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Abstract

In this correspondence, we construct new binary singly even self-
dual codes with larger minimum weights than the previously known
singly even self-dual codes for several lengths. Several known con-
struction methods are used to construct the new self-dual codes.

1 Introduction

As described in [21], self-dual codes are an important class of linear codes
for both theoretical and practical reasons. It is a fundamental problem to
classify self-dual codes of modest length and determine the largest minimum
weight among self-dual codes of that length. By the Gleason–Pierce theorem,
there are nontrivial divisible self-dual codes over Fq for q = 2, 3 and 4 only,
where Fq denotes the finite field of order q, and this is one of the reason why
much work has been done concerning self-dual codes over these fields.

A code over F2 is called binary and all codes in this correspondence are
binary. An [n, k, d] code is an [n, k] code with minimum weight d. A code C
is self-dual if C = C⊥ where C⊥ is the dual code of C. A self-dual code C
is doubly even if all codewords of C have weight divisible by four, and singly
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even if there is at least one codeword of weight ≡ 2 (mod 4). Note that a
doubly even self-dual code of length n exists if and only if n is divisible by
eight. It was shown in [19] that the minimum weight d of a doubly even
self-dual code of length n is bounded by d ≤ 4[n/24] + 4. In [20] it is proved
that the same bound is valid also for the minimum weight d of a singly even
self-dual code of length n unless n ≡ 22 (mod 24) when d ≤ 4[n/24] + 6 or
n ≡ 0 (mod 24) when d ≤ 4[n/24]+2. The current state of knowledge about
the largest minimum weight d(n) among singly even self-dual codes of length
n can be found in [8, Table VI] and [10, Table 2] for lengths n ≤ 130.

In this correspondence, we construct new singly even self-dual codes with
larger minimum weights than the previously known singly even self-dual
codes for lengths 94, 98, 104, 122, 124, 128 and 130. Several known construc-
tion methods are used to construct the new self-dual codes.

As a summary, we list bounds on d(n) in Table 1 for 72 ≤ n ≤ 130, which
updates [8, Table VI] and [10, Table 2]. We list references which indicate the
first self-dual code with the largest minimum weight among currently known
self-dual codes of that length. For lengths 122, 124 and 126, the upper bounds
on the minimum weights have been improved by Han and Lee [13].

Table 1: Largest minimum weights of singly even self-dual codes

n d(n) Codes n d(n) Codes n d(n) Codes
72 12, 14 [5] 96 16, 18 [10] 120 18, 20, 22 [10]
74 12, 14 [5] 98 16, 18 C98 122 20, 22 C122

76 14 [1] 100 16, 18 [10] 124 20, 22 C124

78 14 [5] 102 18 [10] 126 18, 20, 22 [10]
80 14, 16 [5] 104 18, 20 NQR104(v) 128 20, 22, 24 C128

82 14, 16 [8] 106 16, 18 [23] 130 20, 22, 24 C130

84 14, 16 [8] 108 16, 18, 20 [10]
86 16 [8] 110 18, 20 [14]
88 16 [16] 112 18, 20 [14]
90 14, 16 [8] 114 18, 20 [10]
92 16 [11] 116 18, 20 [10]
94 16, 18 C94 118 18, 20, 22 [10]
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2 A self-dual [94, 47, 16] code

An extremal doubly even self-dual [24k, 12k, 4k+4] code is known for only k =
1, 2, namely, the extended Golay [24, 12, 8] code and the extended quadratic
residue [48, 24, 12] code. It is not known if there exist other extremal doubly
even self-dual codes of length 24k. It was shown in [20] that the existences
of an extremal doubly even self-dual [24k, 12k, 4k + 4] code and a self-dual
[24k−2, 12k−1, 4k+2] code are equivalent. From this viewpoint, it would be
interesting to determine the largest minimum weight among self-dual codes
of length 24k − 2. The largest minimum weight among self-dual codes of
length 70 is known as 12 or 14, and the largest minimum weight among self-
dual codes of length 94 was previously known as 14, 16 or 18 (see [8, Table
VI], [10, Table 2]). In this section, we give the first example of a self-dual
[94, 47, 16] code.

