Covering Radii of Extremal Binary Doubly Even Self-Dual Codes

Akihiro Munemasa ${ }^{1}$
${ }^{1}$ Graduate School of Information Sciences
Tohoku University (joint work with Masaaki Harada)

Asian Symposium on Computer Mathematics, 2005

Covering Radius of a Subset of a Metric Space

Definition

- X : a finite metric space
- C : a subset of X
- The covering radius of C is $\rho(C)=\max _{x \in X}\left(\min _{c \in C} d(c, x)\right)$
$\rho(C)$ is the least nonnegative number ρ such that all points of X are within distance ρ from some point of C Problem: Given X and $|C|$, minimize $\rho(C)$.

Covering Radius of a Subset of a Metric Space

Definition

- X : a finite metric space
- C: a subset of X
- The covering radius of C is $\rho(C)=\max _{x \in X}\left(\min _{c \in C} d(c, x)\right)$.
$\rho(C)$ is the least nonnegative number ρ such that all points of X are within distance ρ from some point of C Problem: Given X and $|C|$, minimize $\rho(C)$.

Covering Radius of a Subset of a Metric Space

Definition

- X : a finite metric space
- C : a subset of X
- The covering radius of C is $\rho(C)=\max _{x \in X}\left(\min _{c \in C} d(c, x)\right)$.
$\rho(C)$ is the least nonnegative number ρ such that all points of X are within distance ρ from some point of C.
Problem: Given X and $|C|$, minimize $\rho(C)$.

Covering Radius of a Subset of a Metric Space

Definition

- X : a finite metric space
- C: a subset of X
- The covering radius of C is $\rho(C)=\max _{x \in X}\left(\min _{c \in C} d(c, x)\right)$.
$\rho(C)$ is the least nonnegative number ρ such that all points of X are within distance ρ from some point of C.
Problem: Given X and $|C|$, minimize $\rho(C)$.

Binary Codes

- $\mathbb{F}_{2}=\{0,1\}$.
- $X=\mathbb{F}_{2}^{n}$ with $d=$ Hamming distance.
- $d(x, y)=$ the number of i 's with $x_{i} \neq y_{i}$, where $x, y \in X$.
- also $d(x, y)=w t(x-y)$, the weight of the vector $x-y$, the number of nonzero (in this case 1) entries in $x-y$.
- $C=$ linear code of length n, i.e., $C \subseteq \mathbb{F}_{2}^{n}$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_{2}^{n}$ with $\operatorname{dim} C=k$.

Binary Codes

- $\mathbb{F}_{2}=\{0,1\}$.
- $X=\mathbb{F}_{2}^{n}$ with $d=$ Hamming distance.
- $d(x, y)=$ the number of i 's with $x_{i} \neq y_{i}$, where $x, y \in X$.
- also $d(x, y)=w t(x-y)$, the weight of the vector $x-y$, the number of nonzero (in this case 1) entries in $x-y$.
- $C=$ linear code of length n, i.e., $C \subseteq \mathbb{F}_{2}^{n}$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_{2}^{n}$ with $\operatorname{dim} C=k$.

$$
\text { - } C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid \sum_{i=1}^{n} x_{i} y_{i}=0\right\}: \text { dual code }
$$

Binary Codes

- $\mathbb{F}_{2}=\{0,1\}$.
- $X=\mathbb{F}_{2}^{n}$ with $d=$ Hamming distance.
- $d(x, y)=$ the number of i 's with $x_{i} \neq y_{i}$, where $x, y \in X$. - also $d(x, y)=w t(x-y)$, the weight of the vector $x-y$, the number of nonzero (in this case 1) entries in $x-y$.
- $C=$ linear code of length n, i.e., $C \subseteq \mathbb{F}_{2}^{n}$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_{2}^{n}$ with $\operatorname{dim} C=k$.

- $C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid \sum_{i=1}^{n} x_{i} y_{i}=0\right\}:$ dual code

Binary Codes

- $\mathbb{F}_{2}=\{0,1\}$.
- $X=\mathbb{F}_{2}^{n}$ with $d=$ Hamming distance.
- $d(x, y)=$ the number of i 's with $x_{i} \neq y_{i}$, where $x, y \in X$.
- also $d(x, y)=\mathrm{wt}(x-y)$, the weight of the vector $x-y$, the number of nonzero (in this case 1) entries in $x-y$.
- $C=$ linear code of length n, i.e., $C \subseteq \mathbb{F}_{2}^{n}$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_{2}^{n}$ with $\operatorname{dim} C=k$.

