Covering Radii of Extremal Binary Doubly Even Self-Dual Codes

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint work with Masaaki Harada)

Asian Symposium on Computer Mathematics, 2005

Covering Radius of a Subset of a Metric Space

Definition

- X: a finite metric space
- C: a subset of X

• The covering radius of C is
$$\rho(C) = \max_{x \in X} \left(\min_{c \in C} d(c, x) \right)$$
.

 $\rho(C)$ is the least nonnegative number ρ such that all points of X are within distance ρ from some point of C. Problem: Given X and |C|, minimize $\rho(C)$.

Covering Radius of a Subset of a Metric Space

Definition

- X: a finite metric space
- C: a subset of X

• The covering radius of C is
$$\rho(C) = \max_{x \in X} \left(\min_{c \in C} d(c, x) \right)$$
.

 $\rho(C)$ is the least nonnegative number ρ such that all points of X are within distance ρ from some point of C. Problem: Given X and |C|, minimize $\rho(C)$.

Covering Radius of a Subset of a Metric Space

Definition

- X: a finite metric space
- C: a subset of X

• The covering radius of C is
$$\rho(C) = \max_{x \in X} \left(\min_{c \in C} d(c, x) \right)$$
.

 $\rho(C)$ is the least nonnegative number ρ such that all points of X are within distance ρ from some point of C.

Problem: Given X and |C|, minimize $\rho(C)$.

Covering Radius of a Subset of a Metric Space

Definition

- X: a finite metric space
- C: a subset of X

• The covering radius of C is
$$\rho(C) = \max_{x \in X} \left(\min_{c \in C} d(c, x) \right)$$
.

 $\rho(C)$ is the least nonnegative number ρ such that all points of X are within distance ρ from some point of C. Problem: Given X and |C|, minimize $\rho(C)$.

• $\mathbb{F}_2 = \{0, 1\}.$

• $X = \mathbb{F}_2^n$ with d = Hamming distance.

- d(x, y) = the number of *i*'s with $x_i \neq y_i$, where $x, y \in X$.
- also d(x, y) = wt(x y), the weight of the vector x y, the number of nonzero (in this case 1) entries in x y.
- C = linear code of length *n*, i.e., $C \subseteq \mathbb{F}_2^n$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_2^n$ with dim C = k.

• $C^{\perp} = \{x \in \mathbb{F}_2^n \mid \sum_{i=1}^n x_i y_i = 0\}$: dual code

•
$$\mathbb{F}_2 = \{0, 1\}.$$

- $X = \mathbb{F}_2^n$ with d = Hamming distance.
 - d(x, y) = the number of *i*'s with $x_i \neq y_i$, where $x, y \in X$.
 - also d(x, y) = wt(x y), the weight of the vector x y, the number of nonzero (in this case 1) entries in x y.
- $C = \text{linear code of length } n, \text{ i.e., } C \subseteq \mathbb{F}_2^n$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_2^n$ with dim C = k.

• $C^{\perp} = \{x \in \mathbb{F}_2^n \mid \sum_{i=1}^n x_i y_i = 0\}$: dual code

•
$$\mathbb{F}_2 = \{0, 1\}$$
.

- $X = \mathbb{F}_2^n$ with d = Hamming distance.
 - d(x, y) = the number of *i*'s with $x_i \neq y_i$, where $x, y \in X$.
 - also d(x, y) = wt(x y), the weight of the vector x y, the number of nonzero (in this case 1) entries in x y.
- $C = \text{linear code of length } n, \text{ i.e., } C \subseteq \mathbb{F}_2^n$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_2^n$ with dim C = k.

• $C^{\perp} = \{x \in \mathbb{F}_2^n \mid \sum_{i=1}^n x_i y_i = 0\}$: dual code

•
$$\mathbb{F}_2 = \{0, 1\}.$$

• $X = \mathbb{F}_2^n$ with d = Hamming distance.

- d(x, y) = the number of *i*'s with $x_i \neq y_i$, where $x, y \in X$.
- also d(x, y) = wt(x − y), the weight of the vector x − y, the number of nonzero (in this case 1) entries in x − y.
- $C = \text{linear code of length } n, \text{ i.e., } C \subseteq \mathbb{F}_2^n$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_2^n$ with dim C = k.

