Mass formulas for self－dual codes

Akihiro MUNEMASA（宗政昭弘）

Graduate School of Information Sciences
Tohoku University 東北大学
（joint work with Rowena A．L．Betty）

Self－dual，self－orthogonal codes

－R ：finite commutative ring
－n ：positive integer

Self－dual，self－orthogonal codes

－R ：finite commutative ring
－n ：positive integer
－$(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$ ，for $x, y \in R^{n}$
－C ：R－submodule of R^{n}
－$C^{\perp}=\left\{x \in R^{n} \mid(x, y)=0\right.$ for all $\left.y \in C\right\}$

Self－dual，self－orthogonal codes

－R ：finite commutative ring
－n ：positive integer
－$(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$ ，for $x, y \in R^{n}$
－$C: R$－submodule of R^{n}

－C ：

Self－dual，self－orthogonal codes

－R ：finite commutative ring
－n ：positive integer
－$(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$ ，for $x, y \in R^{n}$
－$C: R$－submodule of R^{n}
－$C^{\perp}=\left\{x \in R^{n} \mid(x, y)=0\right.$ for all $\left.y \in C\right\}$

Self－dual，self－orthogonal codes

－R ：finite commutative ring
－n ：positive integer
－$(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$ ，for $x, y \in R^{n}$
－$C: R$－submodule of R^{n}
－$C^{\perp}=\left\{x \in R^{n} \mid(x, y)=0\right.$ for all $\left.y \in C\right\}$
－C ：self－dual if $C=C^{\perp}$
－C ：self－orthogonal if $C \subset C^{\perp}$

Mass formulas

The number of self－dual codes of length n
－over \mathbb{F}_{p}（the number of maximal totally isotropic subspaces，the index of a maximal parabolic subgroup in a finite classical group）is known for years．
－over \mathbb{Z}_{4} ：was given by Gaborit（1996）．
Mass formula $=$ a formula giving the number of certain （self－dual or self－orthogonal，for instance）codes of length n over a ring R ．

Mass formulas

The number of self－dual codes of length n
－over \mathbb{F}_{p}（the number of maximal totally isotropic subspaces，the index of a maximal parabolic subgroup in a finite classical group）is known for years．
－over \mathbb{Z}_{4} ：was given by Gaborit（1996）．
Mass formula $=$ a formula giving the number of certain （self－dual or self－orthogonal，for instance）codes of length n over a ring R ．

More mass formulas

	$\mathbb{Z}_{p^{2}}$	$\mathbb{Z}_{p^{3}}$	$\mathbb{Z}_{p^{m}}$		\mathbb{Z}_{4}	\mathbb{Z}_{8}	$\mathbb{Z}_{2^{m}}$
s．d．	BBN	NNW	？．d．	G	NNW	$?$	
s．o．	BM	$?$	$?$	？			
s．o．	BM	$?$	$?$				
even s．d．	G	$?$	$?$				
even s．o．	BM^{*}	$?$	$?$				

BBN Balmaceda－Betty－Nemenzo， 2008

BMBetty－Munemasa，submitted
NNW Nagata－Nemenzo－Wada，preprint $1 \in C_{1}, n \equiv 0(\bmod 8)$

More mass formulas

	$\mathbb{Z}_{p^{2}}$	$\mathbb{Z}_{p^{3}}$	$\mathbb{Z}_{p^{m}}$
s．d．	BBN	NNW	？
s．o．	BM	？	？

	\mathbb{Z}_{4}	\mathbb{Z}_{8}	$\mathbb{Z}_{2^{m}}$
s．d．	G	NNW	$?$
s．o．	BM	$?$	$?$
even s．d．	G	$?$	$?$
even s．o．	BM^{*}	$?$	$?$

G Gaborit， 1996
BBN Balmaceda－Betty－Nemenzo， 2008
BM Betty－Munemasa，submitted
NNW Nagata－Nemenzo－Wada，preprint
＊ $1 \in C_{1}, n \equiv 0(\bmod 8)$ ．

Mass formula for even self－dual codes over \mathbb{Z}_{8}

In particular，we want to verify our numerical result（with M．Harada）on
the number of 8－frames in the E_{8}－lattice
$=45,102,825$（by computer）
$=\frac{\left|\operatorname{Aut}\left(E_{8}\right)\right|}{2^{8} \cdot 8!} \cdot \#$ even self－dual codes of length 8 over \mathbb{Z}_{8}
$\theta_{E_{8}}=1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+\cdots$
The number of（not necessarily even）self－dual codes over \mathbb{Z}_{8} is due to Nagata－Nemenzo－Wada．

Mass formula for even self－dual codes over \mathbb{Z}_{8}

In particular，we want to verify our numerical result（with M．Harada）on
the number of 8－frames in the E_{8}－lattice $=45,102,825$（by computer）
$=\frac{\left|\operatorname{Aut}\left(E_{8}\right)\right|}{2^{8 \cdot 8!}}$ ．\＃t even self－dual codes of length 8 over \mathbb{Z}_{8} $\theta_{E_{8}}=1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+\cdots$