- $C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid \sum_{i=1}^{n} x_{i} y_{i}=0\right\}:$ dual code

Binary Codes

- $\mathbb{F}_{2}=\{0,1\}$.
- $X=\mathbb{F}_{2}^{n}$ with $d=$ Hamming distance.
- $d(x, y)=$ the number of i 's with $x_{i} \neq y_{i}$, where $x, y \in X$.
- also $d(x, y)=\mathrm{wt}(x-y)$, the weight of the vector $x-y$, the number of nonzero (in this case 1) entries in $x-y$.
- $C=$ linear code of length n, i.e., $C \subseteq \mathbb{F}_{2}^{n}$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_{2}^{n}$ with $\operatorname{dim} C=k$

- $C^{\perp}-\left\{x \in \mathbb{F}_{2}^{n} \mid \sum_{i=1}^{n} x_{i} y_{i}=0\right\}:$ dual code

Binary Codes

- $\mathbb{F}_{2}=\{0,1\}$.
- $X=\mathbb{F}_{2}^{n}$ with $d=$ Hamming distance.
- $d(x, y)=$ the number of i 's with $x_{i} \neq y_{i}$, where $x, y \in X$.
- also $d(x, y)=\mathrm{wt}(x-y)$, the weight of the vector $x-y$, the number of nonzero (in this case 1) entries in $x-y$.
- $C=$ linear code of length n, i.e., $C \subseteq \mathbb{F}_{2}^{n}$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_{2}^{n}$ with $\operatorname{dim} C=k$.

- $C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid \sum_{i=1}^{n} x_{i} y_{i}=0\right\}:$ dual code

Binary Codes

- $\mathbb{F}_{2}=\{0,1\}$.
- $X=\mathbb{F}_{2}^{n}$ with $d=$ Hamming distance.
- $d(x, y)=$ the number of i 's with $x_{i} \neq y_{i}$, where $x, y \in X$.
- also $d(x, y)=\mathrm{wt}(x-y)$, the weight of the vector $x-y$, the number of nonzero (in this case 1) entries in $x-y$.
- $C=$ linear code of length n, i.e., $C \subseteq \mathbb{F}_{2}^{n}$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_{2}^{n}$ with $\operatorname{dim} C=k$.

- $C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid \sum_{i=1}^{n} x_{i} y_{i}=0\right\}:$ dual code

The Delsarte Bound

An Upper Bound on the Covering Radius $\rho(C)$, due to Delsarte (1973)

- $\rho(C) \leq r(C):=\left|\left\{w t(c) \mid c \in C^{\perp}, c \neq 0\right\}\right|$.
- $r(C)$ is called the external distance, or the dual degree of C
- For arbitrary codes C, hard to assert something exact on $r(C)$, since it depends on C^{\perp}
- However, if $C=C^{\perp}, r(C)$ is directly related to C itself.

The Delsarte Bound

An Upper Bound on the Covering Radius $\rho(C)$, due to Delsarte (1973)

- $\rho(C) \leq r(C):=\left|\left\{w t(c) \mid c \in C^{\perp}, c \neq 0\right\}\right|$.
- $r(C)$ is called the external distance, or the dual degree of C.
- For arbitrary codes C, hard to assert something exact on $r(C)$, since it depends on C
- However, if $C=C^{\perp}, r(C)$ is directly related to C itself.

The Delsarte Bound
 An Upper Bound on the Covering Radius $\rho(C)$, due to Delsarte (1973)

- $\rho(C) \leq r(C):=\left|\left\{w t(c) \mid c \in C^{\perp}, c \neq 0\right\}\right|$.
- $r(C)$ is called the external distance, or the dual degree of C.
- For arbitrary codes C, hard to assert something exact on $r(C)$, since it depends on C^{\perp}.
- However, if $C=C^{\perp}, r(C)$ is directly related to C itself.

The Delsarte Bound
 An Upper Bound on the Covering Radius $\rho(C)$, due to Delsarte (1973)

- $\rho(C) \leq r(C):=\left|\left\{w t(c) \mid c \in C^{\perp}, c \neq 0\right\}\right|$.
- $r(C)$ is called the external distance, or the dual degree of C.
- For arbitrary codes C, hard to assert something exact on $r(C)$, since it depends on C^{\perp}.
- However, if $C=C^{\perp}, r(C)$ is directly related to C itself.

