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Abstract

We provide a classification method of weighing matrices based on
a classification of self-orthogonal codes. Using this method, we clas-
sify weighing matrices of orders up to 15 and order 17, by revising
some known classification. In addition, we give a revised classification
of weighing matrices of weight 5. A revised classification of ternary
maximal self-orthogonal codes of lengths 18 and 19 is also presented.

1 Introduction

A weighing matrix W of order n and weight k is an n × n (1,−1, 0)-matrix
W such that WW T = kIn, where In is the identity matrix of order n and W T

denotes the transpose of W . A weighing matrix of order n and weight n is
also called a Hadamard matrix. We say that two weighing matrices W1 and
W2 of order n and weight k are equivalent if there exist (1,−1, 0)-monomial
matrices P and Q with W1 = PW2Q.

Chan, Rodger and Seberry [4] began a classification of weighing matrices
and they classified all weighing matrices of weight k ≤ 5 and all weighing
matrices of orders n ≤ 11. Ohmori [17] and [19] classified weighing matrices
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of orders 12 and 13, respectively. At order 14, weighing matrices of weights
k ≤ 8 and 13 were classified in [4] and [18], respectively. At order 17, all
weighing matrices of weight 9 with intersection number 8 were classified
in [20].

In this paper, we extend the classification of weighing matrices using the
known classification of self-orthogonal codes. Let Zm be the ring of integers
modulo m, where m is an integer greater than 1. Let W be a weighing matrix
of order n and weight k, and suppose that m is a divisor of k. If we regard the
entries of W as elements of Zm, then the rows of W generate a self-orthogonal
Zm-code. This means that W can be regarded as a subset of codewords in
some maximal self-orthogonal code. For example, a classification of weighing
matrices of order 16 and weight 6 can be derived from the known classification
of ternary self-dual codes of length 16 given in [2].

The paper is organized as follows. In Section 2, we review the known
classification of maximal self-orthogonal codes needed for our classification
of weighing matrices. It turns out that there are errors in the classification
of ternary maximal self-orthogonal codes of lengths 18 and 19 given in [22],
and we correct them. In Section 3, we give a detailed description of our
classification method of weighing matrices of order n and weight k based on
the classification of self-orthogonal Zm-codes of length n, where m is a divisor
of k. Our method, applied to the known classification of self-dual F5-codes of
length 12, leads to a classification of weighing matrices of order 12 and weight
5. This reveals an omission in the classification given in [4, Theorem 5], and
a revised classification of weighing matrices of weight 5 for all orders is given
in Section 4, while a revised classification of weighing matrices of order 12 for
all weights is given in Section 5. In Section 6, we classify weighing matrices
of orders 14, 15 and 17. Again, there is an error in the number of weighing
matrices of order 14 and weight 8 given in [17, Theorem 3], and we correct it.
This completes a classification of weighing matrices of orders n ≤ 17 except
n = 16. Weighing matrices of order n and k are also classified for

(n, k) = (16, 6), (16, 9), (16, 12), (18, 9)

in Section 7. All weighing matrices given in this paper can be obtained
electronically from [11].
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2 Maximal self-orthogonal codes

2.1 Codes

We shall exclusively deal with the case Zp = Fp and Z4, where Fp denotes
the finite field of odd prime order p. A Zm-code C of length n (or a code C
of length n over Zm) is a Zm-submodule of Zn

m. The dual code C⊥ of C is
defined as C⊥ = {x ∈ Zn

m | x · y = 0 for all y ∈ C} under the standard inner
product x · y. A code C is self-dual if C = C⊥, and C is self-orthogonal if
C ⊂ C⊥. A self-dual Fp-code of length n exists if and only if n is even for
p ≡ 1 (mod 4), and n ≡ 0 (mod 4) for p ≡ 3 (mod 4). A self-dual Z4-code
exists for every length.

A self-orthogonal code C is maximal if C is the only self-orthogonal code
containing C. The dimension of a maximal self-orthogonal Fp-code of length
n is a constant depending only on n and p, and a self-dual code is automati-
cally maximal. More precisely, for p ≡ 1 (mod 4), a maximal self-orthogonal
Fp-code of length n has dimension (n− 1)/2 if n is odd. For p ≡ 3 (mod 4),
a maximal self-orthogonal Fp-code of length n has dimension (n−1)/2 if n is
odd, n/2−1 if n ≡ 2 (mod 4). It is easy to see that a maximal self-orthogonal
Z4-code is necessarily self-dual for every length.

Two codes C and C ′ are equivalent if there exists a (1,−1, 0)-monomial
matrix P with C ′ = CP = {xP | x ∈ C}. The automorphism group Aut(C)
of C is the group of all (1,−1, 0)-monomial matrices P with C = CP . Our
classification method of weighing matrices of order n and weight k = mt
requires a classification of maximal self-orthogonal Zm-codes of length n (see
Section 3). In this paper, some classifications of maximal self-orthogonal Zm-
codes are used for m = 3, 4, 5, 7 to classify weighing matrices. The current
knowledge on the classifications of such codes is listed in Table 1.