The number of（not necessarily even）self－dual codes over \mathbb{Z}_{8} is due to Nagata－Nemenzo－Wada

Mass formula for even self－dual codes over \mathbb{Z}_{8}

In particular，we want to verify our numerical result（with M．Harada）on
the number of 8 －frames in the E_{8}－lattice
$=45,102,825$（by computer）
$=\frac{\left|\operatorname{Aut}\left(E_{8}\right)\right|}{2^{8} \cdot 8!} \cdot \#$ even self－dual codes of length 8 over \mathbb{Z}_{8}
$\theta_{E_{8}}=1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+\cdots$
he number of（not necessarily even）self－dual codes over \mathbb{Z}_{8} is due to Nagata－Nemenzo－Wada

Mass formula for even self－dual codes over \mathbb{Z}_{8}

In particular，we want to verify our numerical result（with M．Harada）on
the number of 8 －frames in the E_{8}－lattice
$=45,102,825$（by computer）
$=\frac{\left|\operatorname{Aut}\left(E_{8}\right)\right|}{2^{8} \cdot 8!} \cdot \#$ even self－dual codes of length 8 over \mathbb{Z}_{8}

$$
\theta_{E_{8}}=1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+\cdots
$$

The number of（not necessarily even）self－dual codes over \mathbb{Z}_{8} is due to Nagata－Nemenzo－Wada

Mass formula for

 even self－dual codes over \mathbb{Z}_{8}In particular，we want to verify our numerical result（with M．Harada）on
the number of 8 －frames in the E_{8}－lattice
$=45,102,825$（by computer）
$=\frac{\left|\operatorname{Aut}\left(E_{8}\right)\right|}{2^{8} \cdot 8!} \cdot \#$ even self－dual codes of length 8 over \mathbb{Z}_{8}

$$
\theta_{E_{8}}=1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+\cdots
$$

The number of（not necessarily even）self－dual codes over \mathbb{Z}_{8} is due to Nagata－Nemenzo－Wada．

Technique：from \mathbb{F}_{p}^{\prime}－codes to $\mathbb{Z}_{p^{2}}$－codes

－C_{1} ：self－orthogonal code over \mathbb{F}_{p} ．
－want to count \＃self－orthogonal codes C over $\mathbb{Z}_{p^{2}}$ such that $C \bmod p=C_{1}($ residue of $C)$ ．

If C_{1} has generator matrix A then C has generator matrix

for some N, B ．
In what follows，generator matrices of codes will have integer entries．

Technique：from \mathbb{F}_{p}^{\prime}－codes to $\mathbb{Z}_{p^{2}}$－codes

－C_{1} ：self－orthogonal code over \mathbb{F}_{p} ．
－want to count \＃self－orthogonal codes C over $\mathbb{Z}_{p^{2}}$ such that $C \bmod p=C_{1}($ residue of $C)$ ．

If C_{1} has generator matrix A ，then C has generator

 matrix
for some N, B ．
In what follows，generator matrices of codes will have integer entries．

Technique：from \mathbb{F}_{p}^{\prime}－codes to $\mathbb{Z}_{p^{2}}$－codes

－C_{1} ：self－orthogonal code over \mathbb{F}_{p} ．
－want to count \＃self－orthogonal codes C over $\mathbb{Z}_{p^{2}}$ such that $C \bmod p=C_{1}($ residue of $C)$ ．

If C_{1} has generator matrix A ，then C has generator matrix

for some N, B ．
In what follows，generator matrices of codes will have integer entries．

Technique：from \mathbb{F}_{p}^{\prime}－codes to $\mathbb{Z}_{p^{2}}$－codes

－C_{1} ：self－orthogonal code over \mathbb{F}_{p} ．
－want to count \＃self－orthogonal codes C over $\mathbb{Z}_{p^{2}}$ such that $C \bmod p=C_{1}($ residue of $C)$ ．

If C_{1} has generator matrix A ，then C has generator matrix

$$
\left[\begin{array}{c}
A+p N \\
p B
\end{array}\right]
$$

for some N, B ．
In what follows，generator matrices of codes will have integer entries．

Technique：from $\mathbb{F}_{p^{\prime}}$－codes to $\mathbb{Z}_{p^{2}}$－codes

－C_{1} ：self－orthogonal code over \mathbb{F}_{p} ．
－want to count \＃self－orthogonal codes C over $\mathbb{Z}_{p^{2}}$ such that $C \bmod p=C_{1}($ residue of $C)$ ．

If C_{1} has generator matrix A ，then C has generator matrix

$$
\left[\begin{array}{c}
A+p N \\
p B
\end{array}\right]
$$

for some N, B ．
In what follows，generator matrices of codes will have integer entries．