Self-Dual Codes

Definition

A linear code $C \subseteq \mathbb{F}_{2}^{n}$ satisfying $C=C^{\perp}$ is called self-dual.

- For a self-dual code C,

$$
\rho(C) \leq r(C)=|\{w t(c) \mid c \in C, c \neq 0\}|
$$

- Self-duality of C implies $w t(c)$ is even for all $c \in C$.
- There are self-dual codes C whose $r(C)$ is much smaller; having the property $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Definition

A linear code C is said to be doubly even if $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$

Self-Dual Codes

Definition

A linear code $C \subseteq \mathbb{F}_{2}^{n}$ satisfying $C=C^{\perp}$ is called self-dual.

- For a self-dual code C,

$$
\rho(C) \leq r(C)=|\{w t(c) \mid c \in C, c \neq 0\}| .
$$

- Self-duality of C implies $w t(c)$ is even for all $c \in C$.
- There are self-dual codes C whose $r(C)$ is much smaller; having the property $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Definition

A linear code C is said to be doubly even if $\operatorname{wt}(c) \equiv 0(\bmod 4)$ for

Self-Dual Codes

Definition

A linear code $C \subseteq \mathbb{F}_{2}^{n}$ satisfying $C=C^{\perp}$ is called self-dual.

- For a self-dual code C,

$$
\rho(C) \leq r(C)=|\{w t(c) \mid c \in C, c \neq 0\}| .
$$

- Self-duality of C implies wt (c) is even for all $c \in C$.
- There are self-dual codes C whose $r(C)$ is much smaller; having the property $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$

Definition

A linear code C is said to be doubly even if $w t(c) \equiv 0(\bmod 4)$ for

Self-Dual Codes

Definition

A linear code $C \subseteq \mathbb{F}_{2}^{n}$ satisfying $C=C^{\perp}$ is called self-dual.

- For a self-dual code C,

$$
\rho(C) \leq r(C)=|\{w t(c) \mid c \in C, c \neq 0\}| .
$$

- Self-duality of C implies wt (c) is even for all $c \in C$.
- There are self-dual codes C whose $r(C)$ is much smaller; having the property $\mathrm{wt}(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Definition

A linear code C is said to be doubly even if $w t(c) \equiv 0(\bmod 4)$ for

Self-Dual Codes

Definition

A linear code $C \subseteq \mathbb{F}_{2}^{n}$ satisfying $C=C^{\perp}$ is called self-dual.

- For a self-dual code C,

$$
\rho(C) \leq r(C)=|\{w t(c) \mid c \in C, c \neq 0\}| .
$$

- Self-duality of C implies $w t(c)$ is even for all $c \in C$.
- There are self-dual codes C whose $r(C)$ is much smaller; having the property $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Definition

A linear code C is said to be doubly even if $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Extremal Doubly Even Self-Dual Codes

Recall that a doubly even self-dual code is a linear code C with $C=C^{\perp}$, satisfying $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Definition

Let $u:=\left[\frac{n}{24}\right]$. A doubly even self-dual code is said to be extremal if $\min (C):=\min \{w t(c) \mid c \in C, c \neq 0\}=4 \mu+4$

- For $n=32,\left\{w t(c) \mid c \in C^{\perp}, c \neq 0\right\}=\{8,12,16,20,24,32\}$ has size 6 , i.e., $\rho(C) \leq r(C)=6$.
- It turns out $\rho(C)=r(C)$ for all such codes C.

Extremal Doubly Even Self-Dual Codes

Recall that a doubly even self-dual code is a linear code C with $C=C^{\perp}$, satisfying $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Proposition

A doubly even self-dual code exists if and only if the length is a multiple of 8 .

Definition

- For $n=32,\left\{w t(c) \mid c \in C^{\perp}, c \neq 0\right\}=\{8,12,16,20,24,32\}$ has size 6 , i.e., $\rho(C) \leq r(C)=6$.
- It turns out $\rho(C)=r(C)$ for all such codes C.

Extremal Doubly Even Self-Dual Codes

Recall that a doubly even self-dual code is a linear code C with $C=C^{\perp}$, satisfying $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Proposition

A doubly even self-dual code exists if and only if the length is a multiple of 8 .