2.2 Ternary maximal self-orthogonal codes

An F3-code is called ternary. All ternary maximal self-orthogonal codes
of lengths 4m + 1, 4m + 2, 4m + 3 can be obtained from self-dual codes of
length 4m + 4 by subtracting (see [2]). A classification of ternary maximal
self-orthogonal codes of lengths 3, . . . , 12, lengths 13, 14, 15, 16 and lengths
17, 18, 19, 20 was done in [15], [2] and [22], respectively.

In the course of reproducing a classification of ternary maximal self-
orthogonal codes of lengths up to 20, we discovered errors in the classification

3



Table 1: Maximal self-orthogonal Zm-codes of length n

Zm Lengths n References
F3 1, . . . , 12 [15]

13, . . . , 16 [2]
17, . . . , 20 [22] (see also this section)
24 [9]

Z4 1, . . . , 9 [3]
10, . . . , 15 [5]
16 (Type II) [21]
16 (Type I), 17, 18, 19 [10]

F5 1, . . . , 12 [14]
13, . . . , 16 [8]

F7 1, . . . , 9 [23]
10, . . . , 13 [7]

for lengths 18 and 19. The numbers of ternary maximal self-orthogonal codes
of lengths 18 and 19 are listed in [22, Table IV] as 154 and 54, respectively.
However, we verified that the correct numbers are 160 and 56, respectively.
Let C20,i denote the i-th self-dual code of length 20 given in [22, Tables II and
III], and let n18(i) and n19(i) denote the numbers of inequivalent maximal
self-orthogonal codes of lengths 18 and 19, respectively, obtained from C20,i

by subtracting. Let C
(k)
20,i denote the self-orthogonal code of length 19 ob-

tained from C20,i by subtracting the k-th coordinate. Although the numbers
n19(20) and n19(23) are listed as both 1 in [22, Table IV], we verified that

the codes C
(i)
20,20 (i = 1, . . . , 20) are equivalent to one of the two inequivalent

codes C
(1)
20,20, C

(20)
20,20, and the codes C

(i)
20,23 (i = 1, . . . , 20) are equivalent to one

of the two inequivalent codes C
(1)
20,23, C

(20)
20,23. In fact, these four codes have

different automorphism groups, of orders 32, 128, 576 and 5184, respectively.
Hence, we conclude that n19(20) = n19(23) = 2. Since [22, Table IV] also
contains incorrect values for n18(i), we list their correct values in Table 2.

In order to check that a classification is complete, in all of the classification
results, we first verified by Magma that all codes are inequivalent. This was
done by the Magma function IsIsomorphic, as well as by checking that all
codes have different numbers (B0, B1, . . . , Bn), where Bj is the number of
distinct cosets of weight j. Then we checked the mass formula, that is, we
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computed the sum in ∑
C∈C

2n · n!

|Aut(C)|
, (1)

where C is the set of inequivalent maximal self-orthogonal codes of length
n and we checked against the known formula for the number N0 of distinct
maximal self-orthogonal codes of length n, which is given in [15, p. 650].
The automorphism group Aut(C) of C is calculated by the Magma function
AutomorphismGroup. Note that each summand in (1) expresses the cardi-
nality of the equivalence class of a given a code C and the sum of all these
cardinalities is equal to N0. The numbers # of all inequivalent maximal
self-orthogonal codes of lengths up to 20 are listed in Table 3, and generator
matrices of those codes can be obtained electronically from [11].

Proposition 1. Up to equivalence, there are 160 and 56 ternary maximal
self-orthogonal codes of lengths 18 and 19, respectively.

Table 2: Ternary maximal self-orthogonal codes of lengths 18 and 19

i n18(i) n19(i) i n18(i) n19(i) i n18(i) n19(i)
1 2 1 9 5 2 17 16 5
2 5 2 10 8 2 18 12 4
3 4 2 11 4 2 19 3 1
4 7 3 12 12 4 20 10 2
5 7 3 13 8 3 21 4 1
6 6 3 14 9 3 22 5 1
7 4 2 15 10 3 23 5 2
8 5 2 16 7 2 24 2 1

Total 160 56

3 Classification method

When n is odd, the existence of a weighing matrix of order n and weight k
implies that k is a square and (n − k)2 + (n − k) + 1 ≥ n. When n ≡ 2
(mod 4), the existence of a weighing matrix of order n and weight k implies
that k is the sum of two squares and k ≤ n − 1 [4].
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Table 3: Ternary maximal self-orthogonal codes

Length # References Length # References
3 1 [15] 12 3 [15]
4 1 [15] 13 7 [2]
5 1 [15] 14 22 [2]
6 2 [15] 15 12 [2]
7 1 [15] 16 7 [2]
8 1 [15] 17 23 [22]
9 2 [15] 18 160 Section 2.2
10 5 [15] 19 56 Section 2.2
11 3 [15] 20 24 [22]

For the remainder of this section, let W = (wij) be a weighing matrix
of order n and weight k. The number

∑n
s=1 w2

isw
2
js is called the intersection

number of i-th row ri and the j-th row rj (i 6= j). The maximum number
among intersection numbers for rows of W and W T is called the intersection
number of W [20]. We say that rj intersects ri in 2` places if the intersection
number is 2` [4]. For a fixed row ri, let x2` be the numbers of rows rj other
than ri such that the intersection number of ri and rj is 2`. The sequence
(x0, x2, . . . , x2bn/2c) is called the intersection pattern corresponding to ri [4].
The number

∑n
j=1 w2

sjw
2
tjw

2
uj is called the generalized intersection number

and the following set of generalized intersection numbers

N(i) =
∣∣∣{{s, t, u} |

n∑
j=1

w2
sjw

2
tjw

2
uj = i, 1 ≤ s, t, u ≤ n (s 6= t, s 6= u, t 6= u)

}∣∣∣
is called the g-distribution (see [20]). Note that there are inequivalent weigh-
ing matrices with the same g-distribution.