Free codes

－C_{1} ：self－orthogonal code over \mathbb{F}_{p} with generator matrix $\left[\begin{array}{ll}I & A\end{array}\right]$ ．
－want to count \＃free self－orthogonal codes C over $\mathbb{Z}_{p^{2}}$ such that $C \bmod p=C_{1}$ ．

$\Longleftrightarrow C \cong \mathbb{Z}_{p^{2}}^{k}$ ，where $k=\operatorname{dim} C_{1}$ $\Longleftrightarrow C$ has generator matrix $\left[I+p N_{1} A+p N_{2}\right]$ $\Longleftrightarrow C$ has generator matrix $[I \quad A+p N]$
N is uniquely determined by C ．

Free codes

－C_{1} ：self－orthogonal code over \mathbb{F}_{p} with generator matrix $\left[\begin{array}{ll}I & A\end{array}\right]$ ．
－want to count \＃free self－orthogonal codes C over $\mathbb{Z}_{p^{2}}$ such that $C \bmod p=C_{1}$ ．

free

$\Longleftrightarrow C \simeq \mathbb{Z}_{p^{2}}^{k}$ ，where $k=\operatorname{dim} C_{1}$ $\Longleftrightarrow C$ has generator matrix $\left[I+p N_{1} A+p N_{2}\right]$ $\Longleftrightarrow C$ has generator matrix $\left[\begin{array}{ll}I & A+p N\end{array}\right]$
N is uniquely determined by C ．

Free codes

－C_{1} ：self－orthogonal code over \mathbb{F}_{p} with generator matrix $\left[\begin{array}{ll}I & A\end{array}\right]$ ．
－want to count \＃free self－orthogonal codes C over $\mathbb{Z}_{p^{2}}$ such that $C \bmod p=C_{1}$ ．
C ：free
$\Longleftrightarrow C \cong \mathbb{Z}_{p^{2}}^{k}$ ，where $k=\operatorname{dim} C_{1}$
$\Longleftrightarrow C$ has generator matrix $\left[I+p N_{1} A+p N_{2}\right]$
$\Longleftrightarrow C$ has generator matrix $\left[\begin{array}{ll}I & A+p N\end{array}\right]$
N is uniquely determined by C ．

Free codes

－C_{1} ：self－orthogonal code over \mathbb{F}_{p} with generator matrix $\left[\begin{array}{ll}I & A\end{array}\right]$ ．
－want to count \＃free self－orthogonal codes C over $\mathbb{Z}_{p^{2}}$ such that $C \bmod p=C_{1}$ ．
C ：free
$\Longleftrightarrow C \cong \mathbb{Z}_{p^{2}}^{k}$ ，where $k=\operatorname{dim} C_{1}$
$\Longleftrightarrow C$ has generator matrix $\left[I+p N_{1} A+p N_{2}\right]$
$\Longleftrightarrow C$ has generator matrix $\left[\begin{array}{ll}I & A+p N\end{array}\right]$
N is uniquely determined by C ．

Free codes with given residue

$$
C_{1}:\left[\begin{array}{ll}
I & A
\end{array}\right] / \mathbb{F}_{p,}, \quad I+A A^{T} \equiv 0(\bmod p), \quad C:\left[\begin{array}{ll}
I & A+p
\end{array}\right] / \mathbb{Z}_{p^{2}} .
$$

- C is self-orthogonal $I+A A^{T}+p\left(A N^{T}+N A^{T}\right) \equiv 0\left(\bmod p^{2}\right)$.

So

In general,

Free codes with given residue

$C_{1}:\left[\begin{array}{ll}I & A\end{array}\right] / \mathbb{F}_{p}, \quad I+A A^{T} \equiv 0(\bmod p), \quad C:\left[\begin{array}{ll}I & A+p\end{array}\right] / \mathbb{Z}_{p^{2}}$.

- C is self-orthogonal

$$
I+A A^{T}+p\left(A N^{T}+N A^{T}\right) \equiv 0\left(\bmod p^{2}\right)
$$

In general,

Free codes with given residue

$C_{1}:\left[\begin{array}{ll}I & A\end{array}\right] / \mathbb{F}_{p}, \quad I+A A^{T} \equiv 0(\bmod p), \quad C:\left[\begin{array}{ll}I & A+p\end{array}\right] / \mathbb{Z}_{p^{2}}$.
－C is self－orthogonal

$$
I+A A^{T}+p\left(A N^{T}+N A^{T}\right) \equiv 0\left(\bmod p^{2}\right)
$$

So
$\# C=\# N$ s．t．$A N^{T}+N A^{T} \equiv-\frac{1}{p}\left(I+A A^{T}\right) \quad(\bmod p)$.
In general，

Free codes with given residue

$C_{1}:\left[\begin{array}{ll}I & A\end{array}\right] / \mathbb{F}_{p}, \quad I+A A^{T} \equiv 0(\bmod p), \quad C:\left[\begin{array}{ll}I & A+p\end{array}\right] / \mathbb{Z}_{p^{2}}$.