An automorphism of a code C is a permutation of the coordinates of C
which preserves C and the set consisting of all automorphisms of C forms a
group called the automorphism group of C. Self-dual codes with automor-
phisms of a fixed odd prime order have been widely investigated (see e.g.,
[17] and [22]). Using the technique developed in [17] and [22], we have found
a self-dual [94, 47, 16] code C94 with an automorphism of order 23. The code
C94 has the following generator matrix:

a a
a 1

a 1
E1 E2 E2

E1 E3 E4

F2 F3 F1

F2 F4 F1


,

where a is the all-one’s vector of length 23, Ei (i = 1, 2, 3, 4) and Fj (j =
1, 2, 3, 4) are the 11× 23 circulant matrices M with first rows r as follows:

M r M r
E1 (10000101001100110101111) F1 (11111010110011001010000)
E2 (11010001001111110100100) F2 (10010010111111001000101)
E3 (10001110110000111010101) F3 (11010101110000110111000)
E4 (10001000010001010011100) F4 (10011100101000100001000)

and the blanks are filled up with zero’s. Hence we have the following:
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Proposition 1. There is a self-dual [94, 47, 16] code. The largest minimum
weight among self-dual codes of length 94 is 16 or 18.

We have verified by Magma [2] that C94 has automorphism group of
order 23. Recall that two self-dual codes C and C ′ of length n are said
to be neighbors if dim(C ∩ C ′) = n/2 − 1. Using observations on self-dual
codes constructed by neighbors given in [4], we have verified that C94 has no
self-dual [94, 47, 18] neighbor.

Let C be a singly even self-dual code and let C0 denote the subcode of
codewords having weight ≡ 0 (mod 4). Then C0 is a subcode of codimension
1. The shadow S of C is defined to be C⊥

0 \C [5]. There are cosets C1, C2, C3

of C0 such that C⊥
0 = C0∪C1∪C2∪C3 where C = C0∪C2 and S = C1∪C3.

Shadows are often used to provide restrictions on the weight enumerators of
singly even self-dual codes. By 4) in [5, Theorem 5], a self-dual [94, 47, 16]
code C and its shadow S have the following possible weight enumerators:

WC =1 + 2αy16 + (134044− 2α+ 128β)y18

+ (2010660− 30α− 896β + 8192γ)y20

+ (22385348 + 30α+ 1280β − 106496γ − 524288δ)y22 + · · · ,
WS =δy3 + (γ − 22δ)y7 + (−β − 20γ + 231δ)y11

+ (α+ 18β + 190γ − 1540δ)y15 + · · · ,

respectively, where α, β, γ, δ are integers. By 3) in [5, Theorem 5], we have
the restrictions (δ, γ) = (0, 0), (0, 1), (1, 22). In the case (δ, γ) = (1, 22), we
have β = −209 since the sum of two vectors in the shadow is a codeword.
To save space, we do not list the possible weight enumerators for each of the
three cases.

By verifying that the number of codewords of weight 16 in C94 is 6072
and that the minimum weight of the shadow is 15, the weight enumerators
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of C94 and its shadow are determined as follows:

1 + 6072y16 + 127972y18 + 1919580y20 + 22476428y22 + 207945348y24

+ 1544755716y26 + 9310480316y28 + 45912129029y30

+ 186607647954y32 + 629006183988y34 + 1767212902156y36

+ 4155346712556y38 + 8204140462980y40 + 13635441761172y42

+ 19112684048172y44 + 22621304618224y46 + · · · ,
3036y15 + 1023776y19 + 140516064y23 + 7782503008y27

+ 189566779792y31 + 2156607786528y35 + 11933275327008y39

+ 32978781634656y43 + 46205177207592y47 + · · · ,

respectively. Hence the weight enumerator of the code C94 corresponds to
(α, β, γ, δ) = (3036, 0, 0, 0). Since the code C94 has shadow of minimum
weight 15, a doubly even self-dual [96, 48, 16] code C96 can be constructed by
Theorem 1 in [3]. We note that it has the largest minimum weight among
known doubly even self-dual codes of length 96. Moreover, from the con-
struction and the weight enumerators of C94 and its shadow, C96 has the
following weight enumerator:

1 + 9108y16 + 3071328y20 + 370937840y24 + 18637739040y28 + · · · .