Let Cm(W ) be the Zm-code generated by the rows of W , where the entries
of W are regarded as elements of Zm. The following is trivial.

Lemma 2. If k is divisible by m, then Cm(W ) is self-orthogonal.

Proposition 3. Let p be an odd prime. If k is divisible by p but k is not
divisible by p2, then Cp(W ) is a self-dual Fp-code.
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Proof. Suppose that k = pt, where t is not divisible by p. Since

det(W 2) = det(WW T ) = det(kIn) = kn,

we have | det(W )| = kn/2. Let d1|d2| · · · |dn be the elementary divisors of W
(see e.g. [16, II.17] for the definition of elementary divisors). Then

| det(W )| = d1d2 · · · dn = k
n
2 = p

n
2 t

n
2 .

Since t is not divisible by p, n must be even, and at most n/2 di’s are divisible
by p. Hence, dim Cp(W ) ≥ n/2. By Lemma 2, dim Cp(W ) ≤ n/2. The result
follows.

From now on, suppose that Zm is either Fp or Z4. Let ni(x) denote the
number of components i of x ∈ Zn

m (i ∈ Zm). Any row of W is a codeword
x of Cm(W ) such that n0(x) = n− k and n1(x) + n−1(x) = k. By Lemma 2,
Cm(W ) is self-orthogonal. It follows that the rows of W are composed of n
codewords x with n0(x) = n − k and n1(x) + n−1(x) = k in some maximal
self-orthogonal Zm-code of length n.

We now describe how all weighing matrices of order n and weight k = mt
can be constructed from maximal self-orthogonal Zm-codes of length n. Let
C be a maximal self-orthogonal Zm-code of length n, and let V be the set of
pairs {x,−x} satisfying the condition that n0(x) = n−k, n1(x)+n−1(x) = k,
x ∈ C. We define the simple undirected graph Γ, whose set of vertices is the
set V and two vertices {x,−x}, {y,−y} ∈ V are adjacent if x yT = 0, where
x = (x1, . . . , xn) ∈ {0, 1,−1}n ⊂ Zn is the vector with x mod m = x.

It follows that the n-cliques in the graph Γ are precisely the set of weighing
matrices which generate subcodes of C. It is clear that the group Aut(C) acts
on the graph Γ as an automorphism group, and therefore, the classification
of such weighing matrices reduces to finding a set of representatives of n-
cliques of Γ up to the action of Aut(C). This computation was performed
in Magma [1], the results were then converted to weighing matrices. In this
way, by considering all inequivalent maximal self-orthogonal Zm-codes of
length n, we obtain a set of weighing matrices which contain a representative
of every equivalence class of weighing matrices of order n and weight k = mt.

Since a weighing matrix does not, in general generate a maximal self-
orthogonal code, two equivalent weighing matrices may be contained in two
inequivalent maximal self-orthogonal codes. One could consider not only
maximal but also all self-orthogonal codes, and then list only those weighing
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matrices which generate the given code. This will avoid duplication of equiv-
alent weighing matrices in the classification. However, we took a different
approach for efficiency. Once we have a set of weighing matrices which could
possibly contain equivalent pairs of weighing matrices, we perform equivalent
testing by considering the associated incidence structures. This construction
of incidence structures is given by [12, Theorem 6.8], and in our case, it is
as follows. Given a weighing matrix W of order n, replacing 0, 1,−1 in each
entry by the matrices (

0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)
,

respectively, we obtain a (0, 1)-matrix of order 2n. This matrix defines a
square incidence structure D(W ) with 2n points and 2n blocks. We may
take the set of points of D(W ) to be P = {±1,±2, . . . ,±n}, so that the
permutation τ = (1,−1)(2,−2) · · · (n,−n) is a fixed-point-free involutive au-
tomorphism of D(W ). More precisely, the set of blocks B(W ) of D(W ) is

B(W ) = {Bε
i | 1 ≤ i ≤ n, ε = ±1},

where
Bε

i = {εwijj | 1 ≤ j ≤ n, wij 6= 0}.

Here an automorphism of D(W ) is a permutation of P which maps B(W )
to B(W ). The set of all automorphisms is called the automorphism group
and is denoted by Aut(D(W )). If we denote the orbits on P under τ by
P1, . . . , Pn, then the following conditions hold.

(i) |B ∩ Pi| ≤ 1 for any i (1 ≤ i ≤ n) and any block B ∈ B(W ),

(ii) for any two blocks B,B′ ∈ B(W ) such that B′ 6= B,Bτ ,

|{i | B ∩ Pi = B′ ∩ Pi 6= ∅}| = |{i | ∅ 6= B ∩ Pi 6= B′ ∩ Pi 6= ∅}|.