• $C^{\perp} = \{x \in \mathbb{F}_2^n \mid \sum_{i=1}^n x_i y_i = 0\}$: dual code

▲ 伊 ▶ ▲ 三 ▶

•
$$\mathbb{F}_2 = \{0, 1\}.$$

• $X = \mathbb{F}_2^n$ with d = Hamming distance.

- d(x, y) = the number of *i*'s with $x_i \neq y_i$, where $x, y \in X$.
- also d(x, y) = wt(x − y), the weight of the vector x − y, the number of nonzero (in this case 1) entries in x − y.
- $C = \text{linear code of length } n, \text{ i.e., } C \subseteq \mathbb{F}_2^n$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_2^n$ with dim C = k.

• $C^{\perp} = \{x \in \mathbb{F}_2^n \mid \sum_{i=1}^n x_i y_i = 0\}$: dual code

▲ 同 ▶ ▲ 三 ▶

•
$$\mathbb{F}_2 = \{0, 1\}.$$

• $X = \mathbb{F}_2^n$ with d = Hamming distance.

- d(x, y) = the number of *i*'s with $x_i \neq y_i$, where $x, y \in X$.
- also d(x, y) = wt(x − y), the weight of the vector x − y, the number of nonzero (in this case 1) entries in x − y.
- $C = \text{linear code of length } n, \text{ i.e., } C \subseteq \mathbb{F}_2^n$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_2^n$ with dim C = k.

• $C^{\perp} = \{x \in \mathbb{F}_2^n \mid \sum_{i=1}^n x_i y_i = 0\}$: dual code

(人間) ト く ヨ ト く ヨ ト

•
$$\mathbb{F}_2 = \{0, 1\}.$$

• $X = \mathbb{F}_2^n$ with d = Hamming distance.

- d(x, y) = the number of *i*'s with $x_i \neq y_i$, where $x, y \in X$.
- also d(x, y) = wt(x y), the weight of the vector x y, the number of nonzero (in this case 1) entries in x y.
- $C = \text{linear code of length } n, \text{ i.e., } C \subseteq \mathbb{F}_2^n$, closed under binary addition.

Problem: Given n, k, minimize $\rho(C)$ among linear codes $C \subseteq \mathbb{F}_2^n$ with dim C = k.

•
$$C^{\perp} = \{x \in \mathbb{F}_2^n \mid \sum_{i=1}^n x_i y_i = 0\}$$
 : dual code

- $\rho(C) \le r(C) := |\{ wt(c) \mid c \in C^{\perp}, c \neq 0 \}|.$
- r(C) is called the external distance, or the dual degree of C.
- For arbitrary codes C, hard to assert something exact on r(C), since it depends on C^{\perp} .
- However, if $C = C^{\perp}$, r(C) is directly related to C itself.

- $\rho(C) \le r(C) := |\{ wt(c) \mid c \in C^{\perp}, c \neq 0 \}|.$
- r(C) is called the external distance, or the dual degree of C.
- For arbitrary codes C, hard to assert something exact on r(C), since it depends on C^{\perp} .
- However, if $C = C^{\perp}$, r(C) is directly related to C itself.

- $\rho(C) \le r(C) := |\{ wt(c) \mid c \in C^{\perp}, c \neq 0 \}|.$
- r(C) is called the external distance, or the dual degree of C.
- For arbitrary codes C, hard to assert something exact on r(C), since it depends on C^{\perp} .
- However, if $C = C^{\perp}$, r(C) is directly related to C itself.

- $\rho(C) \le r(C) := |\{ wt(c) \mid c \in C^{\perp}, c \neq 0 \}|.$
- r(C) is called the external distance, or the dual degree of C.
- For arbitrary codes C, hard to assert something exact on r(C), since it depends on C^{\perp} .
- However, if $C = C^{\perp}$, r(C) is directly related to C itself.

Definition

A linear code $C \subseteq \mathbb{F}_2^n$ satisfying $C = C^{\perp}$ is called self-dual.

- For a self-dual code *C*,
 - $\rho(C) \le r(C) = |\{wt(c) \mid c \in C, \ c \neq 0\}|.$
- Self-duality of C implies wt(c) is even for all $c \in C$.
- There are self-dual codes C whose r(C) is much smaller; having the property wt(c) ≡ 0 (mod 4) for all c ∈ C.