- C is self-orthogonal \Longleftrightarrow

$$
I+A A^{T}+p\left(A N^{T}+N A^{T}\right) \equiv 0\left(\bmod p^{2}\right)
$$

So
$\# C=\# N$ s.t. $A N^{T}+N A^{T} \equiv-\frac{1}{p}\left(I+A A^{T}\right) \quad(\bmod p)$.
In general,

$$
\#\left\{N \mid A N^{T}+N A^{T} \equiv \text { given }(\bmod p)\right\}=?
$$

Free codes with given residue

$C_{1}:\left[\begin{array}{ll}I & A\end{array}\right] / \mathbb{F}_{p}, \quad I+A A^{T} \equiv 0(\bmod p), \quad C:\left[\begin{array}{ll}I & A+p\end{array}\right] / \mathbb{Z}_{p^{2}}$.
－C is self－orthogonal \Longleftrightarrow

$$
I+A A^{T}+p\left(A N^{T}+N A^{T}\right) \equiv 0\left(\bmod p^{2}\right)
$$

So
$\# C=\# N$ s．t．$A N^{T}+N A^{T} \equiv-\frac{1}{p}\left(I+A A^{T}\right) \quad(\bmod p)$.
In general，

$$
\#\left\{N \mid A N^{T}+N A^{T} \equiv \text { given }(\bmod p)\right\}=?
$$

Note $\operatorname{rank}_{p} A=k$ ，since $I+A A^{T} \equiv 0_{(}(\bmod p)$.

Mapping on matrices

$\# \quad$ s．t．$A^{T}+A^{T} \equiv-\frac{1}{p}\left(I+A A^{T}\right)(\bmod p)$
$\psi: M_{k \times m}\left(\mathbb{F}_{p}\right) \rightarrow \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right)$
where $A \in M_{k \times m}\left(\mathbb{F}_{p}\right)$ ，rank $A=k$ ．

Lemma

p ：odd prime $\Longrightarrow \Psi:$ surjective．

Mapping on matrices

$\# \quad$ s．t．$A^{T}+A^{T} \equiv-\frac{1}{p}\left(I+A A^{T}\right)(\bmod p)$

$$
\begin{aligned}
\Psi: M_{k \times m}\left(\mathbb{F}_{p}\right) & \rightarrow \\
N & \mapsto y y_{k}\left(\mathbb{F}_{p}\right) \\
& \mapsto A N^{T}+N A^{T}
\end{aligned}
$$

where $A \in M_{k \times m}\left(\mathbb{F}_{p}\right), \operatorname{rank} A=k$ ．

Lemma

n ：odd nrime $\longrightarrow \psi:$ surjective．

Mapping on matrices

$\# \quad$ s．t．$A^{T}+A^{T} \equiv-\frac{1}{p}\left(I+A A^{T}\right)(\bmod p)$

$$
\begin{array}{rlc}
\Psi: M_{k \times m}\left(\mathbb{F}_{p}\right) & \rightarrow & \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right) \\
N & \mapsto A N^{T}+N A^{T}
\end{array}
$$

where $A \in M_{k \times m}\left(\mathbb{F}_{p}\right), \operatorname{rank} A=k$.
Lemma
p ：odd prime $\Longrightarrow \Psi$ ：surjective．

Mapping on matrices

$\#$ s．t．$A^{T}+A^{T} \equiv-\frac{1}{p}\left(I+A A^{T}\right)(\bmod p)$

$$
\begin{aligned}
\Psi: M_{k \times m}\left(\mathbb{F}_{p}\right) & \rightarrow \\
N & \mapsto y m_{k}\left(\mathbb{F}_{p}\right) \\
& \mapsto A N^{T}+N A^{T}
\end{aligned}
$$

where $A \in M_{k \times m}\left(\mathbb{F}_{p}\right)$ ，rank $A=k$ ．

Lemma

p ：odd prime $\Longrightarrow \Psi$ ：surjective．

$$
\begin{aligned}
& \#\left\{N \mid A N^{T}+N A^{T}=\text { given }\right\} \\
& =\# \Psi^{-1} \text { (given) }=\# \operatorname{Ker} \Psi \\
& =p^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{p}\right)-\operatorname{dim} \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right)}=p^{k m-k(k+1) / 2}
\end{aligned}
$$

Mapping on matrices

$\# \quad$ s．t．$A^{T}+A^{T} \equiv-\frac{1}{p}\left(I+A A^{T}\right)(\bmod p)$

$$
\begin{aligned}
\Psi: M_{k \times m}\left(\mathbb{F}_{p}\right) & \rightarrow \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right) \\
N & \mapsto A N^{T}+N A^{T}
\end{aligned}
$$

where $A \in M_{k \times m}\left(\mathbb{F}_{p}\right), \operatorname{rank} A=k$ ．