Let W1 and W2 be weighing matrices of the same order and weight. We say
that D(W1) and D(W2) are equivalent if there is a permutation σ of P which
maps B(W1) to B(W2). Obviously, the equivalence of W1 and W2 implies
that of D(W1) and D(W2). Conversely, the following lemma gives a criterion
under which the equivalence of D(W1) and D(W2) implies that of W1 and
W2.
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Lemma 4. Let W be a weighing matrix of order n, and let D(W ) be the
square incidence structure defined by W . Suppose that

τ = τ0 = (1,−1)(2,−2) · · · (n,−n)

is the unique fixed-point-free involutive automorphism of D(W ) satisfying
the conditions (i) and (ii) above, up to conjugacy in Aut(D(W )). If U is a
weighing matrix such that D(U) is equivalent to D(W ), then U is equivalent
to W .

Proof. Let σ denote a map from D(U) to D(W ) giving an equivalence. This
means that σ is a permutation of P which maps B(U) to B(W ).

We first claim that τ = σ−1τ0σ satisfies the conditions (i) and (ii) above.
Indeed, the orbits on P under τ are Pi = {i,−i}σ (1 ≤ i ≤ n). If B ∈ B(W ),
then Bσ−1 ∈ B(U), hence |B ∩ Pi| = |Bσ−1 ∩ {i,−i}| ≤ 1. Thus, (i) holds.

If B,B′ ∈ B(W ) and B′ 6= B,Bτ , then B′σ−1

6= Bσ−1
and B′σ−1

6= Bτσ−1
=

Bσ−1τ0 . Since (ii) holds for B(U) and τ0, we have

|{i | Bσ−1 ∩ {i,−i} = B′σ−1

∩ {i,−i} 6= ∅}|

= |{i | ∅ 6= Bσ−1 ∩ {i,−i} 6= B′σ−1

∩ {i,−i} 6= ∅}|.

Thus, (ii) holds. Therefore, the claim is proved.
By assumption, then, τ is conjugate to τ0 in Aut(D(W )). This implies

that there exists an automorphism π ∈ Aut(D(W )) such that σ−1τ0σ =
π−1τ0π. Replacing σ by σπ−1, we may assume from the beginning that σ
commutes with τ0. Then there exists a permutation ρ ∈ Sn and qj ∈ {±1}
such that (±j)σ = ±qjj

ρ. Let

B(W ) = {Bε
i | 1 ≤ i ≤ n, ε = ±1},

B(U) = {Cε
i | 1 ≤ i ≤ n, ε = ±1},

where

Bε
i = {εwijj | 1 ≤ j ≤ n, wij 6= 0},

Cε
i = {εuijj | 1 ≤ j ≤ n, uij 6= 0}.

Since B(U)σ = B(W ), for any i, there exists i′ and and pi ∈ {±1} such
that (C+

i )σ = Bpi

i′ . Since σ commutes with τ0, we have (C−
i )σ = B−pi

i′ . This
implies that there exists a permutation π ∈ Sn such that (C+

i )σ = Bpi

iπ . Thus,
qjuij = piwiπ,jρ .

Now, define monomial matrices P = (piδiπ,j), Q = (qiδiρ,j). Then we
obtain PWQ−1 = U . Therefore, W is equivalent to U .
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4 Weighing matrices of weight 5

In the course of reproducing a classification of weighing matrices of order 12
(see Section 5), we discovered errors in the classification of weighing matri-
ces of weight 5 given in [4, Theorem 5]. In this section, we give a revised
classification of weighing matrices of weight 5.

In the proof of [4, Theorem 5], the authors of [4] divide the classification
into the following three cases:

(a) at least two other rows intersect the first row in four places or,

(b) no rows intersect any other row in four places or,

(c) exactly one row intersects the first row in four places.

Then all weighing matrices of weight 5 for the three cases (a), (b) and (c)
were classified in [4, Theorem 5]. In the proof of [4, Theorem 5], D(16, 5) is
claimed to be the unique weighing matrix of weight 5 satisfying (b). However,
we found more weighing matrices of weight 5 satisfying (b). In Figure 1, we
give such weighing matrices W12,5 and W14,5 of orders 12 and 14, respectively.

Lemma 5. Let W be a weighing matrix of order 2n and weight 5 satisfying
the condition (b). Then W contains W12,5, W14,5 or D(16, 5) as a direct
summand.