Definition

A linear code C is said to be doubly even if $wt(c) \equiv 0 \pmod{4}$ for all $c \in C$.

Definition

A linear code $C \subseteq \mathbb{F}_2^n$ satisfying $C = C^{\perp}$ is called self-dual.

• For a self-dual code C, $\rho(C) \leq r(C) = |\{wt(c) \mid c \in C, c \neq 0\}|.$

• Self-duality of C implies wt(c) is even for all $c \in C$.

 There are self-dual codes C whose r(C) is much smaller; having the property wt(c) ≡ 0 (mod 4) for all c ∈ C.

Definition

A linear code C is said to be doubly even if $wt(c) \equiv 0 \pmod{4}$ for all $c \in C$.

Definition

A linear code $C \subseteq \mathbb{F}_2^n$ satisfying $C = C^{\perp}$ is called self-dual.

- For a self-dual code *C*,
 - $\rho(C) \le r(C) = |\{wt(c) \mid c \in C, \ c \neq 0\}|.$
- Self-duality of C implies wt(c) is even for all $c \in C$.
- There are self-dual codes C whose r(C) is much smaller; having the property wt $(c) \equiv 0 \pmod{4}$ for all $c \in C$.

Definition

A linear code C is said to be doubly even if $wt(c) \equiv 0 \pmod{4}$ for all $c \in C$.

Image: A image: A

Definition

A linear code $C \subseteq \mathbb{F}_2^n$ satisfying $C = C^{\perp}$ is called self-dual.

- For a self-dual code C, $\rho(C) \leq r(C) = |\{wt(c) \mid c \in C, \ c \neq 0\}|.$
- Self-duality of C implies wt(c) is even for all $c \in C$.
- There are self-dual codes C whose r(C) is much smaller; having the property wt(c) ≡ 0 (mod 4) for all c ∈ C.

Definition

A linear code C is said to be doubly even if $wt(c) \equiv 0 \pmod{4}$ for all $c \in C$.

▲□ ► < □ ► </p>

Definition

A linear code $C \subseteq \mathbb{F}_2^n$ satisfying $C = C^{\perp}$ is called self-dual.

- For a self-dual code C, $\rho(C) < r(C) = |\{wt(c) \mid c \in C, c \neq 0\}|.$
- Self-duality of C implies wt(c) is even for all $c \in C$.
- There are self-dual codes C whose r(C) is much smaller; having the property wt(c) ≡ 0 (mod 4) for all c ∈ C.

Definition

A linear code C is said to be doubly even if $wt(c) \equiv 0 \pmod{4}$ for all $c \in C$.

Recall that a doubly even self-dual code is a linear code C with $C = C^{\perp}$, satisfying wt(c) $\equiv 0 \pmod{4}$ for all $c \in C$.

Proposition

A doubly even self-dual code exists if and only if the length is a multiple of 8.

Definition

Let $\mu := \left[\frac{n}{24}\right]$. A doubly even self-dual code is said to be extremal if $\min(C) := \min\{\operatorname{wt}(c) \mid c \in C, \ c \neq 0\} = 4\mu + 4$.

- For n = 32, $\{wt(c) \mid c \in C^{\perp}, c \neq 0\} = \{8, 12, 16, 20, 24, 32\}$ has size 6, i.e., $\rho(C) \leq r(C) = 6$.
- It turns out $\rho(C) = r(C)$ for all such codes C.

Recall that a doubly even self-dual code is a linear code C with $C = C^{\perp}$, satisfying wt(c) $\equiv 0 \pmod{4}$ for all $c \in C$.

Proposition

A doubly even self-dual code exists if and only if the length is a multiple of 8.

Definition

Let $\mu := \left[\frac{n}{24}\right]$. A doubly even self-dual code is said to be extremal if $\min(C) := \min\{\operatorname{wt}(c) \mid c \in C, \ c \neq 0\} = 4\mu + 4$.

- For n = 32, $\{wt(c) \mid c \in C^{\perp}, c \neq 0\} = \{8, 12, 16, 20, 24, 32\}$ has size 6, i.e., $\rho(C) \leq r(C) = 6$.
- It turns out $\rho(C) = r(C)$ for all such codes C.

