 9, 12, 12, 15, 15, 16, 17, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 26)
(3, 3, 6, 6, 7, 7, 8, 8, 9, 9, 12, 12, 15, 15, 16, 18, 20, 21, 21, 21, 21, 22, 23, 23, 24, 25, 25, 26)
(3, 3, 6, 6, 7, 7, 8, 8, 9, 9, 12, 12, 15, 16, 17, 18, 19, 20, 21, 21, 21, 21, 22, 23, 24, 25, 26, 27)
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Figure 1: A Hadamard matrix of type 2

3.5 Type 3

Suppose that H is of type 3. If HT is of type 0, 1 or 2, then by Lemmas 6, 9
and 11, C(H) is not extremal. Hence, for the remainder of this subsection,
we assume that both H and HT are of type 3, unless specified otherwise.

We first show that every Hadamard matrix of type 3 has a set of rows of
type 4. To make it computationally feasible, it is better to use the four rows
of type 4.

Lemma 12. If both H and HT are of type 3, then H contains a set of four
rows of type 4.

Proof. We may assume that H contains the following five rows:

M3 =


11111 111 111 111 111 11111 11111 11111
11111 111 111 000 000 11111 00000 00000
11111 111 000 111 000 00000 11111 00000
11111 000 111 111 000 00000 00000 11111

v0 v1 v2 v3 v4 v5 v6 v7

 ,

where vi (i = 0, 5, 6, 7) are vectors of length 5 and vi (i = 1, 2, 3, 4) are vectors
of length 3. Let ni denote the number of 1’s in vi. We remark that the above
form is slightly different from that in (1). Because there are eight columns
such that all entries in the first three rows are 1 from the property of the
corresponding Hadamard 2-designs, we take these columns as the first eight
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ones. Moreover, we may assume that v0 has the form of one of the following
three cases:

Case 3-1 3-2 3-3
v0 (11111) (11110) (11100)

• Case 3-1: First we show that n1 = n2 = n3 = 0 and n4 = 3. Suppose
contrary, that is, for some i (i = 1, 2, 3) ni > 0 or n4 ≤ 2. Then there
is a set of four rows among the first five rows which is of type ≤ 2.
Hence, n1 = n2 = n3 = 0 and n4 = 3. From the orthogonality of the
5-th row to each of the other rows, we have the following:

n5 + n6 + n7 = 8,

n5 − n6 − n7 = −2,

−n5 + n6 − n7 = −2,

−n5 − n6 + n7 = −2.

This system of equations has no solution.

• Case 3-2: From the orthogonality of the 5-th row to each of the other
rows, we have the following:

n1 + n2 + n3 + n4 + n5 + n6 + n7 = 12,

n1 + n2 − n3 − n4 + n5 − n6 − n7 = −4,

n1 − n2 + n3 − n4 − n5 + n6 − n7 = −4,

−n1 + n2 + n3 − n4 − n5 − n6 + n7 = −4.

This gives the following:

n4 = n1 + n2 + n3, n5 = 4 − n1 − n2,

n6 = 4 − n1 − n3, n7 = −4 − n2 − n3.

If ni ≥ 2 (i = 1, 2, 3), then, by interchanging the 5-th row and the
(5 − i)-th row, the set of the first four rows is of type ≤ 2. Then we
may assume that n1 ≤ 1, n2 ≤ 1 and n3 ≤ 1. Similarly, we have n4 ≥ 2.
Hence, we have the following four possible (n1, n2, n3, n4):

n1 n2 n3 n4

(a) 1 1 0 2
(b) 1 0 1 2
(c) 0 1 1 2
(d) 1 1 1 3

11



For (a), the set of the i-th rows (i = 1, 3, 4, 5) is of type 4. Similarly,
for (b) and (c), there is a set of four rows of type 4. For (d), by
interchanging the first row and the second row, the matrix satisfies the
condition (a).