Definition

Let $\mu:=\left[\frac{n}{24}\right]$. A doubly even self-dual code is said to be extremal if $\min (C):=\min \{\operatorname{wt}(c) \mid c \in C, c \neq 0\}=4 \mu+4$.

- It turns out $\rho(C)=r(C)$ for all such codes C.

Extremal Doubly Even Self-Dual Codes

Recall that a doubly even self-dual code is a linear code C with $C=C^{\perp}$, satisfying $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Proposition

A doubly even self-dual code exists if and only if the length is a multiple of 8 .

Definition

Let $\mu:=\left[\frac{n}{24}\right]$. A doubly even self-dual code is said to be extremal if $\min (C):=\min \{\omega t(c) \mid c \in C, c \neq 0\}=4 \mu+4$.

- For $n=32,\left\{w t(c) \mid c \in C^{\perp}, c \neq 0\right\}=\{8,12,16,20,24,32\}$ has size 6 , i.e., $\rho(C) \leq r(C)=6$.
- It turns out $\rho(C)=r(C)$ for all such codes C.

Extremal Doubly Even Self-Dual Codes

Recall that a doubly even self-dual code is a linear code C with $C=C^{\perp}$, satisfying $w t(c) \equiv 0(\bmod 4)$ for all $c \in C$.

Proposition

A doubly even self-dual code exists if and only if the length is a multiple of 8 .

Definition

Let $\mu:=\left[\frac{n}{24}\right]$. A doubly even self-dual code is said to be extremal if $\min (C):=\min \{\omega t(c) \mid c \in C, c \neq 0\}=4 \mu+4$.

- For $n=32,\left\{w t(c) \mid c \in C^{\perp}, c \neq 0\right\}=\{8,12,16,20,24,32\}$ has size 6, i.e., $\rho(C) \leq r(C)=6$.
- It turns out $\rho(C)=r(C)$ for all such codes C.

The Sphere Covering Bound
 A Lower Bound on the Covering Radius $\rho(C)$

The volume (the number of points) of a sphere of radius ρ in \mathbb{F}_{2}^{n} is $\sum_{i=0}^{\rho}\binom{n}{i}$.

Proposition

This gives a lower bound of $\rho(C)$
For self-dual codes (or more generally, for even codes), slight
improvement is possible:

The Sphere Covering Bound

A Lower Bound on the Covering Radius $\rho(C)$
The volume (the number of points) of a sphere of radius ρ in \mathbb{F}_{2}^{n} is $\sum_{i=0}^{\rho}\binom{n}{i}$.

Proposition

$$
|C| \sum_{i=0}^{\rho(C)}\binom{n}{i} \geq 2^{n}
$$

This gives a lower bound of $\rho(C)$
For self-dual codes (or more generally, for even codes), slight
improvement is possible:

The Sphere Covering Bound

A Lower Bound on the Covering Radius $\rho(C)$
The volume (the number of points) of a sphere of radius ρ in \mathbb{F}_{2}^{n} is $\sum_{i=0}^{\rho}\binom{n}{i}$.

Proposition

$$
|C| \sum_{i=0}^{\rho(C)}\binom{n}{i} \geq 2^{n}
$$

This gives a lower bound of $\rho(C)$.
For self-dual codes (or more generally, for even codes), slight
improvement is possible:

The Sphere Covering Bound

A Lower Bound on the Covering Radius $\rho(C)$
The volume (the number of points) of a sphere of radius ρ in \mathbb{F}_{2}^{n} is $\sum_{i=0}^{\rho}\binom{n}{i}$.

Proposition

$$
|C| \sum_{i=0}^{\rho(C)}\binom{n}{i} \geq 2^{n}
$$

This gives a lower bound of $\rho(C)$.
For self-dual codes (or more generally, for even codes), slight improvement is possible:

$$
|C| \sum_{i=0}^{[\rho(C) / 2]}\binom{n}{2 i} \geq 2^{n-1}, \quad|C| \sum_{i=0}^{[(\rho(C)-1) / 2]}\binom{n}{2 i+1} \geq 2^{n-1}
$$

