Triply Even Binary Codes and Their Application to Framed Vertex Operator Algebras

Akihiro Munemasa ${ }^{1}$
${ }^{1}$ Graduate School of Information Sciences
Tohoku University
Sendai, 980-8579 JAPAN

October 30, 2009

Even, Doubly Even, and Triply Even Codes

- $\mathbb{F}_{2}=\{0,1\}$: field of two elements,
- $\mathbf{w t}(\boldsymbol{x})=\left|\left\{i \mid x_{i}=1\right\}\right|$, where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$,
- $\ell: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}, \ell(\boldsymbol{x})=\mathrm{wt}(\boldsymbol{x}) \bmod 2$,
- $q: \operatorname{Ker} \ell \rightarrow \mathbb{F}_{2}, q(\boldsymbol{x})=\left(\frac{\mathrm{wt}(\boldsymbol{x})}{2} \bmod 2\right)$,
- $c: U \rightarrow \mathbb{F}_{2}, U \subset q^{-1}(0), c(\boldsymbol{x})=\left(\frac{\mathrm{wt}(\boldsymbol{x})}{4} \bmod 2\right)$,
- a subspace $D \subset c^{-1}(0)$ is called a triply even code. In other words, $8 \mid \operatorname{wt}(\boldsymbol{x})$ for all $\boldsymbol{x} \in D$.

Problem Describe all maximal triply even codes.

Triangular Graph T_{m}

Let $m=4 k+2$, where k is a positive integer. Define an $\binom{m}{2} \times\binom{ m}{2}$ matrix A by

Theorem (Betsumiya-M.)

Let C be the linear span over \mathbb{F}_{2} of the rows of A. Then $\operatorname{dim} C=m-1$ and C is a maximal triply even code.

History

- E. Mathieu (1861, 1873): Mathieu groups
- E. Witt (1938): (Aut(Steiner system $\left.S(5,8,24))=M_{24}\right)$
- M.J.E. Golay (1949): (Aut(Golay code) $=M_{24}$)
- J. Leech (1965): lattice L
- J.H. Conway (1968): $\operatorname{Aut}(L)=C o_{0}$
- B. Fischer, R. Griess (1982): The Monster \mathbb{M}
- I. Frenkel, J. Lepowsky and A. Meurman (1988): moonshine module V^{\natural}, with $\operatorname{Aut}\left(V^{\natural}\right)=\mathbb{M}$.

Total of 26 sporadic finite simple groups.
The most remarkable of all: \mathbb{M}, because of moonshine $1+196883=196884 \rightarrow V^{\natural}$ (vertex operator algebra). Ultimate Goal: Want to understand V^{\natural} or \mathbb{M} better.

The Leech lattice

A \mathbb{Z}-submodule L of rank 24 in \mathbb{R}^{24} with basis B characterized by the following properties of $G=B B^{T}$ (Gram matrix):

- $\operatorname{det} G=1$,
- $G_{i j} \in \mathbb{Z}$,
- $G_{i i} \in 2 \mathbb{Z}$
- rootless: $\forall x \in L,\|x\|^{2} \neq 2$.
unique up to isometry in \mathbb{R}^{24}.
cf. E_{8}-lattice is a unique even unimodular lattice of rank 8 .

Factorization of the polynomial $X^{23}-1$

$$
\begin{array}{cr}
(X-1)\left(X^{22}+X^{21}+\cdots+X+1\right) & \text { over } \mathbb{Z} \\
=(X-1)\left(X^{11}+X^{10}+\cdots+1\right) & \\
\times\left(X^{11}+X^{9}+\cdots+1\right) & \text { over } \mathbb{F}_{2} \\
=(X-1)\left(X^{11}-X^{10}+\cdots-1\right) & \\
& \times\left(X^{11}+2 X^{10}-X^{9}+\cdots-1\right)
\end{array} \begin{aligned}
& \text { over } \mathbb{Z} / 4 \mathbb{Z}
\end{aligned}
$$

(by Hensel's lemma).

$$
X^{23}-1=(X-1) f(X) g(X) \text { over } \mathbb{Z} / 4 \mathbb{Z}
$$

L is generated by the rows of:

$L=$ Leech lattice

$$
\min L=\min \left\{\|x\|^{2} \mid 0 \neq x \in L\right\}=4 \quad \text { (rootless). }
$$

A frame of L is $\left\{ \pm f_{1}, \pm f_{2}, \ldots, \pm f_{24}\right\}$ with $\left(f_{i}, f_{j}\right)=4 \delta_{i j}$.