• Case 3-3: If for some i ni = 1 (i = 1, 2, 3) or n4 = 2, then, by in-
terchanging the 5-th row and the j-th row (j = 1, 2, 3, 4), the set of
the first four rows is of type 4. Similarly, if ni = 3 (i = 1, 2, 3) or
n4 = 0, then we have a set of four rows of type ≤ 2. Hence, we have
the following:

(2) n1, n2, n3, 3 − n4 ∈ {0, 2}.

From the orthogonality of the 5-th row to each of the other rows, we
have the following:

n1 + n2 + n3 + n4 + n5 + n6 + n7 = 13,

n1 + n2 − n3 − n4 + n5 − n6 − n7 = −3,

n1 − n2 + n3 − n4 − n5 + n6 − n7 = −3,

−n1 + n2 + n3 − n4 − n5 − n6 + n7 = −3.

So, we have n1 + n2 + n3 = n4 + 2. This contradicts (2).

This completes the proof.

By the above lemma, we may assume that H contains the following five
rows:

M4 =


1111 1111 1111 1111 1111 1111 1111 1111
1111 1111 1111 0000 0000 1111 0000 0000
1111 1111 0000 1111 0000 0000 1111 0000
1111 0000 1111 1111 0000 0000 0000 1111
v0 v1 v2 v3 v4 v5 v6 v7

 ,

where vi (i = 0, . . . , 7) are vectors of length 4. Similar to the proof of
Lemma 12, we consider the above form instead of that in (1). Let ni denote
the number of 1’s in vi. From the property of the corresponding Hadamard
2-designs, we may assume that v0 has the form of one of the following two
cases:
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Case 4-1 4-2
v0 (1111) (1110)

• Case 4-2: For n1 = 3, we may assume that v1 = (1110). The first,
second, third rows and 5-th row can be converted to the following form:

1111 1111 1111 1111 1111 1111 1111 1111
1111 1111 1111 0000 0000 1111 0000 0000
1111 1111 0000 1111 0000 0000 1111 0000
1111 1100 v2 v3 v4 v5 v6 v7

 ,

by interchanging the 4-th and 6-th columns. The set of the four rows
is of type 2. For n1 = 0 or 4, this case is contained in Case 4-1 by
permuting and negating rows and columns. For n1 = 2, the set of
the i-th rows (i = 1, 2, 3, 5, 6) of HT is in Case 4-1, which is discussed
below.

Now consider n1 = 1. By an argument similar to the above, we may
assume that n2 = n3 = 1. Indeed, if n2 6= 1 or n3 6= 1, then each of
H,HT is in Case 4-1 or of type ≤ 2. From the orthogonality of the 5-th
row to each of the other rows, we have the following:

n4 + n5 + n6 + n7 = 10,

−n4 + n5 − n6 − n7 = −4,

−n4 − n5 + n6 − n7 = −4,

−n4 − n5 − n6 + n7 = −4.

This system of equations has the following unique solution:

n4 = 1, n5 = 3, n6 = 3, n7 = 3.

By considering permutations, we may assume that vi = (1000) (i =
1, 2, 3, 4) and vi = (1110) (i = 5, 6, 7). Hence, the first five rows are as
follows:

1111 1111 1111 1111 1111 1111 1111 1111
1111 1111 1111 0000 0000 1111 0000 0000
1111 1111 0000 1111 0000 0000 1111 0000
1111 0000 1111 1111 0000 0000 0000 1111
1110 1000 1000 1000 1000 1110 1110 1110

 .