Recall that a doubly even self-dual code is a linear code C with $C = C^{\perp}$, satisfying wt(c) $\equiv 0 \pmod{4}$ for all $c \in C$.

Proposition

A doubly even self-dual code exists if and only if the length is a multiple of 8.

Definition

Let $\mu := \left[\frac{n}{24}\right]$. A doubly even self-dual code is said to be extremal if min(C) := min{wt(c) | $c \in C, c \neq 0$ } = 4 μ + 4.

- For n = 32, $\{wt(c) \mid c \in C^{\perp}, c \neq 0\} = \{8, 12, 16, 20, 24, 32\}$ has size 6, i.e., $\rho(C) \leq r(C) = 6$.
- It turns out $\rho(C) = r(C)$ for all such codes C.

Recall that a doubly even self-dual code is a linear code C with $C = C^{\perp}$, satisfying wt(c) $\equiv 0 \pmod{4}$ for all $c \in C$.

Proposition

A doubly even self-dual code exists if and only if the length is a multiple of 8.

Definition

Let $\mu := \left[\frac{n}{24}\right]$. A doubly even self-dual code is said to be extremal if min(C) := min{wt(c) | $c \in C, c \neq 0$ } = 4 μ + 4.

• For n = 32, $\{wt(c) \mid c \in C^{\perp}, c \neq 0\} = \{8, 12, 16, 20, 24, 32\}$ has size 6, i.e., $\rho(C) \leq r(C) = 6$.

伺 と く ヨ と く ヨ と …

• It turns out $\rho(C) = r(C)$ for all such codes C.

Recall that a doubly even self-dual code is a linear code C with $C = C^{\perp}$, satisfying wt(c) $\equiv 0 \pmod{4}$ for all $c \in C$.

Proposition

A doubly even self-dual code exists if and only if the length is a multiple of 8.

Definition

Let $\mu := \left[\frac{n}{24}\right]$. A doubly even self-dual code is said to be extremal if $\min(C) := \min\{\operatorname{wt}(c) \mid c \in C, \ c \neq 0\} = 4\mu + 4$.

• For n = 32, $\{wt(c) \mid c \in C^{\perp}, c \neq 0\} = \{8, 12, 16, 20, 24, 32\}$ has size 6, i.e., $\rho(C) \leq r(C) = 6$.

伺 と く ヨ と く ヨ と …

• It turns out $\rho(C) = r(C)$ for all such codes C.

The Sphere Covering Bound A Lower Bound on the Covering Radius $\rho(C)$

The volume (the number of points) of a sphere of radius ρ in \mathbb{F}_2^n is $\sum_{i=0}^{\rho} \binom{n}{i}$.

Proposition

$$|C|\sum_{i=0}^{\rho(C)} \binom{n}{i} \ge 2^n$$

This gives a lower bound of $\rho(C)$. For self-dual codes (or more generally, for even codes), slight improvement is possible:

$$|C|\sum_{i=0}^{[\rho(C)/2]} \binom{n}{2i} \ge 2^{n-1}, \qquad |C|\sum_{i=0}^{[(\rho(C)-1)/2]} \binom{n}{2i+1} \ge 2^{n-1}.$$

The Sphere Covering Bound A Lower Bound on the Covering Radius $\rho(C)$

The volume (the number of points) of a sphere of radius ρ in \mathbb{F}_2^n is $\sum_{i=0}^{\rho} \binom{n}{i}$.

Proposition

$$|C|\sum_{i=0}^{\rho(C)} \binom{n}{i} \ge 2^n$$

This gives a lower bound of $\rho(C)$.

For self-dual codes (or more generally, for even codes), sligr

$$|C|\sum_{i=0}^{[\rho(C)/2]} \binom{n}{2i} \ge 2^{n-1}, \qquad |C|\sum_{i=0}^{[(\rho(C)-1)/2]} \binom{n}{2i+1} \ge 2^{n-1}.$$

The Sphere Covering Bound A Lower Bound on the Covering Radius $\rho(C)$

The volume (the number of points) of a sphere of radius ρ in \mathbb{F}_2^n is $\sum_{i=0}^{\rho} \binom{n}{i}$.

Proposition

$$|C|\sum_{i=0}^{\rho(C)} \binom{n}{i} \ge 2^n$$

This gives a lower bound of $\rho(C)$.