Proof. From the condition (b), we may assume without loss of generality
that the first 5 rows of W have the following form:

M1 =


+ + + + + 0 0 0 0 0 0 0 · · · 0
+ − 0 0 0 + + + 0 0 0 0 · · · 0
+ 0 − 0 0 − 0 0 + + 0 0 · · · 0
+ 0 0 − 0 0 − 0 − 0 + 0 · · · 0
+ 0 0 0 − 0 0 − 0 − − 0 · · · 0

 ,

where +,− denote 1,−1, respectively. In addition, we may assume without
loss of generality that the next three rows have the following form:

M2 =

 0 + − 0 0
0 + 0 − 0 A B C
0 + 0 0 −

 ,
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W12,5 =



1 1 1 1 1 0 0 0 0 0 0 0
1 −1 0 0 0 1 1 1 0 0 0 0
1 0 −1 0 0 −1 0 0 1 1 0 0
1 0 0 −1 0 0 −1 0 −1 0 1 0
1 0 0 0 −1 0 0 −1 0 −1 −1 0
0 1 −1 0 0 0 0 1 0 −1 0 1
0 1 0 −1 0 1 0 0 0 1 −1 0
0 1 0 0 −1 0 1 0 0 0 1 −1
0 0 1 −1 0 −1 1 0 0 0 0 1
0 0 1 0 −1 0 −1 1 1 0 0 0
0 0 0 1 −1 0 0 0 −1 1 0 1
0 0 0 0 0 1 0 −1 1 0 1 1



W14,5 =



1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 1 1 1 0 0 0 0 0 0
1 0 −1 0 0 −1 0 0 1 1 0 0 0 0
1 0 0 −1 0 0 −1 0 −1 0 1 0 0 0
1 0 0 0 −1 0 0 −1 0 −1 −1 0 0 0
0 1 −1 0 0 1 0 0 0 0 0 1 1 0
0 1 0 −1 0 0 0 1 0 0 −1 0 −1 0
0 1 0 0 −1 0 1 0 0 0 1 −1 0 0
0 0 1 −1 0 0 0 0 1 0 0 0 1 −1
0 0 1 0 −1 0 0 0 0 1 0 1 0 1
0 0 0 1 −1 0 −1 1 0 0 0 0 0 −1
0 0 0 0 0 1 −1 0 1 0 0 −1 0 1
0 0 0 0 0 1 0 −1 0 1 0 0 −1 −1
0 0 0 0 0 0 0 0 1 −1 1 1 −1 0



Figure 1: Weighing matrices of orders 12, 14 and weight 5

where A is a 3×3 permutation matrix, B is some 3×3 matrix and C is some
3 × (2n − 11) matrix. Let M(A,B,C) denote the matrix(

M1

M2

)
.

If A′ = P1AP−1
1 for some 3 × 3 permutation matrix P1, then

PM(A, B,C)P−1 = M(A′, B, C),
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where

P =


I2

P1

P1

I2n−8

 .

This means that it is sufficient to consider the matrix A up to conjugacy in
the symmetric group of degree 3, so we assume A = I3, A2 or A3, where

A2 =

 + 0 0
0 0 +
0 + 0

 and A3 =

 0 0 +
+ 0 0
0 + 0

 .

• Case A = I3:
From the orthogonality of rows,

B =

 0 0 0
0 0 0
0 0 0

 and C =

 + + 0 0 · · · 0
− 0 − 0 · · · 0
0 − + 0 · · · 0

 .

Moreover, the matrix M(A,B,C) is uniquely extended to

W =

 D(16, 5) O

O ∗

 ,

up to equivalence, where O is the zero matrix.

• Case A = A2:
From the orthogonality of rows,

B =

 0 0 0
0 0 −
0 0 +

 and C =

 + + 0 · · · 0
0 − 0 · · · 0
− 0 0 · · · 0

 .

Moreover, the matrix M(A,B,C) is uniquely extended to

W =

 W14,5 O

O ∗

 ,

up to equivalence, where W14,5 is given in Figure 1.
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• Case A = A3:
From the orthogonality of rows, B must be one of the following three
matrices: 0 − 0

0 + −
0 0 +

 ,

 − 0 −
+ 0 0
0 0 +

 and

 0 − 0
+ 0 0
− + 0

 .

Then C can be considered as + 0 · · · 0
0 0 · · · 0
− 0 · · · 0

 ,

 0 0 · · · 0
+ 0 · · · 0
− 0 · · · 0

 and

 + 0 · · · 0
− 0 · · · 0
0 0 · · · 0

 ,

respectively. Moreover, for each case the matrix M(A,B,C) is uniquely
extended to

W =

 W12,5 O

O ∗

 ,

up to equivalence, where W12,5 is given in Figure 1.

Therefore, W contains W12,5, W14,5 or D(16, 5) as a direct summand.

Remark 6. For order 14, it follows from [4, Theorem 5] that there are two
inequivalent weighing matrices of weight 5, namely, E(14, 5) and W (6, 5) ⊕
W (8, 5) in [4]. On the other hand, the table in [4, Appendix B] lists the
number of inequivalent weighing matrices of weight 5 to be three, and the
missing matrix is denoted by D(14, 5) which, however, is not defined in [4].

Remark 7. Let R = (rij) be the square matrix of order n with rij = 1 if
i + j − 1 = n and 0 otherwise. If A1 and A2 are circulant matrices of order
n with entries 0,±1 satisfying A1A

T
1 + A2A

T
2 = kI, then the matrices

W1 =

(
A1 A2

−AT
2 AT

1

)
and W2 =

(
A1 A2R

−A2R A1

)
are weighing matrices of order 2n and weight k [6, Proposition 4.46]. Kot-
sireas and Koukouvinos [13] claim that all weighing matrices of the form W1

or W2 are found by an exhaustive search for n ≤ 11. Although the results of
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their search are not given, this means that they must have found the weigh-
ing matrix W14,5, since it is equivalent to the weighing matrix W1 where A1

and A2 are the circulant matrices with first rows

(1, 0, 0, 0, 0, 0, 0) and (−1, 1, 1, 0, 1, 0, 0),

respectively. We verified that no weighing matrices W1,W2 constructed from
two circulant matrices A1 and A2 are equivalent to W12,5. This was done by
finding all weighing matrices of the form W1 and W2 by an exhaustive search.