Table of Extremal Doubly Even Self-Dual Codes

length n	$\min (C)$ $4\left[\frac{n}{24}\right]+4$	$\rho(C) \leq 2\left[\frac{n+8}{12}\right]$	the number of codes
8	4	2	1
16	4	4	2
24	8	4	1
32	8	6	5
40	8	$6(?), 7,8$	≥ 12579
48	12	8	1
56	12	$8-9(?), 10$	≥ 166
64	12	$9(?), 10,11,12(?)$	≥ 3270
72	16	$10-12(?)$	$?$

Delsarte bound $=2\left[\frac{n+8}{12}\right]$

Table of Extremal Doubly Even Self-Dual Codes

length n	$\min (C)$ $4\left[\frac{n}{24}\right]+4$	$\rho(C) \leq 2\left[\frac{n+8}{12}\right]$	the number of codes
8	4	2	1
16	4	4	2
24	8	4	1
32	8	6	5
40	8	$6(?), 7,8$	≥ 12579
48	12	8	1
56	12	$8-9(?), 10$	≥ 166
64	12	$9(?), 10,11,12(?)$	≥ 3270
72	16	$10-12(?)$	$?$

Delsarte bound $=2\left[\frac{n+8}{12}\right]$

Table of Extremal Doubly Even Self-Dual Codes

length n	$\min (C)$ $4\left[\frac{n}{24}\right]+4$	$\rho(C) \leq 2\left[\frac{n+8}{12}\right]$	the number of codes
8	4	2	1
16	4	4	2
24	8	4	1
32	8	6	5
40	8	$6(?), 7,8$	≥ 12579
48	12	8	1
56	12	$8-9(?), 10$	≥ 166
64	12	$9(?), 10,11,12(?)$	≥ 3270
72	16	$10-12(?)$	$?$

Delsarte bound $=2\left[\frac{n+8}{12}\right]$

Automorphism Group of Linear Codes

If σ is a permutation on $\{1,2, \ldots, n\}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$, then $\sigma(x):=\left(x_{\sigma^{-1}}(1), \ldots, x_{\sigma^{-1}}(n)\right)$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_{2}^{n}$ if

- Aut (C) denotes the group of all automorphisms of C.
- $G:=\operatorname{Aut}(C) \subseteq S_{n} \subseteq G L\left(n, \mathbb{F}_{2}\right)$
- \mathbb{F}_{2}^{n} is an $\mathbb{F}_{2} G$-module, C is an $\mathbb{F}_{2} G$-submodule.
- \mathbb{F}_{2}^{n} / C is an $\mathbb{F}_{2} G$-module.

Automorphism Group of Linear Codes

If σ is a permutation on $\{1,2, \ldots, n\}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$, then $\sigma(x):=\left(x_{\sigma^{-1}}(1), \ldots, x_{\sigma^{-1}}(n)\right)$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_{2}^{n}$ if $\sigma(x) \in C$ for all $x \in C$.

- Aut (C) denotes the group of all automorphisms of C.
- $G:=\operatorname{Aut}(C) \subseteq S_{n} \subseteq G L\left(n, \mathbb{F}_{2}\right)$.
- \mathbb{F}_{2}^{n} is an $\mathbb{F}_{2} G$-module, C is an $\mathbb{F}_{2} G$-submodule.
- \mathbb{F}_{2}^{n} / C is an $\mathbb{F}_{2} G$-module.

Automorphism Group of Linear Codes

If σ is a permutation on $\{1,2, \ldots, n\}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$, then $\sigma(x):=\left(x_{\sigma^{-1}}(1), \ldots, x_{\sigma^{-1}}(n)\right)$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_{2}^{n}$ if $\sigma(x) \in C$ for all $x \in C$.

- Aut (C) denotes the group of all automorphisms of C.
- $G:=\operatorname{Aut}(C) \subseteq S_{n} \subseteq G L\left(n, \mathbb{F}_{2}\right)$.
- \mathbb{F}_{2}^{n} is an $\mathbb{F}_{2} G$-module, C is an $\mathbb{F}_{2} G$-submodule.
- \mathbb{F}_{2}^{n} / C is an $\mathbb{F}_{2} G$-module.

Automorphism Group of Linear Codes

If σ is a permutation on $\{1,2, \ldots, n\}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$, then $\sigma(x):=\left(x_{\sigma^{-1}}(1), \ldots, x_{\sigma^{-1}}(n)\right)$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_{2}^{n}$ if $\sigma(x) \in C$ for all $x \in C$.