Lemma

p ：odd prime $\Longrightarrow \Psi$ ：surjective．

$$
\begin{aligned}
& \#\left\{N \mid A N^{T}+N A^{T}=\text { given }\right\} \\
& =\# \Psi^{-1}(\text { given })=\# \operatorname{Ker} \Psi \\
& =p^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{p}\right)-\operatorname{dim} \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right)}=p^{k m-k(k+1) / 2}
\end{aligned}
$$

$p=2$,
 $\Psi: \quad \mapsto A{ }^{T}+A^{T} \in \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right)$

$\Psi: M_{k \times m}\left(\mathbb{F}_{2}\right) \quad \rightarrow \quad \operatorname{Alt}_{k}\left(\mathbb{F}_{2}\right)$

where $A \in M_{k \times m}\left(\mathbb{F}_{2}\right)$ ，rank $A=k$ ．

Lemma

$\psi:$ surjective．

$$
\begin{aligned}
& \#\left\{N \mid A N^{T}+N A^{T}=\text { given } \in \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)\right\} \\
& =\# \operatorname{Ker} \Psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{p}\right)-\operatorname{dim} \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)} \\
& =2^{k m-k(k-1) / 2}
\end{aligned}
$$

$p=2$,
 $\Psi: \quad \mapsto A{ }^{T}+\quad A^{T} \in \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right)$

$$
\begin{array}{rlc}
\Psi: M_{k \times m}\left(\mathbb{F}_{2}\right) & \rightarrow & \operatorname{Alt}_{k}\left(\mathbb{F}_{2}\right) \\
N & \mapsto A N^{T}+N A^{T}
\end{array}
$$

where $A \in M_{k \times m}\left(\mathbb{F}_{2}\right)$ ， $\operatorname{rank} A=k$ ．
Lemma
suriective．

$$
\begin{aligned}
& \#\left\{N \mid A N^{T}+N A^{T}=\text { given } \in \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)\right\} \\
& =\# \operatorname{Ker} \Psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{p}\right)-\operatorname{dim} \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)} \\
& =2^{k m-k(k-1) / 2}
\end{aligned}
$$

$p=2$,
 $\Psi: \quad \mapsto A{ }^{T}+A^{T} \in \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right)$

$$
\begin{array}{rlc}
\Psi: M_{k \times m}\left(\mathbb{F}_{2}\right) & \rightarrow & \operatorname{Alt}_{k}\left(\mathbb{F}_{2}\right) \\
N & \mapsto A N^{T}+N A^{T}
\end{array}
$$

where $A \in M_{k \times m}\left(\mathbb{F}_{2}\right)$ ，rank $A=k$ ．

surjective．

$$
\begin{aligned}
& \#\left\{N \mid A N^{T}+N A^{T}=\text { given } \in \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)\right\} \\
& =\# \operatorname{Ker} \Psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{p}\right)-\operatorname{dim} \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)} \\
& =2^{k m-k(k-1) / 2}
\end{aligned}
$$

$p=2$,

$\Psi: \quad \mapsto A^{T}+A^{T} \in \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right)$

$$
\begin{aligned}
\Psi: M_{k \times m}\left(\mathbb{F}_{2}\right) & \rightarrow \\
N & \mapsto A \operatorname{tt}_{k}\left(\mathbb{F}_{2}\right) \\
& \mapsto A N^{T}+N A^{T}
\end{aligned}
$$

where $A \in M_{k \times m}\left(\mathbb{F}_{2}\right)$ ，rank $A=k$ ．

Lemma

Ψ ：surjective．

$$
\begin{aligned}
& \#\left\{N \mid A N^{T}+N A^{T}=\operatorname{given} \in \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)\right\} \\
& =\# \operatorname{Ker} \psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{p}\right)-\operatorname{dim} \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)} \\
& =2^{k m-k(k-1) / 2} .
\end{aligned}
$$

$p=2$,
$\Psi: \quad \mapsto A A^{T}+A^{T} \in \operatorname{Sym}_{k}\left(\mathbb{F}_{p}\right)$

$$
\begin{array}{rlc}
\Psi: M_{k \times m}\left(\mathbb{F}_{2}\right) & \rightarrow & \operatorname{Alt}_{k}\left(\mathbb{F}_{2}\right) \\
N & \mapsto A N^{T}+N A^{T}
\end{array}
$$

where $A \in M_{k \times m}\left(\mathbb{F}_{2}\right)$ ，rank $A=k$ ．

Lemma

Ψ ：surjective．

$$
\begin{aligned}
& \#\left\{N \mid A N^{T}+N A^{T}=\operatorname{given} \in \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)\right\} \\
& =\# \operatorname{Ker} \Psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{p}\right) \text {-dim } \operatorname{Alt}_{k}\left(\mathbb{F}_{p}\right)} \\
& =2^{k m-k(k-1) / 2 .}
\end{aligned}
$$