Hence C96 and the codes in [7], [8] and [9] have different weight enumerators.

3 A self-dual [98, 49, 16] code

The largest minimum weight among self-dual codes of length 98 was previ-
ously known as 14, 16 or 18 (see [10, Table 2]). Self-dual codes with auto-
morphisms of odd composite order have been investigated (see e.g., [6] and
[24]). Using the technique developed in [6] and [24], we have found a self-dual
[98, 49, 16] code C98 with an automorphism of order 15 with six 15-cycles, two
3-cycles and two fixed points.

A generator matrix G98 of the code C98 is given in Figure 1, where a
is the all-one’s vector of length 15, b is the all-one’s vector of length 3, Vi

(i = 1, . . . , 8), Sj (j = 1, 2, 3) and Pt (t = 1, 2, 3) are 4×15 circulant matrices,
Lk (k = 1, 2, 3) are 2× 15 circulant matrices whereas E is the 2× 3 circulant
matrix with first row (011) and the blanks are filled up with zero’s. The first
rows r of these circulant matrices Vi, Sj, Pt and Lk are listed in Table 2.
Hence we have the following:
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G98 =



a b 1 1
a b 1 1

a b b 1
a b b 1

a a
V1 V2 V3

V1 V2 V4 V5

V1 V6 V7 V8

S1 S2 S3

S1 S3 S2

S1 S3 S2

S1 S3 S2

P2 P3 P3 P3 P1

P3 P2 P2 P2 P1

L2 L2 L3 E
L2 L2 L3 E

L1 L1 L1 L1

L1 L2 L2 L3



Figure 1: A generator matrix G98 of C98

Proposition 2. There is a self-dual [98, 49, 16] code. The largest minimum
weight among self-dual codes of length 98 is 16 or 18.

We have verified by Magma [2] that C98 has automorphism group of
order 15. Using observations on self-dual codes constructed by neighbors
given in [4], we have verified that C98 has no self-dual [98, 49, 18] neighbor.

Table 2: First rows r of circulant matrices in G98

r r r
V1 (011110111101111) V7 (011110111101111) P2 (111010110010001)
V2 (110001100011000) V8 (001010010100101) P3 (101100100011110)
V3 (101001010010100) S1 (000100110101111) L1 (011011011011011)
V4 (011000110001100) S2 (110001001101011) L2 (011011011011011)
V5 (110111101111011) S3 (101111000100110) L3 (110110110110110)
V6 (100101001010010) P1 (011110101100100)

By 4) in [5, Theorem 5], a self-dual [98, 49, 16] code C and its shadow S

6



have the following possible weight enumerators:

WC =1 + (−13965 + ε)y16 + (56791 + 32δ + ε)y18

+ (1480192 + 2048γ − 160δ − 16ε)y20

+ (16081408 + 131072β − 22528γ − 96δ − 16ε)y22

+ (161249200 + 8388608α− 2228224β + 94208γ + 1760δ + 120ε)y24 + · · · ,
WS =αy + (−24α− β)y5 + (276α+ 22β + γ)y9

+ (−2024α− 231β − 20γ − δ)y13

+ (10626α+ 1540β + 190γ + 18δ + 2ε)y17 + · · · ,

respectively, where α, β, γ, δ, ε are integers. By 3) in [5, Theorem 5], we
have the restrictions on α, β, γ as follows: (α, β) = (0, 0) or (α, β, γ) =
(0,−1, 22), (1,−24, 252).

By verifying that the number of codewords of weights 16 and 18 in C98 are
4098 and 71782, respectively, and that the minimum weight of the shadow is
13, the weight enumerators of C98 and its shadow are determined as follows:

1 + 4098y16 + 71782y18 + 1206544y20 + 15801616y22 + 163247800y24

+ 1356343448y26 + 9169891120y28 + 50909529904y30 + 233822409070y32

+ 894025332265y34 + 2860857400336y36 + 7695423884304y38

+ 17462739820776y40 + 33526024003656y42 + 54577179576240y44

+ 75458884768688y46 + 88704403419008y48 + · · · ,
96y13 + 34398y17 + 9002368y21 + 966180880y25 + 44270042080y29

+ 935282043976y33 + 9587762349984y37 + 49406723532912y41

+ 130985313214112y45 + 181029300619700y49 + · · · ,

respectively. Hence the weight enumerator of the code C98 corresponds to
(α, β, γ, δ, ε) = (0, 0, 0,−96, 18063).

