Rains' algorithm for classifying self-dual \mathbb{Z}_{4}-codes with given residue

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with Rowena A. L. Betty)

October 14, 2009
Academia Sinica

Definitions and Statement of the Problem

- \mathbb{Z}_{4} : the ring of integers modulo 4 ,
- \mathbb{Z}_{4}^{n} : the free module of rank n over \mathbb{Z}_{4},
- $(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$, where $x, y \in \mathbb{Z}_{4}^{n}$,
- a submodule $C \subset \mathbb{Z}_{4}^{n}$ is called a code of length n over \mathbb{Z}_{4}, or a \mathbb{Z}_{4}-code of length n,
- C is self-dual if $C=C^{\perp}$, where

$$
C^{\perp}=\left\{x \in \mathbb{Z}_{4}^{n} \mid(x, y)=0(\forall y \in C)\right\},
$$

- the residue: $\operatorname{Res}(C) \subset \mathbb{F}_{2}^{n} \quad$ (reduction $\mathbb{Z}_{4} \rightarrow \mathbb{F}_{2} \bmod 2$).

Problem

Given $C_{0} \subset \mathbb{F}_{2}^{n}$, classify (up to monomial equivalence) self-dual $C \subset \mathbb{Z}_{4}^{n}$ with $\operatorname{Res}(C)=C_{0}$.

Given $C_{0} \subset \mathbb{F}_{2}^{n}$, classify self-dual $C \subset \mathbb{Z}_{4}^{n}$ with

$$
\operatorname{Res}(C)=C_{0}
$$

C : self-dual \mathbb{Z}_{4}-code $\Longrightarrow C_{0}=\operatorname{Res}(C)$: doubly even.
Theorem (Rains, 1999)
Given a doubly even code C_{0} of length n, dimension k,

- the set of all self-dual \mathbb{Z}_{4}-codes C with $\operatorname{Res}(C)=C_{0}$ has a structure as an affine space of dimension $k(k+1) / 2$ over \mathbb{F}_{2},
- the group $\{ \pm 1\}^{n} \rtimes \operatorname{Aut}\left(C_{0}\right)$ acts as an affine transformation group,
- two codes C, C^{\prime} are equivalent if and only if they are in the same orbit under this group.

The set of all self-dual \mathbb{Z}_{4}-codes C with

 $\operatorname{Res}(C)=C_{0}$ has a structure as an affine space of dimension $k(k+1) / 2$ over \mathbb{F}_{2}Naïvely speaking, classifying such C amounts to enumerating $k \times n$ binary matrices M such that

$$
\left[\begin{array}{c}
A+2 M \\
2 B
\end{array}\right] \text { where } A \text { generates } C_{0}, \quad\left[\begin{array}{l}
A \\
B
\end{array}\right] \text { generates } C_{0}^{\perp},
$$

is self-dual. Among the $2^{k n}$ matrices M, not all of them generate a self-dual code, while some matrices generate the same code as the one generated by some other matrix. This reduces the number

$$
2^{k n} \text { to } 2^{k(k+1) / 2} .
$$

Given $C_{0} \subset \mathbb{F}_{2}^{n}$, classify self-dual $C \subset \mathbb{Z}_{4}^{n}$ with

$$
\operatorname{Res}(C)=C_{0}
$$

Theorem (Rains, 1999)
Given a doubly even code C_{0} of length n, dimension k,

- the set of all self-dual \mathbb{Z}_{4}-codes C with $\operatorname{Res}(C)=C_{0}$ has a structure as an affine space of dimension $k(k+1) / 2$ over \mathbb{F}_{2}, (due to Gaborit, 1996)
- the group $\{ \pm 1\}^{n} \rtimes \operatorname{Aut}\left(C_{0}\right)$ acts as an affine transformation group,
- two codes C, C^{\prime} are equivalent if and only if they are in the same orbit under this group.

Given $C_{0} \subset \mathbb{F}_{2}^{n}$, classify self-dual $C \subset \mathbb{Z}_{4}^{n}$ with

$$
\operatorname{Res}(C)=C_{0}
$$

Theorem (Rains, 1999)
Given a doubly even code C_{0} of length n, dimension k,

- the set of all self-dual \mathbb{Z}_{4}-codes C with $\operatorname{Res}(C)=C_{0}$ has a structure as an affine space of dimension $k(k+1) / 2$ over \mathbb{F}_{2}, (due to Gaborit, 1996)
- the group $\{ \pm 1\}^{n} \rtimes \operatorname{Aut}\left(C_{0}\right)$ acts as an affine transformation group,
- two codes C, C^{\prime} are equivalent if and only if they are in the same orbit under this group.

The group $\{ \pm 1\}^{n} \rtimes \operatorname{Aut}\left(C_{0}\right)$ acts as an affine

 transformation group on an affine space of dimension $k(k+1) / 2$
Theorem (improved version)

Given a doubly even code C_{0} of length n, dimension k,

- the set of all self-dual \mathbb{Z}_{4}-codes C with $\operatorname{Res}(C)=C_{0}$ has a surjection onto an affine space of dimension at most $k(k+1) / 2$ over \mathbb{F}_{2},
- the group $\operatorname{Aut}\left(C_{0}\right)$ acts as an affine transformation group,
- two codes C, C^{\prime} are equivalent if and only if their images are in the same orbit under this group.

