Spherical Designs Obtained from Certain Non-Unimodular Integral Lattices

Akihiro Munemasa
Tohoku University

Talk given at Kobe Gakuin University March 21, 2008

Delsarte

Delsarte (1973): X: Q-polynomial association scheme.

Example: $S(5,8,24), t=5 . s=3:\left|B \cap B^{\prime}\right| \in\{0,2,4\}$.
Delsarte-Goethals-Seidel (1977):

Spherical t-design: $Y \subset S^{n-1} \subset \mathbb{R}^{n}$,

$$
\frac{\int_{S^{n-1}} f d \mu}{\int_{S^{n-1}} 1 d \mu}=\frac{1}{|Y|} \sum_{x \in Y} f(x) \quad \text { whenever } \operatorname{deg} f \leq t
$$

Akihiro Munemasa

Etsuko Bannai 2007

s-Distance Set: $Y \subset S^{n-1} \subset \mathbb{R}^{n}$,

$$
s=\#\left\{\|x-y\|^{2} \mid x, y \in Y, x \neq y\right\} .
$$

Y : spherical t-design
s-distance set
$t \geq 2 s-3$
Y : antipodal
Example: E_{6} root system $Y . s=|\{1,0,-1,-2\}|=4, t=5$.
Fxamnle: Y : shortest (norm 6) vectors of Martinet's 10-dimensional lattice. $|Y|=240$.

This is a lattice with the smallest dimension except root lattices whose set of vectors of a given norm carries a spherical 5-design (Nebe-Venkov 2000).

PNU in 2004

Talk given at Pusan National University by A. M.:

Y: shortest (norm 6) vectors of Martinet's 10-dimensional lattice. $|Y|=240$.
$s=|\{3,2,1,0,-1,-2,-3,-6\}|=8, t=5$.
Y carries an association scheme which is not Q-polynomial

$\operatorname{Sp}(4,3)$

$\operatorname{Sp}(4,3) \curvearrowright 80$ points: multiplicity-free
5-dim. irreducible representation over $\mathbb{Q}(\sqrt{-3})$.
$\Longrightarrow Z \subset \mathbb{R}^{10},|Z|=80$, consisting of elements of norm 3 ,
Z: 4-distance set $(4=|\{1,0,-1,-3\}|)$
but not 5-design (only 3-design).

$$
Y=\langle\omega\rangle Z \subset \mathbb{Q}(\sqrt{-3})^{5} \cong \mathbb{R}^{10}
$$

is a 5-design, where $\omega=(-1+\sqrt{-3}) / 2$.

Dimension 28

R. Bacher and B. Venkov (2001) classified 28-dim. unimodular lattices with min. $=3$.

There are exactly 38 such lattices.
Harada-M.-Venkov (2007) classified ternary self-dual [28, 14, 9] codes. There are 6,931 such codes.

One of the 38 lattices come from $\operatorname{Sp}(6,3)$, due to Bacher-Venkov (1995).

$\operatorname{Sp}(6,3)$

$\operatorname{Sp}(6,3) \curvearrowright 2240$ points: multiplicity-free
14-dim. irreducible representation over $\mathbb{Q}(\sqrt{-3})$.
$\Longrightarrow Z \subset \mathbb{R}^{28},|Z|=2240$, consisting of elements of norm 3,
Z: 4-distance set $(4=|\{1,0,-1,-3\}|)$
but not 5-design (only 3-design).
$\Lambda=\langle Z\rangle$ is one of the 38 unimodular lattices with min. $=3$.

Harada-M.-Venkov

ternary self-dual $[28,14,9]$ codes C with $A_{3}(C)=\Lambda=\langle Z\rangle$
\qquad
sets of 28 pairwise orthogonal lines among the 1120 lines
$=Z /\{ \pm 1\}$, up to automorphism
=
symplectic spread (classified by Dempwolff (1994)).
$\operatorname{Sp}(6,3) \curvearrowright$
1120 lines = max. totally isotropic subsp.
$=$ dual polar space $C_{3}(3)$

5-Design with 6720 points

	\# lines	kissing \#	$\times\langle\omega\rangle$
$\operatorname{Sp}(4,3)$	40	80	240
$\operatorname{Sp}(6,3)$	1120	2240	6720

Theorem. There exists a spherical 5-design of 6720 points in \mathbb{R}^{28}.
$\operatorname{Sp}(6,3) \curvearrowright 2240$ points: multiplicity-free 14-dim. irreducible representation over $\mathbb{Q}(\sqrt{-3})$.
$\Longrightarrow Z \subset \mathbb{R}^{28},|Z|=2240$, consisting of elements of norm 3, $Y=\langle\omega\rangle$. Also,

$$
Y \cong\left\{v \in \Lambda_{0}^{*} \mid(v, v)=3\right\} . \quad \text { (dual of the even sublattice) }
$$

2240 vectors of Λ, and 2×2240 vectors of the shadow of Λ.