For self-dual codes (or more generally, for even codes), slight improvement is possible:

$$|C|\sum_{i=0}^{[\rho(C)/2]} \binom{n}{2i} \ge 2^{n-1}, \qquad |C|\sum_{i=0}^{[(\rho(C)-1)/2]} \binom{n}{2i+1} \ge 2^{n-1}.$$

The Sphere Covering Bound A Lower Bound on the Covering Radius $\rho(C)$

The volume (the number of points) of a sphere of radius ρ in \mathbb{F}_2^n is $\sum_{i=0}^{\rho} \binom{n}{i}$.

Proposition

$$|C|\sum_{i=0}^{\rho(C)} \binom{n}{i} \ge 2^n$$

This gives a lower bound of $\rho(C)$.

For self-dual codes (or more generally, for even codes), slight improvement is possible:

$$|C|\sum_{i=0}^{[\rho(C)/2]} \binom{n}{2i} \ge 2^{n-1}, \qquad |C|\sum_{i=0}^{[(\rho(C)-1)/2]} \binom{n}{2i+1} \ge 2^{n-1}.$$

Table of Extremal Doubly Even Self-Dual Codes

	(-)	(_)		
length	$\min(C)$	$\rho(C) \le 2\left[\frac{n+8}{12}\right]$	the number	
n	$4[\frac{n}{24}] + 4$		of codes	
8	4	2	1	
16	4	4	2	
24	8	4	1	
32	8	6	5	
40	8	6(?), <mark>7</mark> ,8	≥ 12579	
48	12	8	1	
56	12	8–9(?), 10	≥ 166	
64	12	9(?),10,11,12(?)	\geq 3270	
72	16	10-12(?)	?	
Delsarte bound = $2\left[\frac{n+8}{12}\right]$				

-L 12 J

-

Table of Extremal Doubly Even Self-Dual Codes

length	$\min(C)$	$\rho(\mathcal{C}) \leq 2[\frac{n+8}{12}]$	the number		
n	$4[\frac{n}{24}] + 4$	- 12 -	of codes		
8	4	2	1		
16	4	4	2		
24	8	4	1		
32	8	6	5		
40	8	6(?), <mark>7</mark> ,8	≥ 12579		
48	12	8	1		
56	12	8–9(?), <mark>10</mark>	≥ 166		
64	12	9(?),10,11,12(?)	\geq 3270		
72	16	10-12(?)	?		
Delsarte bound = $2\left[\frac{n+8}{12}\right]$					

-L 12 J

-

Table of Extremal Doubly Even Self-Dual Codes

length	$\min(C)$	$\rho(C) \le 2\left[\frac{n+8}{12}\right]$	the number		
п	$4[\frac{n}{24}] + 4$		of codes		
8	4	2	1		
16	4	4	2		
24	8	4	1		
32	8	6	5		
40	8	6(?), <mark>7</mark> ,8	≥ 12579		
48	12	8	1		
56	12	8–9(?), <mark>10</mark>	≥ 166		
64	12	9(?),10,11,12(?)	\geq 3270		
72	16	10-12(?)	?		
Delsarte bound = $2\left[\frac{n+8}{12}\right]$					

2 <u>12</u>

Automorphism Group of Linear Codes

If σ is a permutation on $\{1, 2, \dots, n\}$ and $x = (x_1, \dots, x_n) \in \mathbb{F}_2^n$, then $\sigma(x) := (x_{\sigma^{-1}}(1), \dots, x_{\sigma^{-1}}(n))$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_2^n$ if $\sigma(x) \in C$ for all $x \in C$.

- Aut(C) denotes the group of all automorphisms of C.
- $G := \operatorname{Aut}(C) \subseteq S_n \subseteq GL(n, \mathbb{F}_2).$
- \mathbb{F}_2^n is an \mathbb{F}_2G -module, *C* is an \mathbb{F}_2G -submodule.
- \mathbb{F}_2^n/C is an \mathbb{F}_2G -module.

Automorphism Group of Linear Codes

If σ is a permutation on $\{1, 2, \dots, n\}$ and $x = (x_1, \dots, x_n) \in \mathbb{F}_2^n$, then $\sigma(x) := (x_{\sigma^{-1}}(1), \dots, x_{\sigma^{-1}}(n))$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_2^n$ if $\sigma(x) \in C$ for all $x \in C$.