Even codes over \mathbb{Z}_{4}

$$
C_{1}:\left[\begin{array}{ll}
I & A
\end{array}\right] / \mathbb{F}_{2}, \quad C:\left[\begin{array}{ll}
I & A+2
\end{array}\right] / \mathbb{Z}_{4} .
$$

Problem

－When is C even（i．e．，Euclidean norm（weight）$\equiv 0$ $(\bmod 8))$ ？
－Count \＃N for which C is even．
In addition to C being self－orthogonal，i．e．，

$$
I+A A^{T}+2\left(A N^{T}+N A^{T}\right) \equiv 0 \quad(\bmod 4)
$$

we need：

$\operatorname{Diag}\left(I+A A^{T}+2\left(A N^{T}+N A^{T}\right)+4 N N^{T}\right) \equiv 0(\bmod 8)$.

Even codes over \mathbb{Z}_{4}

$$
C_{1}:\left[\begin{array}{ll}
I & A
\end{array}\right] / \mathbb{F}_{2}, \quad C:\left[\begin{array}{ll}
I & A+2
\end{array}\right] / \mathbb{Z}_{4} .
$$

Problem

－When is C even（i．e．，Euclidean norm（weight）$\equiv 0$ $(\bmod 8))$ ？
－Count \＃N for which C is even．
In addition to C being self－orthogonal，i．e．，

we need：
$\operatorname{Diag}\left(I+A A^{T}+2\left(A N^{T}+N A^{T}\right)+4 N N^{T}\right) \equiv 0(\bmod 8)$.

Even codes over \mathbb{Z}_{4}

$$
C_{1}:\left[\begin{array}{ll}
I & A
\end{array}\right] / \mathbb{F}_{2}, \quad C:\left[\begin{array}{ll}
I & A+2
\end{array}\right] / \mathbb{Z}_{4} .
$$

Problem

－When is C even（i．e．，Euclidean norm（weight）$\equiv 0$ $(\bmod 8))$ ？
－Count \＃N for which C is even．

we need

$\operatorname{Diag}\left(I+A A^{T}+2\left(A N^{T}+N A^{T}\right)+4 N N^{T}\right) \equiv 0 \quad(\bmod 8)$.

Even codes over \mathbb{Z}_{4}

$C_{1}:\left[\begin{array}{ll}I & A\end{array}\right] / \mathbb{F}_{2}, \quad C:\left[\begin{array}{ll}I & A+2\end{array}\right] / \mathbb{Z}_{4}$.

Problem

－When is C even（i．e．，Euclidean norm（weight）$\equiv 0$ $(\bmod 8))$ ？
－Count \＃N for which C is even．
In addition to C being self－orthogonal，i．e．，

$$
I+A A^{T}+2\left(A N^{T}+N A^{T}\right) \equiv 0 \quad(\bmod 4)
$$

we need：
$\operatorname{Diag}\left(I+A A^{T}+2\left(A N^{T}+N A^{T}\right)+4 N N^{T}\right) \equiv 0(\bmod 8)$.

Even codes over \mathbb{Z}_{4}

$C_{1}:\left[\begin{array}{ll}I & A\end{array}\right] / \mathbb{F}_{2}, \quad C:\left[\begin{array}{ll}I & A+2\end{array}\right] / \mathbb{Z}_{4}$.

Problem

－When is C even（i．e．，Euclidean norm（weight）$\equiv 0$ $(\bmod 8))$ ？
－Count \＃N for which C is even．
In addition to C being self－orthogonal，i．e．，

$$
I+A A^{T}+2\left(A N^{T}+N A^{T}\right) \equiv 0 \quad(\bmod 4)
$$

we need：
$\operatorname{Diag}\left(I+A A^{T}+2\left(A N^{T}+N A^{T}\right)+4 N N^{T}\right) \equiv 0 \quad(\bmod 8)$.
$I+A A^{T}+2\left(A^{T}+A^{T}\right) \equiv 0(\bmod 4)$,
$\operatorname{Diag}\left(I+A A^{T}+2\left(A^{T}+A^{T}\right)+4 \quad{ }^{T}\right) \equiv 0(\bmod 8)$.

$$
\begin{gathered}
A N^{T}+N A^{T} \equiv \frac{1}{2}\left(I+A A^{T}\right) \quad(\bmod 2) \\
\operatorname{Diag}\left(I+A A^{T}+4 A N^{T}+4 N N^{T}\right) \equiv 0 \quad(\bmod 8) \\
\frac{1}{4} \operatorname{Diag}\left(I+A A^{T}\right) \equiv \operatorname{Diag}\left(A N^{T}+N N^{T}\right) \quad(\bmod 2) \\
\equiv \operatorname{Diag}\left((A+J) N^{T}\right) \quad(\bmod 2)
\end{gathered}
$$