Remark 8. Let W be any of W12,5,W14,5 and D(16, 5). Then W T also satisfies
(b). Let W be the (1, 0)-matrix obtained from W by changing −1 to 1 in the
entries. Then W is the incidence matrix of a semibiplane (see [25] for the
definition of a semibiplane). The three semibiplanes obtained in this way are
given in [25, Proposition 15].

By the above lemma, we have the following revised classification for
weight 5. See [4] for the definitions of the weighing matrices W (6, 5), W (8, 5),
E(4ti + 2, 5) and F (4tj + 4, 5).

Theorem 9. Any weighing matrix of order 2n and weight 5 is equivalent to⊕
i1

W (6, 5)
⊕

i2

W (8, 5)
⊕

i3

W12,5

⊕
i4

W14,5⊕
i5

D(16, 5)
⊕

ti

( ⊕
i6

E(4ti + 2, 5)
) ⊕

tj

( ⊕
i8

F (4tj + 4, 5)
)
,

where ti ≥ 2 and tj ≥ 2.

Table 4 is a revised table of a classification of weighing matrices of order
2n ≤ 20 and weight 5 in [4, Appendix B].

5 Weighing matrices of order 12

The classification of weighing matrices of order 12 was done in [4] and [17].
In this section, we give a revised list of weighing matrices of weights 6, 8, 10.
These classifications were done by considering self-dual Zk-codes of length
12, where k = 3, 4 and 5, respectively, using the method in Section 3. These
approaches are similar, and we give details only for weight 6.

14



Table 4: Weighing matrices of weight 5

2n # Matrices
6 1 W (6, 5)
8 1 W (8, 5)
10 1 E(10, 5)
12 3 W12,5, F (12, 5), W (6, 5) ⊕ W (6, 5)
14 3 W14,5, E(14, 5), W (6, 5) ⊕ W (8, 5)
16 4 D(16, 5), F (16, 5), W (8, 5) ⊕ W (8, 5), W (6, 5) ⊕ E(10, 5)
18 5 E(18, 5), W (6, 5) ⊕ W12,5, W (6, 5) ⊕ F (12, 5), W (6, 5) ⊕ W (6, 5) ⊕ W (6, 5)

W (8, 5) ⊕ F (10, 5)
20 7 F (20, 5), W (6, 5) ⊕ W14,5, W (6, 5) ⊕ E(14, 5), W (6, 5) ⊕ W (6, 5) ⊕ W (8, 5)

W (8, 5) ⊕ W12,5, W (8, 5) ⊕ F (12, 5), E(10, 5) ⊕ E(10, 5)

5.1 Weight 6

As described in Section 3, any weighing matrix of order 12 and weight 6 can
be regarded as 12 codewords of weight 6 in some ternary self-dual code of
length 12. There are three inequivalent ternary self-dual codes of length 12
[15, Table 1], and these codes are denoted by G12, 4C3(12) and 3E4. The
code G12 has minimum weight 6 and the other codes have minimum weight
3, and the numbers of codewords of weight 6 in these codes are 264, 240 and
192, respectively. By considering sets of 12 codewords of weight 6 in these
codes, we have the following classification of weighing matrices of order 12
and weight 6, using the method in Section 3.

Theorem 10. There are 8 inequivalent weighing matrices of order 12 and
weight 6.

The number of inequivalent weighing matrices of order 12 and weight 6
was incorrectly reported as 7 in [17, Theorem 5]. The 7 inequivalent matrices
in [17, Theorem 5] are denoted by E∗

1 , E∗
2 , (E∗

2)
T , E∗

5 , E∗
14, (E∗

14)
T and G∗

2.
The missing matrix W12,6 is listed in Figure 2. We remark that W12,6 and
W T

12,6 are equivalent.

Remark 11. It is claimed in the proof of [17, Lemma 31] that there are 4
weighing matrices which are constructed from Case II up to equivalence.
The matrix W12,6 is also constructed from Case II, and hence there are 5
weighing matrices which are constructed from Case II up to equivalence.
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W12,6 =



1 1 1 1 1 1 0 0 0 0 0 0
1 1 −1 0 −1 0 0 1 1 0 0 0
1 −1 0 1 −1 0 0 −1 0 0 0 1
1 −1 0 0 0 0 0 1 −1 0 1 −1
1 0 0 −1 1 −1 0 0 0 1 0 1
1 0 0 −1 0 0 0 −1 0 −1 −1 −1
0 1 1 0 −1 −1 1 0 −1 0 0 0
0 1 −1 0 0 0 −1 −1 −1 0 1 0
0 0 1 −1 −1 1 −1 0 0 1 0 0
0 0 1 0 0 −1 −1 0 1 −1 1 0
0 0 0 1 0 −1 −1 0 0 1 −1 −1
0 0 0 0 0 0 1 −1 1 1 1 −1