4 Self-dual [104, 52, 18] codes

The largest minimum weight among singly even self-dual codes of length 104
was previously known as 16, 18 or 20 (see [10, Table 2]). In this section, we
construct singly even self-dual [104, 52, 18] codes. To do this, we need the
following lemma. The construction method given in the lemma was used in [3]
to construct an extremal singly even self-dual [48, 24, 10] code whose shadow
has minimum weight 4. We give a proof of this lemma for completeness.
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Lemma 3. Let C be a doubly even self-dual [8n, 4n, d] code with d ≥ 8. Let
v ∈ F8n

2 be a vector of weight 4. Then

NC(v) = (C ∩ ⟨v⟩⊥) ∪ {u+ v | u ∈ (C \ (C ∩ ⟨v⟩⊥))}

is a singly even self-dual neighbor of C whose shadow is (C \ (C ∩ ⟨v⟩⊥)) ∪
{u+ v | u ∈ (C ∩ ⟨v⟩⊥)}. Moreover, NC(v) has minimum weight ≥ d− 2 and
its shadow has minimum weight 4.

Proof. It follows from Lemma 3 in [3] that NC(v) is a singly even self-dual
neighbor and the shadow is (C \ (C ∩ ⟨v⟩⊥))∪{u+ v | u ∈ (C ∩ ⟨v⟩⊥)}. Note
that (C ∩ ⟨v⟩⊥) is a subcode of C of index 2 and (C ∩ ⟨v⟩⊥) has minimum
weight ≥ d. Let u be a codeword of weight d in C such that v and u are not
orthogonal. Since the cardinality of the intersections of v and u is 1 or 3, we
have wt(u+v) = d+2 or d−2, respectively. Hence {u+v |u ∈ (C \C∩⟨v⟩⊥)}
has minimum weight ≥ d − 2. Since the shadow contains the vector v, the
minimum weight of the shadow is 4.

Remark 4. If the cardinality of the intersections of v and u is 1 for all code-
words u of minimum weight, then NC(v) has minimum weight ≥ d.

The extended quadratic residue code QR104 of length 104 is an extremal
doubly even self-dual code, i.e., its minimum weight is 20. Let v ∈ F104

2 be a
vector of weight 4. By Lemma 3, NQR104(v) is a singly even self-dual neighbor
of QR104 and has minimum weight 18 or 20.

Let M = (mij) be the 1138150× 104 matrix with rows composed of the
codewords of weight 20 in QR104. Let {j1, j2, j3, j4} be the support of v.
Define n3 as the number of rows r such that wt(mrj1 ,mrj2 ,mrj3 ,mrj4) = 3.
We have verified that n3 is positive for any set of distinct j1, j2, j3, j4. For a
vector v ∈ F104

2 of weight 4, the singly even self-dual neighbor NQR104(v) has
minimum weight 18, since the number of codewords of weight 18 in NQR104(v)
is given by n3.

Let C be a singly even self-dual [104, 52, 18] code whose shadow S has
minimum weight 4. By 4) in [5, Theorem 5], C and S have the following
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possible weight enumerators:

WC =1 + (34580 + 4α)y18 + (620990− 8α)y20 + (7570900− 60α)y22

+ (110878540 + 128α)y24 + (951037984 + 416α)y26

+ (8234878800− 960α)y28 + (50899191200− 1760α)y30 + · · · ,
WS =y4 + (−1520− α)y16 + (1184890 + 9α)y20

+ (205725840− 153α)y24 + · · · ,
respectively, where α is an integer. Hence the weight enumerator ofNQR104(v)
is completely determined from the number n3.

By considering all vectors v of weight 4, singly even self-dual [104, 52, 18]
codes NQR104(v) with 18 different weight enumerators are constructed. The
numbers of codewords of weight 18 are as follows:

23208, 23424, 23484, 23616, 23628, 23640, 23652, 23664, 23676,

23700, 23736, 23748, 23772, 23784, 23796, 23808, 23868, 23988.

