
Markov chains, graph spectra, and some
static/dynamic scaling limits

Akihito Hora
Hokkaido University

I will talk about how I began to get interested in spectra of graphs and
then was led to beautiful collaboration with N. Obata. Furthermore I will
combine them with recent developments in probability models concerning
Young diagrams. Key words are cut-off phenomenon, association scheme,
quantum probability, free probability, and asymptotic representation theory.
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Three Lectures on the Terwilliger algebra
of

a (P and Q)-polynomial association scheme

Tatsuro Ito
Anhui University

First Lecture: (P and Q)-polynomial association schemes and the Leonard theorem

1. The definition of a (P and Q)-polynomial association scheme

2. Examples (Bannai’s list)

3. The Leonard theorem

4. The Terwilliger algebra and its principal module

Second Lecture: L-pairs, TD-pairs and the TD-algebra

1. L-pairs and TD-pairs

2. The TD-relations and the TD-algebra

3. The weight space decomposition and the augmented TD-algebra

4. TD-pairs and the quantum affine algebra Uq(ŝl2)

Third Lecture: Toward the classification of (P and Q)-polynomial schemes

1. The classification of TD-pairs

2. The present status of the classification of (P and Q)-polynomial schemes

3. Irreducible T-modules of endpoint 1, 2
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SOME RAMSEY NUMBERS AND RAMSEY
(MK2, H)-MINIMAL GRAPHS

Edy Tri Baskoro

Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences

Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132 Indonesia

e-mail: ebaskoro@math.itb.ac.id

In the first talk, we shall give a survey on the finding of Ramsey num-
bers R(G,H) if one of G and H is a wheel. We also discuss the Ramsey
numbers R(G,H) if either G or H is a union of graphs.

In the second talk, we will derive the necessary and sufficient conditions
of Ramsey (mK2, H)−minimal graphs. We will also determine all Ramsey
(mK2, H)−minimal graphs for some particular graphs H. Some construc-
tion methods of such Ramsey minimal graphs from the existing (smaller)
Ramsey minimal graphs are also presented.
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The locating-chromatic number of trees
with maximum degree 3 or 4

Hilda Assiyatun1

1Combinatorial Mathematics Research Group ITB, email :hilda@math.itb.ac.id

Abstract

A k-coloring of G is a function c : V (G)→ {1, 2, . . . , k} where c(u) 6= c(v) for two adja-
cent vertices u and v in G and k is a positive integer. The partition π = {C1, C2, . . . , Ck}
is induced by the k-coloring c of the vertices of G. The color code of vertex v is cπ(v) =
(d(v, C1), d(v, C2), . . . , d(v, Ck)) where d(v, Ci) = min{d(v, x)|x ∈ Ci} for 1 ≤ i ≤ k. If
all distinct vertices of G have distinct color codes, then c is called a locating k-coloring
of G. The locating chromatic number of G, denoted by χL(G) is the least integer k such
that G has a locating k-coloring.
In this talk we will discuss the locating-chromatic number of trees embedded in 2-
dimensional grid and binary trees. This is an attempt to answer an open problem of
determining the locating-chromatic number of trees with maximum degree 3 or 4



Resolvable Steiner designs and maximal arcs in projective planes

Vladimir D. Tonchev, Michigan Technological University

Let D = {X,B} be a Steiner 2-(v, k, 1) design with point set X, collection
of blocks B, and let v be a multiple of k, v = nk. A parallel class is a set
of v/k = n pairwise disjoint blocks that partition X, and a resolution is a
partition R of B into r = (v − 1)/(k − 1) disjoint parallel classes. A design
is resolvable if it admits a resolution. Two resolutions R1, R2,

R1 = P
(1)
1 ∪ P

(1)
2 ∪ · · ·P (1)

r , R2 = P
(2)
1 ∪ P

(2)
2 ∪ · · ·P (2)

r

are called compatible [1] if they share one parallel class, P
(1)
i = P

(2)
j , and

|P (1)
i′ ∩ P

(2)
j′ | ≤ 1 for (i′, j′) 6= (i, j).

A maximal (q(k−1)+k, k)-arc in a finite projective plane of order q = sk
is a set A of q(k − 1) + k points such that every line is either disjoint form
A, or meets A in exactly k points.