- Aut (C) denotes the group of all automorphisms of C.
- $G:=\operatorname{Aut}(C) \subseteq S_{n} \subseteq G L\left(n, \mathbb{F}_{2}\right)$.
- \mathbb{F}_{2}^{n} is an $\mathbb{F}_{2} G$-module, C is an $\mathbb{F}_{2} G$-submodule.
- \mathbb{F}_{2}^{n} / C is an $\mathbb{F}_{2} G$-module.

Automorphism Group of Linear Codes

If σ is a permutation on $\{1,2, \ldots, n\}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$, then $\sigma(x):=\left(x_{\sigma^{-1}}(1), \ldots, x_{\sigma^{-1}}(n)\right)$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_{2}^{n}$ if $\sigma(x) \in C$ for all $x \in C$.

- Aut (C) denotes the group of all automorphisms of C.
- $G:=\operatorname{Aut}(C) \subseteq S_{n} \subseteq G L\left(n, \mathbb{F}_{2}\right)$.
- \mathbb{F}_{2}^{n} is an $\mathbb{F}_{2} G$-module, C is an $\mathbb{F}_{2} G$-submodule.
- \mathbb{F}_{2}^{n} / C is an $\mathbb{F}_{2} G$-module.

Automorphism Group of Linear Codes

If σ is a permutation on $\{1,2, \ldots, n\}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$, then $\sigma(x):=\left(x_{\sigma^{-1}}(1), \ldots, x_{\sigma^{-1}}(n)\right)$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_{2}^{n}$ if $\sigma(x) \in C$ for all $x \in C$.

- Aut (C) denotes the group of all automorphisms of C.
- $G:=\operatorname{Aut}(C) \subseteq S_{n} \subseteq G L\left(n, \mathbb{F}_{2}\right)$.
- \mathbb{F}_{2}^{n} is an $\mathbb{F}_{2} G$-module, C is an $\mathbb{F}_{2} G$-submodule.
- \mathbb{F}_{2}^{n} / C is an $\mathbb{F}_{2} G$-module.

Reduction by the Action of the Automorphism Group

$$
\begin{aligned}
\rho(C) & =\max _{x \in \mathbb{P}_{2}^{2}}\left(\min _{c \in C}(d(x, c))\right) \\
& =\max _{x+C \in \mathbb{P}_{2}^{2} / C}\left(\min _{y \in x \times C} \operatorname{wt}(y)\right)=\max _{T \in \mathbb{R}_{2}^{2} / C}(\min (T)) .
\end{aligned}
$$

$$
G=\operatorname{Aut}(C) \text { acts on } \mathbb{F}_{2}^{n} / C \text {, and } \min (T)=\min (\sigma(T)) \text { for }
$$

$$
T \in \mathbb{F}_{2}^{n} / C, \sigma \in G .
$$

$$
\text { Want to find orbit representatives for } \mathbb{F}_{2}^{n} / C \text { under the } G \text {-action. }
$$

$$
\left|\mathbb{F}_{2}^{64} / C\right|=2^{32}: \text { too large. }
$$

Reduction by the Action of the Automorphism Group

$$
\begin{aligned}
\rho(C) & =\max _{x \in \mathbb{P}_{2}^{2}}\left(\min _{c \in C}(d(x, c))\right) \\
& =\max _{x+C \in \mathbb{P}_{2}^{2} / C}\left(\min _{y \in x+C} \operatorname{wt}(y)\right)=\max _{T \in \mathbb{P}_{2}^{2} / C}(\min (T)) .
\end{aligned}
$$

$G=\operatorname{Aut}(C)$ acts on \mathbb{F}_{2}^{n} / C, and $\min (T)=\min (\sigma(T))$ for $T \in \mathbb{F}_{2}^{n} / C, \sigma \in G$.
Want to find orbit representatives for \mathbb{F}_{2}^{n} / C under the G-action. $\left|\mathbb{F}_{2}^{64} / C\right|=2^{32}$: too large.

Reduction by the Action of the Automorphism Group

$$
\begin{aligned}
\rho(C) & =\max _{x \in \mathbb{F}_{2}^{2}}\left(\min _{c \in C}(d(x, c))\right) \\
& =\max _{x+C \in \mathbb{P}_{2}^{2} / C}\left(\min _{y \in x+C} \operatorname{wt}(y)\right)=\max _{T \in \mathbb{R}_{2}^{2} / C}(\min (T)) .
\end{aligned}
$$

$G=\operatorname{Aut}(C)$ acts on \mathbb{F}_{2}^{n} / C, and $\min (T)=\min (\sigma(T))$ for $T \in \mathbb{F}_{2}^{n} / C, \sigma \in G$.
Want to find orbit representatives for \mathbb{F}_{2}^{n} / C under the G-action.