$I+A A^{T}+2\left(A^{T}+A^{T}\right) \equiv 0(\bmod 4)$,
$\operatorname{Diag}\left(I+A A^{T}+2\left(A^{T}+A^{T}\right)+4 \quad{ }^{T}\right) \equiv 0(\bmod 8)$.

$$
\begin{gathered}
A N^{T}+N A^{T} \equiv \frac{1}{2}\left(I+A A^{T}\right) \quad(\bmod 2) \\
\operatorname{Diag}\left(I+A A^{T}+4 A N^{T}+4 N N^{T}\right) \equiv 0 \quad(\bmod 8) \\
\frac{1}{4} \operatorname{Diag}\left(I+A A^{T}\right) \equiv \operatorname{Diag}\left(A N^{T}+N N^{T}\right) \quad(\bmod 2) \\
\equiv \operatorname{Diag}\left((A+J) N^{T}\right) \quad(\bmod 2)
\end{gathered}
$$

$I+A A^{T}+2\left(A^{T}+A^{T}\right) \equiv 0(\bmod 4)$,
$\operatorname{Diag}\left(I+A A^{T}+2\left(A^{T}+A^{T}\right)+4 \quad{ }^{T}\right) \equiv 0(\bmod 8)$.

$$
A N^{T}+N A^{T} \equiv \frac{1}{2}\left(I+A A^{T}\right) \quad(\bmod 2)
$$

$\operatorname{Diag}\left(I+A A^{T}+4 A N^{T}+4 N N^{T}\right) \equiv 0(\bmod 8)$,

$$
\begin{aligned}
\frac{1}{4} \operatorname{Diag}(I & \left.+A A^{T}\right) \equiv \operatorname{Diag}\left(A N^{T}+N N^{T}\right) \\
& \equiv \operatorname{Diag}\left((A+J) N^{T}\right) \quad(\bmod 2)
\end{aligned}
$$

$$
(\bmod 2)
$$

$I+A A^{T}+2\left(A^{T}+A^{T}\right) \equiv 0(\bmod 4)$,
$\operatorname{Diag}\left(I+A A^{T}+2\left(A^{T}+A^{T}\right)+4 \quad{ }^{T}\right) \equiv 0(\bmod 8)$.

$$
A N^{T}+N A^{T} \equiv \frac{1}{2}\left(I+A A^{T}\right) \quad(\bmod 2)
$$

$\operatorname{Diag}\left(I+A A^{T}+4 A N^{T}+4 N N^{T}\right) \equiv 0(\bmod 8)$,
$\frac{1}{4} \operatorname{Diag}\left(I+A A^{T}\right) \equiv \operatorname{Diag}\left(A N^{T}+N N^{T}\right)(\bmod 2)$

$$
\equiv \operatorname{Diag}\left((A+J) N^{T}\right) \quad(\bmod 2)
$$

$I+A A^{T}+2\left(A^{T}+A^{T}\right) \equiv 0(\bmod 4)$,
$\operatorname{Diag}\left(I+A A^{T}+2\left(A{ }^{T}+A^{T}\right)+4 \quad{ }^{T}\right) \equiv 0(\bmod 8)$.

$$
A N^{T}+N A^{T} \equiv \frac{1}{2}\left(I+A A^{T}\right) \quad(\bmod 2)
$$

$\operatorname{Diag}\left(I+A A^{T}+4 A N^{T}+4 N N^{T}\right) \equiv 0(\bmod 8)$,
$\frac{1}{4} \operatorname{Diag}\left(I+A A^{T}\right) \equiv \operatorname{Diag}\left(A N^{T}+N N^{T}\right) \quad(\bmod 2)$
$\equiv \operatorname{Diag}\left((A+J) N^{T}\right) \quad(\bmod 2)$.
$A^{T}+A^{T} \equiv$ given $(\bmod 2)$,

$\operatorname{Diag}\left((A+J){ }^{T}\right) \equiv \operatorname{given}(\bmod 2)$ ．

Lemma

Ψ ：suriective if $1 \notin C_{1}=\operatorname{span}[I \quad A]$
$\#\left\{N \mid A N^{T}+N A^{T}=\right.$ given， $\operatorname{Diag}\left((A+J) N^{T}\right)=$ given $\}$ $=\# \operatorname{Ker} \Psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{2}\right)-\operatorname{dim} \operatorname{Sym}_{k}\left(\mathbb{F}_{2}\right)}$
$=2^{k m-k(k+1) / 2}$
$A^{T}+A^{T} \equiv$ given $(\bmod 2)$,
$\operatorname{Diag}\left((A+J){ }^{T}\right) \equiv \operatorname{given}(\bmod 2)$ ．

$$
\begin{array}{ccc}
\Psi: M_{k \times m}\left(\mathbb{F}_{2}\right) & \rightarrow & \operatorname{Sym}_{k}\left(\mathbb{F}_{2}\right) \\
N & \mapsto A N^{T}+N A^{T}+\operatorname{Diag}\left((A+J) N^{T}\right)
\end{array}
$$