- Aut(C) denotes the group of all automorphisms of C.
- $G := \operatorname{Aut}(C) \subseteq S_n \subseteq GL(n, \mathbb{F}_2).$
- \mathbb{F}_2^n is an \mathbb{F}_2G -module, *C* is an \mathbb{F}_2G -submodule.
- \mathbb{F}_2^n/C is an \mathbb{F}_2G -module.

Automorphism Group of Linear Codes

If σ is a permutation on $\{1, 2, \dots, n\}$ and $x = (x_1, \dots, x_n) \in \mathbb{F}_2^n$, then $\sigma(x) := (x_{\sigma^{-1}}(1), \dots, x_{\sigma^{-1}}(n))$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_2^n$ if $\sigma(x) \in C$ for all $x \in C$.

- Aut(C) denotes the group of all automorphisms of C.
- $G := \operatorname{Aut}(C) \subseteq S_n \subseteq GL(n, \mathbb{F}_2).$
- \mathbb{F}_2^n is an \mathbb{F}_2G -module, *C* is an \mathbb{F}_2G -submodule.
- \mathbb{F}_2^n/C is an \mathbb{F}_2G -module.

・ 同 ト ・ ヨ ト ・ ヨ ト

Automorphism Group of Linear Codes

If σ is a permutation on $\{1, 2, \dots, n\}$ and $x = (x_1, \dots, x_n) \in \mathbb{F}_2^n$, then $\sigma(x) := (x_{\sigma^{-1}}(1), \dots, x_{\sigma^{-1}}(n))$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_2^n$ if $\sigma(x) \in C$ for all $x \in C$.

- Aut(C) denotes the group of all automorphisms of C.
- $G := \operatorname{Aut}(C) \subseteq S_n \subseteq GL(n, \mathbb{F}_2).$
- \mathbb{F}_2^n is an \mathbb{F}_2G -module, *C* is an \mathbb{F}_2G -submodule.
- \mathbb{F}_2^n/C is an \mathbb{F}_2G -module.

・ 同 ト ・ ヨ ト ・ ヨ ト

Automorphism Group of Linear Codes

If σ is a permutation on $\{1, 2, \ldots, n\}$ and $x = (x_1, \ldots, x_n) \in \mathbb{F}_2^n$, then $\sigma(x) := (x_{\sigma^{-1}}(1), \ldots, x_{\sigma^{-1}}(n))$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_2^n$ if $\sigma(x) \in C$ for all $x \in C$.

• Aut(C) denotes the group of all automorphisms of C.

•
$$G := \operatorname{Aut}(C) \subseteq S_n \subseteq GL(n, \mathbb{F}_2).$$

• \mathbb{F}_2^n is an \mathbb{F}_2G -module, *C* is an \mathbb{F}_2G -submodule.

• \mathbb{F}_2^n/C is an \mathbb{F}_2G -module.

・ 同 ト ・ ヨ ト ・ ヨ ト

Automorphism Group of Linear Codes

If σ is a permutation on $\{1, 2, \ldots, n\}$ and $x = (x_1, \ldots, x_n) \in \mathbb{F}_2^n$, then $\sigma(x) := (x_{\sigma^{-1}}(1), \ldots, x_{\sigma^{-1}}(n))$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_2^n$ if $\sigma(x) \in C$ for all $x \in C$.

• Aut(C) denotes the group of all automorphisms of C.

•
$$G := \operatorname{Aut}(C) \subseteq S_n \subseteq GL(n, \mathbb{F}_2).$$

- \mathbb{F}_2^n is an \mathbb{F}_2G -module, *C* is an \mathbb{F}_2G -submodule.
- \mathbb{F}_2^n/C is an \mathbb{F}_2G -module.

・ 同 ト ・ ヨ ト ・ ヨ ト

Reduction by the Action of the Automorphism Group

$$\rho(C) = \max_{x \in \mathbb{F}_2^n} \left(\min_{c \in C} (d(x, c)) \right)$$
$$= \max_{x + C \in \mathbb{F}_2^n/C} \left(\min_{y \in x + C} \operatorname{wt}(y) \right) = \max_{T \in \mathbb{F}_2^n/C} \left(\min(T) \right).$$

 $G = \operatorname{Aut}(C)$ acts on \mathbb{F}_2^n/C , and $\min(T) = \min(\sigma(T))$ for $T \in \mathbb{F}_2^n/C$, $\sigma \in G$. Want to find orbit representatives for \mathbb{F}_2^n/C under the *G*-action $|\mathbb{F}_2^{64}/C| = 2^{32}$: too large.