Reduction by the Action of the Automorphism Group

$$
\begin{aligned}
\rho(C) & =\max _{x \in \mathbb{F}_{2}^{2}}\left(\min _{c \in C}(d(x, c))\right) \\
& =\max _{x+C \in \mathbb{P}_{2}^{2} / C}\left(\min _{y \in x+C} \operatorname{wt}(y)\right)=\max _{T \in \mathbb{R}_{2}^{2} / C}(\min (T)) .
\end{aligned}
$$

$G=\operatorname{Aut}(C)$ acts on \mathbb{F}_{2}^{n} / C, and $\min (T)=\min (\sigma(T))$ for $T \in \mathbb{F}_{2}^{n} / C, \sigma \in G$.
Want to find orbit representatives for \mathbb{F}_{2}^{n} / C under the G-action. $\left|\mathbb{F}_{2}^{64} / C\right|=2^{32}$: too large.

Decomposition into $\mathbb{F}_{2} G$-Submodules

- $\mathbb{F}_{2}^{n} / C=M_{1} \oplus M_{2}$ as $\mathbb{F}_{2} G$-module.
- Decompose M_{1} into G-orbits, with R a set of representatives.
- Compute min $(r+x), r \in R, x \in M_{2}$, and return the maximum value.
| nprovement of a factor of $\frac{\left|M_{1}\right|}{|R|} \approx|G|$
- If \mathbb{F}_{2}^{n} / C is indecomposable,
- Find $M_{1} \subseteq \mathbb{F}_{2}^{n} / C$.
- Decompose $\left(\mathbb{F}_{2}^{n} / C\right) / M_{1}$ into G-orbits.
- Compute $\min (x)$ for $x \in U_{r \in R} r$ and return the maximum value.

Decomposition into $\mathbb{F}_{2} G$-Submodules

- $\mathbb{F}_{2}^{n} / C=M_{1} \oplus M_{2}$ as $\mathbb{F}_{2} G$-module.
- Decompose M_{1} into G-orbits, with R a set of representatives.
- Compute $\min (r+x), r \in R, x \in M_{2}$, and return the maximum value.
Improvement of a factor of $\frac{\left|M_{1}\right|}{|R|} \approx|G|$
- If \mathbb{F}_{2}^{n} / C is indecomposable,
- Find $M_{1} \subseteq \mathbb{F}_{2}^{n} / C$.
- Decompose $\left(\mathbb{F}_{2}^{n} / C\right) / M_{1}$ into G-orbits.
- Compute $\min (x)$ for $x \in \cup_{r \in R} r$ and return the maximum value.

Decomposition into $\mathbb{F}_{2} G$-Submodules

- $\mathbb{F}_{2}^{n} / C=M_{1} \oplus M_{2}$ as $\mathbb{F}_{2} G$-module.
- Decompose M_{1} into G-orbits, with R a set of representatives.
- Compute $\min (r+x), r \in R, x \in M_{2}$, and return the maximum value.
Improvement of a factor of $\frac{\left|M_{1}\right|}{|R|} \approx|G|$
- If \mathbb{F}_{2}^{n} / C is indecomposable,
- Find $M_{1} \subseteq \mathbb{F}_{2}^{n} / C$
- Decompose $\left(\mathbb{F}_{2}^{n} / C\right) / M_{1}$ into G-orbits.
- Compute $\min (x)$ for $x \in \cup_{r \in R} r$ and return the maximum value.

Decomposition into $\mathbb{F}_{2} G$-Submodules

- $\mathbb{F}_{2}^{n} / C=M_{1} \oplus M_{2}$ as $\mathbb{F}_{2} G$-module.
- Decompose M_{1} into G-orbits, with R a set of representatives.
- Compute $\min (r+x), r \in R, x \in M_{2}$, and return the maximum value.
Improvement of a factor of $\frac{\left|M_{1}\right|}{|R|} \approx|G|$.
- If \mathbb{F}_{2}^{n} / C is indecomposable,
- Find $M_{1} \subseteq \mathbb{F}_{2}^{n} / C$.
- Decompose $\left(\mathbb{F}_{2}^{n} / C\right) / M_{1}$ into G-orbits.
- Compute $\min (x)$ for $x \in U_{r \in R^{r}}$ and return the maximum value.