Lemma
 Ψ ：surjective if $1 \notin C_{1}=\operatorname{span}[I \quad A]$

$\#\left\{N \mid A N^{T}+N A^{T}=\right.$ given， $\operatorname{Diag}\left((A+J) N^{T}\right)=$ given $\}$ $=\# \operatorname{Ker} \Psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{2}\right)-\operatorname{dim} \operatorname{Sym}_{k}\left(\mathbb{F}_{2}\right)}$ $=2^{k m-k(k+1) / 2}$
$A^{T}+A^{T} \equiv$ given $(\bmod 2)$,
$\operatorname{Diag}\left((A+J){ }^{T}\right) \equiv$ given $(\bmod 2)$ ．

$$
\begin{array}{ccc}
\Psi: M_{k \times m}\left(\mathbb{F}_{2}\right) & \rightarrow & \operatorname{Sym}_{k}\left(\mathbb{F}_{2}\right) \\
N & \mapsto A N^{T}+N A^{T}+\operatorname{Diag}\left((A+J) N^{T}\right)
\end{array}
$$

Lemma

Ψ ：surjective if $1 \notin C_{1}=\operatorname{span}\left[\begin{array}{ll}I & A\end{array}\right]$ ．

$=\# \operatorname{Ker} \Psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{2}\right)-\operatorname{dim} \operatorname{Sym}_{k}\left(\mathbb{F}_{2}\right)}$ $=2^{k m-k(k+1) / 2}$
$A^{T}+A^{T} \equiv$ given $(\bmod 2)$,
$\operatorname{Diag}\left((A+J){ }^{T}\right) \equiv$ given $(\bmod 2)$ ．

$$
\begin{array}{ccc}
\Psi: M_{k \times m}\left(\mathbb{F}_{2}\right) & \rightarrow & \operatorname{Sym}_{k}\left(\mathbb{F}_{2}\right) \\
N & \mapsto A N^{T}+N A^{T}+\operatorname{Diag}\left((A+J) N^{T}\right)
\end{array}
$$

Lemma

Ψ ：surjective if $1 \notin C_{1}=\operatorname{span}\left[\begin{array}{ll}I & A\end{array}\right]$ ．

$=\# \operatorname{Ker} \Psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{2}\right)-\operatorname{dim} \operatorname{Sym}_{k}\left(\mathbb{F}_{2}\right)}$ $=2^{k m-k(k+1) / 2}$
$A^{T}+A^{T} \equiv$ given $(\bmod 2)$,
$\operatorname{Diag}\left((A+J){ }^{T}\right) \equiv$ given $(\bmod 2)$ ．

$$
\begin{array}{ccc}
\Psi: M_{k \times m}\left(\mathbb{F}_{2}\right) & \rightarrow & \operatorname{Sym}_{k}\left(\mathbb{F}_{2}\right) \\
N & \mapsto A N^{T}+N A^{T}+\operatorname{Diag}\left((A+J) N^{T}\right)
\end{array}
$$

Lemma

Ψ ：surjective if $1 \notin C_{1}=\operatorname{span}\left[\begin{array}{ll}I & A\end{array}\right]$ ．

$$
\begin{aligned}
& \#\left\{N \mid A N^{T}+N A^{T}=\text { given, } \operatorname{Diag}\left((A+J) N^{T}\right)=\text { given }\right\} \\
& =\# \operatorname{Ker} \Psi=2^{\operatorname{dim} M_{k \times m}\left(\mathbb{F}_{2}\right)-\operatorname{dim} \operatorname{Sym}_{k}\left(\mathbb{F}_{2}\right)} \\
& =2^{k m-k(k+1) / 2}
\end{aligned}
$$

More mass formulas

	$\mathbb{Z}_{p^{2}}$	$\mathbb{Z}_{p^{3}}$	$\mathbb{Z}_{p^{m}}$
s．d．	BBN	NNW	？
s．o．	BM	？	？

	\mathbb{Z}_{4}	\mathbb{Z}_{8}	$\mathbb{Z}_{2^{m}}$
s．d．	G	NNW	$?$
s．o．	BM	$?$	$?$
even s．d．	G	$?$	$?$
even s．o．	BM^{*}	$?$	$?$

G Gaborit， 1996
BBN Balmaceda－Betty－Nemenzo，to appear
BM Betty－Munemasa，submitted
NNW Nagata－Nemenzo－Wada，preprint
＊ $1 \in C_{1}, n \equiv 0(\bmod 8)$ ．