W12,10 =



1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 −1 −1 −1 −1 −1 0 0
0 1 1 −1 −1 0 1 −1 1 −1 1 1

−1 0 1 1 −1 −1 0 1 −1 1 1 1
−1 −1 0 1 1 1 −1 0 1 −1 1 1

1 −1 −1 0 1 −1 1 −1 0 1 1 1
1 1 −1 −1 0 1 −1 1 −1 0 1 1
0 1 −1 1 −1 0 −1 −1 1 1 −1 1

−1 0 1 −1 1 1 0 −1 −1 1 −1 1
1 −1 0 1 −1 1 1 0 −1 −1 −1 1

−1 1 −1 0 1 −1 1 1 0 −1 −1 1
1 −1 1 −1 0 −1 −1 1 1 0 −1 1



Figure 2: Weighing matrices W12,6 and W12,10

In Table 5, we list g-distributions N(i) (i = 0, 1, . . . , 6) for the 7 matrices
given in [17, Theorem 5] along with the new matrix W12,6. Table 5 also shows
that the 8 weighing matrices are inequivalent. By Proposition 3, the ternary
codes C3(W ) generated by the rows of these matrices W are self-dual, and
the identifications with those appearing in [15] are given in the last column
of Table 5.

5.2 Weight 8

According to [17, Theorem 3], there are 6 inequivalent weighing matrices of
order 12 and weight 8. However, our method in Section 3, applied to the
known classification of self-dual Z4-codes of length 12 given in [5], leads to
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Table 5: Weighing matrices of order 12 and weight 6

W N(0) N(1) N(2) N(3) N(4) N(5) N(6) C3(W )
E∗

1 396 720 180 240 180 0 0 G12

E∗
2 516 432 420 144 204 0 0 G12

(E∗
2)T 432 528 504 48 192 0 12 4C3(12)

E∗
5 492 432 468 144 180 0 0 G12

E∗
14 708 0 756 0 252 0 0 G12

(E∗
14)

T 384 576 576 0 144 0 36 3E4

G∗
2 432 576 456 0 240 0 12 4C3(12)

W12,6 516 360 540 120 180 0 0 G12

the following classification of weighing matrices of order 12 and weight 8.

Theorem 12. There are 7 inequivalent weighing matrices of order 12 and
weight 8.

Remark 13. The 6 inequivalent matrices in [17, Theorem 3] are denoted
by A1, A3, A6, A7, A8 and A9. However, A11 appeared in the proof of [17,
Theorem 3] is inequivalent to any of the matrices Ai (i = 1, 3, 6, 7, 8, 9). This
is an error in [17, Theorem 3].

Let W be a weighing matrix of order 12 and weight 8. Let D4(W ) be the
Z4-code with generator matrix ( I12 , W ), where the matrix W is regarded
as a matrix over Z4. The numbers #D6 of codewords of weight 6 of D4(W ),
listed in Table 6, were found by the Magma function NumberOfWords. These
numbers also show that the 7 weighing matrices are inequivalent,

Table 6: Weighing matrices of order 12 and weight 8

W A1 A3 A6 A7 A8 A9 A11

#D6 2852 1764 1092 932 1124 1700 1220

5.3 Weight 10

According to [17, Theorem 1], there are 4 inequivalent weighing matrices of
order 12 and weight 10. However, our method in Section 3, applied to the
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known classification of self-dual F5-codes of length 12 given in [14], leads to
the following classification of weighing matrices of order 12 and weight 10.

Theorem 14. There are 5 inequivalent weighing matrices of order 12 and
weight 10.

The 4 inequivalent matrices in [17, Theorem 1] are denoted by A1, A4, A7

and A8. The missing matrix W12,10 is listed in Figure 2. We remark that
W12,10 and W T

12,10 are equivalent.

Remark 15. It is claimed in the proof of [17, Lemma 11] that there are only 7
vectors such that the matrices Yi are normal matrices of level 4. We verified
that this is incorrect and there is one missing vector, namely, the fourth row
of W12,10. Moreover, the 7 × 12 matrix Ȳ4 consisting of the first 7 rows of
W12,10 should be considered in [17, Lemma 12] as a possible matrix of level
7.

In Table 7, we list the self-dual F5-codes C5(W ) generated by the rows
of these matrices W , in the notation of [14]. This shows that W12,6 must be
inequivalent to any of the other 4 matrices. We consider F5-codes D5(W )
with generator matrices ( I12 , W ), where the matrices W are regarded
as matrices over F5. The numbers #D8 of codewords of weight 8 are listed
in Table 7, which also shows that the 5 weighing matrices are inequivalent.
These numbers were found by the Magma function NumberOfWords.

Table 7: Weighing matrices of order 12 and weight 10

W C5(W ) #D8

A1 F 2
6 3696

A4 F12 3000
A7 F12 4080
A8 F 2

6 4560
W12,10 K12 3792

5.4 Other weights

By Theorem 9 (see Table 4), there are 3 inequivalent weighing matrices of
order 12 and weight 5, namely, W12,5, F (12, 5), and W (6, 5) ⊕ W (6, 5). In
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Table 8, we list the self-dual F5-codes C5(W ) generated by the rows of these
matrices W , in the notation of [14].