Decomposition into $\mathbb{F}_{2} G$-Submodules

- $\mathbb{F}_{2}^{n} / C=M_{1} \oplus M_{2}$ as $\mathbb{F}_{2} G$-module.
- Decompose M_{1} into G-orbits, with R a set of representatives.
- Compute $\min (r+x), r \in R, x \in M_{2}$, and return the maximum value.
Improvement of a factor of $\frac{\left|M_{1}\right|}{|R|} \approx|G|$.
- If \mathbb{F}_{2}^{n} / C is indecomposable,
- Decompose $\left(\mathbb{F}_{2}^{n} / C\right) / M_{1}$ into G-orbits.
- Compute $\min (x)$ for $x \in \cup_{r \in R^{r}}$ and return the maximum value.

Decomposition into $\mathbb{F}_{2} G$-Submodules

- $\mathbb{F}_{2}^{n} / C=M_{1} \oplus M_{2}$ as $\mathbb{F}_{2} G$-module.
- Decompose M_{1} into G-orbits, with R a set of representatives.
- Compute $\min (r+x), r \in R, x \in M_{2}$, and return the maximum value.
Improvement of a factor of $\frac{\left|M_{1}\right|}{|R|} \approx|G|$.
- If \mathbb{F}_{2}^{n} / C is indecomposable,
- Find $M_{1} \subseteq \mathbb{F}_{2}^{n} / C$.
- Decompose $\left(\mathbb{F}_{2}^{n} / C\right) / M_{1}$ into G-orbits.
- Compute $\min (x)$ for $x \in \cup_{r \in R^{r}}$ and return the maximum value.

Decomposition into $\mathbb{F}_{2} G$-Submodules

- $\mathbb{F}_{2}^{n} / C=M_{1} \oplus M_{2}$ as $\mathbb{F}_{2} G$-module.
- Decompose M_{1} into G-orbits, with R a set of representatives.
- Compute $\min (r+x), r \in R, x \in M_{2}$, and return the maximum value.
Improvement of a factor of $\frac{\left|M_{1}\right|}{|R|} \approx|G|$.
- If \mathbb{F}_{2}^{n} / C is indecomposable,
- Find $M_{1} \subseteq \mathbb{F}_{2}^{n} / C$.
- Decompose $\left(\mathbb{F}_{2}^{n} / C\right) / M_{1}$ into G-orbits.
- Compute $\min (x)$ for $x \in \cup_{r \in R^{r}}$ and return the maximum value.

Decomposition into $\mathbb{F}_{2} G$-Submodules

- $\mathbb{F}_{2}^{n} / C=M_{1} \oplus M_{2}$ as $\mathbb{F}_{2} G$-module.
- Decompose M_{1} into G-orbits, with R a set of representatives.
- Compute $\min (r+x), r \in R, x \in M_{2}$, and return the maximum value.
Improvement of a factor of $\frac{\left|M_{1}\right|}{|R|} \approx|G|$.
- If \mathbb{F}_{2}^{n} / C is indecomposable,
- Find $M_{1} \subseteq \mathbb{F}_{2}^{n} / C$.
- Decompose $\left(\mathbb{F}_{2}^{n} / C\right) / M_{1}$ into G-orbits.
- Compute $\min (x)$ for $x \in \cup_{r \in R} r$ and return the maximum value.

Summary

- Length $n=56$: computed the covering radius of 9 double-circulant $\left(\operatorname{Aut}(C) \cong D_{27}\right)$ extremal doubly even selfdual codes, \rightarrow all 10, meeting the Delsarte bound.
- Length $n=64$: computed the covering radius of 67 extremal doubly even self- dual codes $(|\operatorname{Aut}(C)| \geq 62), \rightarrow$ all 10 or 11 , not meeting the Delsarte bound $=12$.

length n	$\min (C)$ $4\left[\frac{n}{24}\right]+4$	$\rho(C) \leq 2\left[\frac{n+8}{12}\right]$
56	12	$8-9(?), 10$
64	12	$9(?), 10,11,12(?)$