Self-dual \mathbb{Z}_{4}-codes C with $\operatorname{Res}(C)=C_{0}$

Given a doubly even code C_{0} of length n, dimension k, with generator matrix A, C_{0}^{\perp} is generated by $\left[\begin{array}{l}A \\ B\end{array}\right]$, set

- $\mathcal{M}=M_{k \times n}\left(\mathbb{F}_{2}\right)$,
- $V_{0}=\left\{M \in \mathcal{M} \mid M A^{T}+A M^{T}=0\right\}$,
- W_{0} : subspace of \mathcal{M} generated by $\left\{M \in \mathcal{M} \mid M A^{T}=0\right\}$ and $\left\{A E_{i i} \mid i=1, \ldots, n\right\}$. Then $W_{0} \subset V_{0}$.

$$
V_{0} / W_{0} \ni M \quad \bmod W_{0} \mapsto \begin{gathered}
\text { eq. class of } \\
\text { code generated by }
\end{gathered}\left[\begin{array}{c}
\tilde{A}+2 M \\
2 B
\end{array}\right]
$$

is well-defined. (\tilde{A} will be chosen appropriately)
Aut $\left(C_{0}\right)$ acts on V_{0} / W_{0} as an affine transformation group, and the orbits are the preimages of equivalence classes.

$\operatorname{Aut}\left(C_{0}\right)$ acts on V_{0} / W_{0}

First, take a matrix \tilde{A} over \mathbb{Z}_{4} such that

$$
\tilde{A} \bmod 2=A \text { and } \tilde{A} \tilde{A}^{T}=0 .
$$

For each $P \in \operatorname{Aut}\left(C_{0}\right)$, there exists a unique matrix $E_{1}(P) \in \mathrm{GL}\left(k, \mathbb{F}_{2}\right)$ such that

$$
A P=E_{1}(P) A .
$$

Also, there exists a matrix $E_{2}(P) \in \mathcal{M}$ such that

$$
2 E_{2}(P)=E_{1}(P)^{-1} \tilde{A} P-\tilde{A} .
$$

$\operatorname{Aut}\left(C_{0}\right)$ acts on V_{0} / W_{0}

Theorem
The group $\operatorname{Aut}\left(C_{0}\right)$ acts on V_{0} / W_{0} by

$$
\begin{aligned}
P & : V_{0} / W_{0} \ni M\left(\bmod W_{0}\right) \\
& \mapsto E_{1}(P)^{-1} M P+E_{2}(P)\left(\bmod W_{0}\right) \in V_{0} / W_{0},
\end{aligned}
$$

where $P \in \operatorname{Aut}\left(C_{0}\right)$. Moreover, there is a bijection
eq. class of

Aut $\left(C_{0}\right)$-orbits on $V_{0} / W_{0} \rightarrow \operatorname{codes} C$ with $\operatorname{Res}(C)=C_{0}$,

$$
M \quad\left(\bmod W_{0}\right) \mapsto \begin{gathered}
\text { eq. class of } \\
\text { codes generated by }
\end{gathered}\left[\begin{array}{c}
\tilde{A}+2 M \\
2 B
\end{array}\right]
$$

Practical Implementation

$$
\operatorname{Aut}\left(C_{0}\right) \rightarrow \operatorname{AGL}\left(V_{0} / W_{0}\right)
$$

Since $\operatorname{AGL}\left(m, \mathbb{F}_{2}\right) \subset G L\left(1+m, \mathbb{F}_{2}\right)$, we actually construct a linear representation:

$$
\operatorname{Aut}\left(C_{0}\right) \rightarrow \mathrm{GL}\left(1+\operatorname{dim} V_{0} / W_{0}, \mathbb{F}_{2}\right)
$$

A straightforward implementation works provided

$$
\operatorname{dim} V_{0} / W_{0} \leq 20 \text { plus alpha (about) }
$$

Enumeration of self-dual \mathbb{Z}_{4}-codes of length 16

- Pless-Leon-Fields (1997): 133 Type II \mathbb{Z}_{4}-codes of length 16,
- Harada-Munemasa (2009): 1372 Type I \mathbb{Z}_{4}-codes of length 16.

Using Rains' algorithm implemented by us, it took about 1 minute to enumerate all the $133+1372=1505$ self-dual \mathbb{Z}_{4}-codes of length 16 , from the set of 146 doubly even codes C_{0}.
Computing time is roughly proportional to the size of the affine space

$$
\left|V_{0} / W_{0}\right|=2^{\operatorname{dim} V_{0} / W_{0}}
$$

and the maximum value of $\operatorname{dim} V_{0} / W_{0}$ in the above example is 22.

Toward the classification of extremal Type II codes

of length 24

A straightforward computation will not work if one wishes to enumerate self-dual codes of length 24 . For example, $C_{0}=$ extended Golay code, $\left|V_{0} / W_{0}\right|=2^{55}$.
Actually, for Type II codes, it is enough to look at a subspace U_{0} of V_{0}, so that the search space has size

$$
\left|U_{0} / W_{0}\right|=2^{44}
$$

So we will have a matrix representation

$$
M_{24}=\operatorname{Aut}\left(C_{0}\right) \rightarrow \mathrm{GL}\left(45, \mathbb{F}_{2}\right)
$$

As an estimate:

$$
\frac{2^{44}}{\left|M_{24}\right|}=71856.7 \ldots
$$

but there are only 13 extremal Type II codes C with $\operatorname{Res}(C)=$ extended Golay code.