Table 8: Weighing matrices of order 12 and weight 5

W W (6, 5) ⊕ W (6, 5) F (12, 5) W12,5

C5(W ) F 2
6 F12 K12

For weights 7 and 9, we verified that the classifications in [17] are correct,
using the classification of self-dual Fp-codes of length 12, where p = 7 and 3,
respectively. Table 9 summarizes a revised classification of weighing matrices
of order 12.

Table 9: Classification of weighing matrices of order 12

Weight # References Weight # References
1 1 [4] 7 3 [17]
2 1 [4] 8 7 Theorem 12
3 1 [4] 9 4 [17]
4 5 [4] 10 5 Theorem 14
5 3 Theorem 9 11 1 [4]
6 8 Theorem 10 12 1 [24]

6 Weighing matrices of orders 14, 15 and 17

We continue a classification of weighing matrices using the method in Sec-
tion 3. Then we have the following classification of weighing matrices of
order n and weight k for

(n, k) = (14, 8), (14, 9), (14, 10), (15, 9) and (17, 9), (2)

using the classification of maximal self-orthogonal Zm-codes of length n (see
Section 2), where m = 4, 3, 5, 3 and 3, respectively. Since approaches are
similar to that used in Section 5, we only list in Table 10 the numbers # of
inequivalent weighing matrices of order n and weight k for (n, k) listed in (2).
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Hence, our result completes a classification of weighing matrices of orders up
to 15 and order 17.

Table 10: Classification of weighing matrices of orders 14, 15 and 17

Order Weight # References Order Weight # References
14 1 1 [4] 15 1 1 [4]

2 1 [4] 4 6 [4]
4 3 [4] 9 37 Section 6
5 3 Theorem 9 17 1 1 [4]
8 66 Section 6 4 3 [4]
9 7 Section 6 9 2360 Section 6
10 19 Section 6 16 1 [4]
13 1 [4]

Now, we compare our classifications with the known classifications for
(n, k) = (14, 8) and (17, 9). According to [18, Theorem 3.9], there are 65
inequivalent weighing matrices of order 14 and weight 8. Using the classifi-
cation of self-dual Z4-codes of length 14, we classified weighing matrices of
order 14 and weight 8, and we claim that the classification in [18, Theorem
3.9] misses the matrix W14,8, which is listed in Figure 3. We remark that
W14,8 and W T

14,8 are equivalent. Hence, we have the following:

Theorem 16. There are 66 inequivalent weighing matrices of order 14 and
weight 8.

Remark 17. The intersection patterns of W14,8 and W T
14,8 are

(x2, x4, x6, x8) = (0, 11, 2, 0)

which is the same as c25 in [18, p. 139]. Hence, W14,8 is of Type c25 in the
sense of [18]. It is claimed in [18, Theorem 3.6] that a matrix of Type c25 is
equivalent to some matrix of Type ci (i 6= 25). This is an error.

Among the weighing matrices of order 17 and weight 9, Ohmori and
Miyamoto [20] claimed to classify those with intersection number 8, and
they found exactly 925 such matrices. However, we verified that only 517 of
the 2360 weighing matrices of order 17 and weight 9 have intersection number
8. Since their list of 925 weighing matrices is not available, we are unable to
compare their result with ours.
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W14,8 =



1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 −1 1 1 −1 −1 0 0 1 1 0 0 0 0
1 −1 0 0 0 0 1 −1 −1 −1 1 1 0 0
1 1 0 −1 0 0 0 −1 1 0 1 −1 1 0
1 0 −1 1 0 0 −1 0 0 −1 −1 0 1 1
1 0 −1 0 0 1 0 −1 0 1 −1 0 −1 −1
1 0 0 −1 1 −1 −1 1 0 0 0 1 0 −1
1 0 0 −1 −1 0 0 1 −1 0 0 −1 −1 1
0 1 1 0 0 0 −1 −1 −1 1 0 1 0 1
0 1 −1 0 0 −1 1 0 1 0 0 1 −1 1
0 1 0 1 −1 0 −1 0 0 −1 1 0 −1 −1
0 1 0 0 −1 −1 1 0 −1 0 −1 0 1 −1
0 0 1 −1 −1 1 0 0 1 −1 −1 1 0 0
0 0 1 0 1 −1 0 −1 0 −1 −1 −1 −1 0



.

Figure 3: Weighing matrix W14,8

7 Other orders and weights

For orders n ≥ 13 and weights k ≥ 6, we classified weighing matrices of some
orders n and weights k listed in Table 11 using the classification of maximal
self-orthogonal Fp-codes of length n given in Table 1. Since approaches are
similar to that used in Section 5, we only list in Table 11 the numbers #
of inequivalent weighing matrices for which we classified, and the primes p.
Also, we list in the same table the orders and weights for which we checked
the known classifications by our classification method, along with references.

Table 11: Other orders and weights

(n, k) # p References (n, k) # p References
(13, 9) 8 3 [19] (16, 15) 1 3 [4]
(16, 6) 30 3 (18, 9) 11891 3
(16, 9) 704 3 (20, 6) 49 3
(16, 10) 670 5 (20, 18) 53 3
(16, 12) 279 3 (24, 6) 190 3
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