Hence we have the following:

Proposition 5. There are at least 18 inequivalent singly even self-dual [104, 52, 18]
codes. The largest minimum weight among singly even self-dual codes of
length 104 is 18 or 20.

Remark 6. For k = 0, 1, . . . , 4, an extremal doubly even self-dual [24k +
8, 12k+4, 4k+4] code is currently known. However, an extremal singly even
self-dual [24k + 8, 12k + 4, 4k + 4] code is currently known for only k = 1.

Although an extremal doubly even self-dual code of length 128 is not
known, there is a doubly even self-dual [128, 64, 20] code, namely, the ex-
tended quadratic residue code QR128 of length 128 (see e.g., [18, Fig. 16.2]).
Thus a singly even self-dual [128, 64, d ≥ 18] code can be constructed by the
above construction. We have verified that these singly even self-dual codes
NQR128(v) have minimum weight 18 for all vectors v of weight 4. In Section 5,
we construct a singly even self-dual [128, 64, 20] code by a different method.

5 Double circulant and four-circulant self-dual

codes

Let Dp and Db be codes with generator matrices of the form(
In R

)
(1)
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and 
0 1 · · · 1
1

In+1
... R′

1

 ,(2)

respectively, where In is the identity matrix of order n and R and R′ are n×n
circulant matrices. The codes Dp and Db are called pure double circulant
and bordered double circulant, respectively. These two families are called
double circulant codes. Bordered double circulant codes are considered only
when the length is divisible by four for self-dual codes. A number of double
circulant self-dual codes with large minimum weights are known (see e.g.,
[21, Table XI]).

By considering double circulant codes, we have found singly even self-dual
codes with larger minimum weights than the previously known singly even
self-dual codes for lengths 122, 124 and 130. These codes are listed in Table 3
where the first rows of R and R′ in (1) and (2) are written in octal using
0 = (000), 1 = (001), . . . , 6 = (110) and 7 = (111), together with a = (0)
and b = (1).

Table 3: Double circulant singly even self-dual codes

Codes Parameters Types First rows of R,R′

C122 [122, 61, 20] pure (1) 37247673745647577736b
C124 [124, 62, 20] bordered (2) 33377772232376476036a
C130 [130, 65, 20] pure (1) 341222607257021041672ba

Let A,B be n × n circulant matrices with AAT + BBT = In where AT

denotes the transposed matrix of A. Then the following matrix(
I2n

A B
BT AT

)
(3)

generates a self-dual code of length 4n [15]. A code with generator matrix of
the form (3) is called a four-circulant code.

By considering four-circulant codes, we have found a singly even self-dual
[128, 64, 20] code C128 where the first rows rA and rB of A and B are given
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by

rA = (00000000000000000000000101110111),

rB = (00010010111110110100010011110111)

respectively.

Proposition 7. There is a singly even self-dual code with minimum weight
20 for lengths 122, 124, 128 and 130. The largest minimum weights among
singly even self-dual codes of lengths 122 and 124 are 20 or 22. The largest
minimum weight among singly even self-dual codes of lengths 128, 130 are
20, 22, 24.

Remark 8. The code C122 has the smallest length among all known singly
even self-dual codes with minimum weight 20.

Similarly to the previous sections, by 4) in [5, Theorem 5], one can de-
termine the possible weight enumerators of a singly even self-dual code with
minimum weight 20 and its shadow for lengths 122, 124, 128 and 130. To save
space, instead of listing the possible weight enumerators, we only give the
weight enumerators of C122, C124, C128, C130 and their shadows in Appendix.
Similarly to previous sections, these weight enumerators are determined by
calculating the numbers of codewords of some small weights in the codes and
vectors of some small weights in the shadows.

From the weight enumerator of the shadow of C130, the code C130 has
shadow of minimum weight 21. Hence a singly even self-dual [132, 66, 20]
code C132 can be constructed by Theorem 1 in [3]. By Lemma 2.2 in [12],
C132 is equivalent to some bordered double circulant code. More precisely, let
R130 denote the circulant matrix R in (1) whose first row is given in Table 3
for C130, then the bordered double circulant [132, 66, 20] code has generator
matrix of the form (2) with R′ = R130 + J where J is the 65 × 65 all-one’s
matrix.