Reduction by the Action of the Automorphism Group

$$\rho(C) = \max_{x \in \mathbb{F}_2^n} \left(\min_{c \in C} (d(x, c)) \right)$$
$$= \max_{x + C \in \mathbb{F}_2^n/C} \left(\min_{y \in x + C} \operatorname{wt}(y) \right) = \max_{T \in \mathbb{F}_2^n/C} \left(\min(T) \right).$$

 $G = \operatorname{Aut}(C)$ acts on \mathbb{F}_2^n/C , and $\min(T) = \min(\sigma(T))$ for $T \in \mathbb{F}_2^n/C$, $\sigma \in G$.

Want to find orbit representatives for \mathbb{F}_2^n/C under the *G*-action. $|\mathbb{F}_2^{64}/C| = 2^{32}$: too large.

Reduction by the Action of the Automorphism Group

$$\rho(C) = \max_{x \in \mathbb{F}_2^n} \left(\min_{c \in C} (d(x, c)) \right)$$
$$= \max_{x + C \in \mathbb{F}_2^n/C} \left(\min_{y \in x + C} \operatorname{wt}(y) \right) = \max_{T \in \mathbb{F}_2^n/C} \left(\min(T) \right).$$

 $G = \operatorname{Aut}(C)$ acts on \mathbb{F}_2^n/C , and $\min(T) = \min(\sigma(T))$ for $T \in \mathbb{F}_2^n/C$, $\sigma \in G$. Want to find orbit representatives for \mathbb{F}_2^n/C under the *G*-action. $|\mathbb{F}_2^{64}/C| = 2^{32}$: too large.

Reduction by the Action of the Automorphism Group

$$\rho(C) = \max_{x \in \mathbb{F}_2^n} \left(\min_{c \in C} (d(x, c)) \right)$$
$$= \max_{x + C \in \mathbb{F}_2^n/C} \left(\min_{y \in x + C} \operatorname{wt}(y) \right) = \max_{T \in \mathbb{F}_2^n/C} \left(\min(T) \right).$$

 $G = \operatorname{Aut}(C)$ acts on \mathbb{F}_2^n/C , and $\min(T) = \min(\sigma(T))$ for $T \in \mathbb{F}_2^n/C$, $\sigma \in G$. Want to find orbit representatives for \mathbb{F}_2^n/C under the *G*-action. $|\mathbb{F}_2^{64}/C| = 2^{32}$: too large.

• $\mathbb{F}_2^n/C = M_1 \oplus M_2$ as \mathbb{F}_2G -module.

- Decompose M_1 into G-orbits, with R a set of representatives.
- Compute min(r + x), r ∈ R, x ∈ M₂, and return the maximum value.

- If \mathbb{F}_2^n/C is indecomposable,
 - Find $M_1 \subseteq \mathbb{F}_2^n/C$.
 - Decompose $(\mathbb{F}_2^n/C)/M_1$ into *G*-orbits.
 - Compute min(x) for $x \in \bigcup_{r \in R} r$ and return the maximum value.

• $\mathbb{F}_2^n/C = M_1 \oplus M_2$ as \mathbb{F}_2G -module.

- Decompose M_1 into G-orbits, with R a set of representatives.
- Compute min(r + x), r ∈ R, x ∈ M₂, and return the maximum value.

- If \mathbb{F}_2^n/C is indecomposable,
 - Find $M_1 \subseteq \mathbb{F}_2^n/C$.
 - Decompose $(\mathbb{F}_2^n/C)/M_1$ into *G*-orbits.
 - Compute min(x) for $x \in \bigcup_{r \in R} r$ and return the maximum value.

• $\mathbb{F}_2^n/C = M_1 \oplus M_2$ as \mathbb{F}_2G -module.

- Decompose M_1 into G-orbits, with R a set of representatives.
- Compute $\min(r + x)$, $r \in R$, $x \in M_2$, and return the maximum value.