By considering the i-th rows (i = 2, 3, 4, 5), H is of type ≤ 2.
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• Case 4-1: If for some i ni ≥ 2 (i = 1, 2, 3), then, by interchanging the
5-th row and the (5− i)-th row, the set of the first four rows is of type
≤ 2. Then we may assume that n1 ≤ 1, n2 ≤ 1 and n3 ≤ 1. Similarly,
we have n4 ≥ 3. From the orthogonality of the 5-th row to each of the
other rows, we have the following:

n1 + n2 + n3 + n4 + n5 + n6 + n7 = 12,

n1 + n2 − n3 − n4 + n5 − n6 − n7 = −4,

n1 − n2 + n3 − n4 − n5 + n6 − n7 = −4,

−n1 + n2 + n3 − n4 − n5 − n6 + n7 = −4.

Hence, we have n1 + n2 + n3 = n4, which gives:

n1 = n2 = n3 = 1 and n4 = 3.

Since HT is of type 3, we may assume that H has the form given in
Figure 2 which is not a normalized Hadamard matrix. This form is
obtained by negating the i-th rows (i = 15, 16, 17) and the j-columns
(j = 17, 18, 19, 20) of a normalized Hadamard matrix. The above form
reduces our computation for finding the possible Hadamard matrices
by considering the conditions given below.

Let H ′ be the submatrix of the (0, 1)-Hadamard matrix (H +J)/2 con-
sisting of the i-th rows (i = 6, . . . , 32) and j-th columns (j = 5, . . . , 32).
Here we define an order on the set of (0, 1)-vectors of length 28. For a
(0, 1)-vector v = (e1, e2, . . . , e28) of length 28, we define

α(v) =
4∑

i=1

84−inσ(i),

β(v) = 216α(v) +
16∑

j=1

216−jej and

γ(v) = 212β(v) +
28∑

j=17

228−jej,

where σ is a permutation of {1, 2, 3, 4} satisfying nσ(1) ≥ nσ(2) ≥ nσ(3) ≥
nσ(4) for ni = 4e4i−3 + e4i−2 + e4i−1 + e4i (i = 1, 2, 3, 4). In fact, γ(v)
gives a total order in the set of vectors of length 28.
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Figure 2: A Hadamard matrix in Case 4-1

Each of Ai,j in H can be moved to the place of A1,1 preserving the i-th
rows (i = 1, 2, 3, 4, 5) and the j-th columns (j = 1, 2, 3, 4) by permuting
rows and columns and negating some of i-th rows (i = 18, 19, . . . , 32)
and some of j-th columns (j = 17, 18, . . . 32). Hence, by permuting and
negating rows and columns, H can be converted to a matrix preserving
the i-rows (i = 1, 2, 3, 4, 5) and the j-th columns (j = 1, 2, 3, 4) of H
and satisfying the following conditions:

1. β(r1) = max{β(r) | α(r) = α(r1), r ∈ {0, 1}28},
2. γ(ri) ≥ γ(ri+1) ≥ γ(ri+2) for i = 1, 4, 7, 10,

3. γ(r1) ≥ γ(r4) ≥ γ(r7) ≥ γ(r10) and

4. γ(ri) ≥ γ(ri+1) ≥ γ(ri+2) ≥ γ(ri+3) ≥ γ(ri+4) for i = 13, 18, 23,
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where ri is the i-th row of its 27 × 28 submatrix H ′.

Starting from the first five rows, we tried to construct Hadamard ma-
trices H, row by row under the above four conditions in such a way
that both H and HT are of type 3. We found exactly twelve Hadamard
matrices. Finally, we verified that each of the matrices and their trans-
posed matrices is equivalent to the Paley-Hadamard matrix.

The above argument shows that if both H and HT are of type 3, then H
is equivalent to the Paley-Hadamard matrix, which completes the proof of
Proposition 3. In addition, by considering the case which does not assume
that HT is of type 3, we have the following:

Lemma 13. If H is of type 3, then either H is equivalent to the Paley-
Hadamard matrix or C(H) is not extremal.

By Lemmas 9, 11 and 13, any Hadamard matrix H of order 32 satisfies
one of the following:

(1) H is equivalent to the Paley-Hadamard matrix,

(2) C(H) is not extremal.

This completes the proof of Theorem 1.
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