Appendix

In Appendix, we give the weight enumerators of C122, C124, C128, C130 and
their shadows.
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• C122:

1 + 40504y20 + 833504y22 + 14441140y24 + 214072119y26 + 2586270680y28

+ 25960795288y30 + 219075853901y32 + 1564125084020y34

+ 9504006041408y36 + 49412274116600y38 + 220834594415920y40

+ 851791640160968y42 + 2845308862653280y44 + 8255517456717792y46

+ 20858354044569240y48 + 45990544755515312y50 + 88651459245343888y52

+ 149610950855761440y54 + 221307624817578744y56

+ 287177772256766235y58 + 327090617819814992y60 + · · · ,
122y17 + 386984y21 + 114367558y25 + 16751580880y29 + 1195052746430y33

+ 44180393491848y37 + 883339560949122y41 + 9863734665439168y45

+ 63000747752486180y49 + 234173658832333520y53 + 512501876230394332y57

+ 664905510505341664y61 + · · · ,

• C124:

1 + 36051y20 + 351482y22 + 15460755y24 + 114868856y26 + 2797860221y28

+ 16748729740y30 + 245054582579y32 + 1195059547320y34 + 11068047329911y36

+ 44180402833266y38 + 270247143772023y40 + 883339427107680y42

+ 3697099840171248y44 + 9863735213124496y46 + 29113872688519296y48

+ 63000746325221600y50 + 134642002439168310y52 + 234173661537182100y54

+ 370918577071670390y56 + 512501872315350160y58 + 614268389508276191y60

+ 664905514925060552y62 + · · · ,
y2 + 1830y18 + 1209508y22 + 343584757y26 + 45292811832y30 + 2978286811987y34

+ 103096535801812y38 + 1955966234164566y42 + 20964559886851232y46

+ 129849648756676900y50 + 472436065337927560y54 + 1020987278111848215y58

+ 1319086740852007504y62 + · · · ,
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• C128:

1 + 13024y20 + 320512y22 + 6518752y24 + 107893760y26 + 1469363744y28

+ 16720209920y30 + 160226846380y32 + 1302352537600y34 + 9035848504480y36

+ 53803977344000y38 + 276262690956384y40 + 1228261246620672y42

+ 4745554927466592y44 + 15983581208993792y46 + 47058043512730944y48

+ 121390540976971776y50 + 274913871912485568y52 + 547522392265574400y54

+ 960297391979480000y56 + 1484888156480481280y58 + 2025991464692893504y60

+ 2440617963090440192y62 + 2596788462320257062y64

+ 2440617963090440192y66 + · · · ,
28576y20 + 13091392y24 + 2938351968y28 + 320450416000y32 + 18071749841120y36

+ 552525047121216y40 + 9491111198540832y44 + 94116083150578176y48

+ 549827752330122816y52 + 1920594769299617920y56 + 4051982949582894016y60

+ 5193576902188343552y64 + 4051982949582894016y68 + · · · ,

• C130:

1 + 14820y20 + 239200y22 + 4866550y24 + 84444690y26 + 1195427480y28 + 14160399812y30

+ 141341763225y32 + 1197407548675y34 + 8666776384500y36 + 53887428543000y38

+ 289196668851610y40 + 1345216010815950y42 + 5443429581532800y44

+ 19222937313175700y46 + 59407062922649000y48 + 161053751175916248y50

+ 383808322960607880y52 + 805434249367993440y54 + 1490576391613268700y56

+ 2435600008912190900y58 + 3517171510883065360y60 + 4491786997192989000y62

+ 5075541090706863075y64 + · · · ,
111800y21 + 41722096y25 + 8411337480y29 + 839432682400y33 + 44036959493800y37

+ 1269642358436400y41 + 20806002123314200y45 + 198831792219798400y49

+ 1129699986919274160y53 + 3870268502236978400y57 + 8072196934786862800y61

+ 10307252656439079360y65 + · · · ,
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