Improvement of a factor of $\frac{|M_1|}{|R|} \approx |G|$.

• If \mathbb{F}_2^n/C is indecomposable,

- Find $M_1 \subseteq \mathbb{F}_2^n/C$.
- Decompose $(\mathbb{F}_2^n/C)/M_1$ into *G*-orbits.
- Compute min(x) for $x \in \bigcup_{r \in R} r$ and return the maximum value.

- $\mathbb{F}_2^n/C = M_1 \oplus M_2$ as \mathbb{F}_2G -module.
 - Decompose M_1 into G-orbits, with R a set of representatives.
 - Compute $\min(r + x)$, $r \in R$, $x \in M_2$, and return the maximum value.

- If \mathbb{F}_2^n/C is indecomposable,
 - Find $M_1 \subseteq \mathbb{F}_2^n/C$.
 - Decompose $(\mathbb{F}_2^n/C)/M_1$ into *G*-orbits.
 - Compute min(x) for $x \in \bigcup_{r \in R} r$ and return the maximum value.

- $\mathbb{F}_2^n/C = M_1 \oplus M_2$ as \mathbb{F}_2G -module.
 - Decompose M_1 into G-orbits, with R a set of representatives.
 - Compute $\min(r + x)$, $r \in R$, $x \in M_2$, and return the maximum value.

Improvement of a factor of $\frac{|M_1|}{|R|} \approx |G|$.

• If \mathbb{F}_2^n/C is indecomposable,

- Find $M_1 \subseteq \mathbb{F}_2^n/C$.
- Decompose $(\mathbb{F}_2^n/C)/M_1$ into *G*-orbits.
- Compute min(x) for $x \in \bigcup_{r \in R} r$ and return the maximum value.

- $\mathbb{F}_2^n/C = M_1 \oplus M_2$ as \mathbb{F}_2G -module.
 - Decompose M_1 into G-orbits, with R a set of representatives.
 - Compute $\min(r + x)$, $r \in R$, $x \in M_2$, and return the maximum value.

- If \mathbb{F}_2^n/C is indecomposable,
 - Find $M_1 \subseteq \mathbb{F}_2^n/C$.
 - Decompose $(\mathbb{F}_2^n/C)/M_1$ into *G*-orbits.
 - Compute min(x) for $x \in \bigcup_{r \in R} r$ and return the maximum value.

- $\mathbb{F}_2^n/C = M_1 \oplus M_2$ as \mathbb{F}_2G -module.
 - Decompose M_1 into G-orbits, with R a set of representatives.
 - Compute $\min(r + x)$, $r \in R$, $x \in M_2$, and return the maximum value.

- If \mathbb{F}_2^n/C is indecomposable,
 - Find $M_1 \subseteq \mathbb{F}_2^n/C$.
 - Decompose $(\mathbb{F}_2^n/C)/M_1$ into *G*-orbits.
 - Compute min(x) for $x \in \bigcup_{r \in R} r$ and return the maximum value.

- $\mathbb{F}_2^n/C = M_1 \oplus M_2$ as \mathbb{F}_2G -module.
 - Decompose M_1 into G-orbits, with R a set of representatives.
 - Compute $\min(r + x)$, $r \in R$, $x \in M_2$, and return the maximum value.

- If \mathbb{F}_2^n/C is indecomposable,
 - Find $M_1 \subseteq \mathbb{F}_2^n/C$.
 - Decompose $(\mathbb{F}_2^n/C)/M_1$ into *G*-orbits.
 - Compute min(x) for $x \in \bigcup_{r \in R} r$ and return the maximum value.

- Length n = 56: computed the covering radius of 9 double-circulant (Aut(C) ≅ D₂₇) extremal doubly even selfdual codes, → all 10, meeting the Delsarte bound.
- Length n = 64: computed the covering radius of 67 extremal doubly even self- dual codes (|Aut(C)| ≥ 62), → all 10 or 11, not meeting the Delsarte bound = 12.

length	$\min(C)$	$\rho(\mathcal{C}) \leq 2[\frac{n+8}{12}]$
n	$4[\frac{n}{24}] + 4$	
56	12	8–9(?), <mark>10</mark>
64	12	9(?), <mark>10,11</mark> ,12(?)