An upper bound on the maximum number of mutually compatible reso-
lutions of a resolvable 2-(nk, k, 1) design D was proved in [1]. The bound is
attainable if and only if D is embeddable as a maximal (kq− q + k, k)-arc in
a projective plane of order q = (v − k)/(k − 1).

The maximal sets of mutually compatible resolutions of 2-(52, 4, 1) designs
associated with known and newly found maximal (52, 4)-arcs in projective
planes of order 16 were computed recently in [2]. It was shown that some 2-
(52, 4, 1) designs can be embedded as maximal arcs in nonisomorphic planes.
This phenomenon establishes new links between the known planes of order
16, and motivates the problem of completing the classification of maximal
(52, 4)-arcs, initiated in [3].
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Counting Steiner triple systems of given 2-rank and 3-rank

Vladimir D. Tonchev,
Michigan Technological University

This lecture is based on joint work with Dieter Jungnickel [3], [4].
By a famous result of Doyen, Hubaut and Vandensavel [2], the 2-rank of

the incidence matrix of a Steiner triple system on 2n − 1 points is at least
2n− 1−n, and equality holds only for the classical design of points and lines
in the binary projective geometry PG(n − 1, 2). It follows from results of
Assmus [1] that, given any integer t with 1 ≤ t ≤ n − 1, there is a binary
linear code Cn,t of length 2n − 1 and dimension 2n − 1− n+ t that contains
representatives of all isomorphism classes of STS(2n − 1) of 2-rank at most
2n−1−n+t. Using a mixture of coding theoretic, geometric, design theoretic
and combinatorial arguments, we prove a general formula for the number of
distinct STS(2n − 1) having 2-rank at most 2n − 1− n+ t contained in this
code. This generalizes previously known results, which only cover the cases
t ≤ 3 (Tonchev [5], V. Zinoviev and D. Zinoviev [7], D. Zinoviev [6]). Finally,
using our recent systematic study of the ternary linear codes of Steiner triple
systems [4], we obtain analogous results for the ternary case, and a formula
for the number of STS(3n) having 3-rank at most 3n − 1− n+ t.
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Using SageMath for algebraic combinatorics,
in particular for strongly regular graphs

Dima Pasechnik
University of Oxford

SageMath [1] is an open-source computer algebra system, combining sys-
tems such as GAP, Singular, PARI, etc., which are glued together by a pop-
ular mainstream programming language Python. It is well-suited for rapid
implementations of various combinatorial-algebraic constructions, such as
block designs, Hadamard matrices, graphs, etc.—and it includes generators
for many popular constructions of such objects. In particular, for each tuple
of parameters in A.E. Brouwer’s tables of strongly regular graphs [2] with up
to 1300 vertices for which a construction is known, SageMath can generate
an example of a graph with these parameters [3]. In our lectures we will give
a quick introduction to SageMath, followed by a detailed presentation of [3].
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A survey on Euclidean designs and relative
designs

Etsuko Bannai

Euclidean t-design was introduced by Neumaier and Seidel in 1988 as a
generalization of spherical designs. Euclidean t-design is a finite set in Eu-
clidean space. We introduce the Fisher type lower bounds for the cardinality
and the concept of tight t-design. The concept of relative t-design in associ-
ation schemes was introduced by Delsarte in 1977 earlier than the Definition
of Euclidean designs. Instead of spheres in Euclidean space we consider shells
of an association scheme. Fisher type lower bound for the cardinality and
the concept of tight t-design. We survey on the known results of both tight
Euclidean designs and tight relative designs on some association schemes.
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Spherical designs, complex spherical designs,
and unitary designs

Eiichi Bannai

We first give a survey on these concepts, following the three basic pa-
pers: Spherical codes and designs (Delsarte-Goethals-Seidel, 1977); Complex
spherical designs and codes (Roy-Suda, 2014); Unitary designs and codes
(Roy-Scott, 2009). Then in particular we comment on the paper of Roy-
Suda (2014), and discuss the existence and the classification problems of
”good” tight complex spherical T -designs (for certain T ) coming from tight
real spherical t-designs. Here, ”good” means either the number of distances
s = |A(X)| is small, or an association scheme is naturally attached to it. The
last part of this talk is based on the ongoing joint work with Takayuki Okuda
(Hiroshima University), Da Zhao (Shanghai Jiao Tong University) and Yan
Zhu (Shanghai University).
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