Twisted Grassmann graph is the block graph of a design

Akihiro Munemasa ${ }^{1}$ and Vladimir D. Tonchev ${ }^{2}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
${ }^{2}$ Department of Mathematical Sciences Michigan Technological University

Designs and Codes, June 21-24, 2009

Notation

- e : a positive integer,
- V : a $(2 e+1)$-dimensional vector space over $\operatorname{GF}(q)$.
- for a subset W of V closed under multiplication by the elements of $\mathrm{GF}(q)$, denote by $[W]$ the set of 1-dimensional subspaces (projective points) contained in W.
- for a vector space W, denote by $\left[\begin{array}{c}W \\ k\end{array}\right]$ the set of k-dimensional subspaces of W,
The geometric design $\mathrm{PG}_{e}(2 e, q)$ has [V] as the set of points, and $\left\{[W] \left\lvert\, W \in\left[\begin{array}{c}V \\ e+1\end{array}\right]\right.\right\}$ as the set of blocks. The block graph of this design, where two blocks $\left[W_{1}\right],\left[W_{2}\right]$ are adjacent whenever $\operatorname{dim} W_{1} \cap W_{2}=e$, is the Grassmann graph $J_{q}(2 e+1, e+1)$ which is isomorphic to the Grassmann graph $J_{q}(2 e+1, e)$.

Twisted Grassmann graph

Let H be a fixed hyperplane of V. The twisted Grassmann graph has the set of vertices $\mathcal{A} \cup \mathcal{B}$, where

$$
\begin{aligned}
\mathcal{A} & =\left\{\left.W \in\left[\begin{array}{c}
V \\
e+1
\end{array}\right] \right\rvert\, W \not \subset H\right\}, \\
\mathcal{B} & =\left[\begin{array}{c}
H \\
e-1
\end{array}\right] .
\end{aligned}
$$

The adjacency is defined as follows:

$$
W_{1} \sim W_{2} \Longleftrightarrow \begin{cases}\operatorname{dim} W_{1} \cap W_{2}=e & \text { if } W_{1} \in \mathcal{A}, W_{2} \in \mathcal{A}, \\ W_{1} \supset W_{2} & \text { if } W_{1} \in \mathcal{A}, W_{2} \in \mathcal{B}, \\ \operatorname{dim} W_{1} \cap W_{2}=e-2 & \text { if } W_{1} \in \mathcal{B}, W_{2} \in \mathcal{B}\end{cases}
$$

The design constructed by Jungnickel-Tonchev

Let σ be a polarity of H.
The pseudo-geometric design constructed by Jungnickel and Tonchev has $[V]$ as the set of points, and $\mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}$ as the set of blocks, where

$$
\begin{aligned}
\mathcal{A}^{\prime} & =\{[\sigma(W \cap H) \cup(W \backslash H)] \mid W \in \mathcal{A}\}, \\
\mathcal{B}^{\prime} & =\left\{[W] \left\lvert\, W \in\left[\begin{array}{c}
H \\
e+1
\end{array}\right]\right.\right\} .
\end{aligned}
$$

The incidence structure $\left([V], \mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}\right)$ is a $2-(v, k, \lambda)$ design, where

$$
v=\frac{q^{2 e+1}-1}{q-1}, k=\frac{q^{e+1}-1}{q-1}, \lambda=\frac{\left(q^{2 e-1}-1\right) \cdots\left(q^{e+1}-1\right)}{\left(q^{e-1}-1\right) \cdots(q-1)} .
$$

The isomorphism

Theorem

The twisted Grassmann graph is isomorphic to the block graph of the design $\left([V], \mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}\right)$, where two blocks are adjacent if and only if their intersection has size $\left(q^{e}-1\right) /(q-1)$.

Proof. We define a mapping $f: \mathcal{A} \cup \mathcal{B} \rightarrow \mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}$ by

$$
f(W)= \begin{cases}{[\sigma(W \cap H) \cup(W \backslash H)]} & \text { if } W \in \mathcal{A} \\ {[\sigma(W)]} & \text { if } W \in \mathcal{B}\end{cases}
$$

Then we show:

$$
W_{1} \sim W_{2} \Longleftrightarrow\left|f\left(W_{1}\right) \cap f\left(W_{2}\right)\right|=\frac{q^{e}-1}{q-1}
$$

References

E.R. van Dam and J.H. Koolen, A new family of distance-regular graphs with unbounded diameter, Invent. Math. 162 (2005), 189-193.
D. Jungnickel and V.D. Tonchev, Polarities, quasi-symmetric designs, and Hamadafs conjecture, Des. Codes Cryptogr. 51 (2009), 131-140.