Binary Codes

A linear subspace of \mathbb{F}_{2}^{n} is called a (binary) code of length n. A code C is said to be

- even, if $2 \mid \mathrm{wt}(u) \forall u \in C$,
- doubly even, if $4 \mid \operatorname{wt}(u) \forall u \in C$,
- triply even, if $8 \mid \mathrm{wt}(u) \forall u \in C$,
- $C^{\perp}=\left\{u \in \mathbb{F}_{2}^{n} \mid(u, v)=0 \forall v \in C\right\}$.
S_{n} acts on \mathbb{F}_{2}^{n} by permutation of coordinates.
Equivalence of codes is defined by the action of S_{n}. $n=24$: there are 9 maximal doubly even codes up to S_{24}.

Aut $V^{\natural}=\mathbb{M}$

C is triply even iff $\forall u \in C, 8 \mid \operatorname{wt}(u)$

A triply even code appeared in the construction of V^{\natural} due to Dong-Griess-Höhn (1998), Miyamoto (2004). Leech lattice $\rightsquigarrow D_{7} \subset \mathbb{F}_{2}^{48} \rightsquigarrow V^{\natural}$.

$$
\begin{aligned}
& H= {\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right] \quad H_{3}=\left[\begin{array}{ccc}
H & H & H \\
\mathbf{1}_{8} & 0 & 0 \\
0 & \mathbf{1}_{8} & 0 \\
0 & 0 & \mathbf{1}_{8}
\end{array}\right] } \\
& D_{7}=\mathbb{F}_{2} \text {-span of }\left[\begin{array}{cc}
H_{3} & H_{3} \\
\mathbf{1}_{24} & 0 \\
0 & \mathbf{1}_{24}
\end{array}\right]: \text { triply even } \\
& \text { where } \mathbf{1}_{n}=(1,1, \ldots, 1) \in \mathbb{F}_{2}^{n} \text {. }
\end{aligned}
$$

\mathbb{F}_{2}-span of

$$
H_{3}=\left[\begin{array}{ccc}
H & H & H \\
\mathbf{1}_{8} & 0 & 0 \\
0 & \mathbf{1}_{8} & 0 \\
0 & 0 & \mathbf{1}_{8}
\end{array}\right]
$$

is doubly even $\Longrightarrow \mathbb{F}_{2}$-span of

$$
D_{7}=\mathcal{D}\left(H_{3}\right)=\left[\begin{array}{cc}
H_{3} & H_{3} \\
\mathbf{1}_{24} & 0 \\
0 & \mathbf{1}_{24}
\end{array}\right]
$$

is triply even.
More generally, if A spans a doubly even code C of length $n \equiv 0(\bmod 8)$, then

$$
\mathcal{D}(C)=\mathbb{F}_{2} \text {-span of }\left[\begin{array}{cc}
A & A \\
\mathbf{1}_{n} & 0 \\
0 & \mathbf{1}_{n}
\end{array}\right]
$$

is a triply even code of length $2 n . \mathcal{D}=$ doubling.

Framed Vertex Operator Algebra

Dong-Griess-Höhn (1998), Miyamoto (2004):
$L \rightsquigarrow D_{7} \subset \mathbb{F}_{2}^{48} \rightsquigarrow V^{\natural}$.

$$
\begin{aligned}
& V^{\natural} \supset \mathcal{T} \cong L(1 / 2,0)^{\otimes 48}, \text { where } L(1 / 2,0): \text { Virasoro VOA } \\
& V^{\natural}=\bigoplus V^{\beta} \quad \text { as } L(1 / 2,0)^{\otimes 48} \text {-modules }
\end{aligned}
$$

where $D \subset \mathbb{F}_{2}^{48}$.
$L(1 / 2,0)^{\otimes 48} \cong \mathcal{T} \subset V^{\text {घ }}$: not unique $\Longrightarrow D$: depends on \mathcal{T}
(Virasoro frame), but:
D : triply even, $\mathbf{1}_{48} \in D$.

Frame of $L \rightarrow$ Virasoro Frame of V^{\natural}

Dong-Mason-Zhu (1994)

$$
\begin{aligned}
L \supset F & =\bigoplus_{i=1}^{24} \mathbb{Z} f_{i}: \text { 4-frame } \\
\rightarrow V^{\natural} & \supset \mathcal{T} \cong L(1 / 2,0)^{\otimes 48}: \text { Virasoro frame } \\
V^{\natural} & =\bigoplus_{\beta \in D} V^{\beta} \text { as } \mathcal{T} \text {-modules } \\
D & =\text { structure code of } \mathcal{T} \\
& =\mathcal{D}(L / F \bmod 2) .
\end{aligned}
$$

Note $L / F \subset(\mathbb{Z} / 4 \mathbb{Z})^{24}$ since $F \subset L \subset \frac{1}{4} F$, so $L / F \bmod 2 \subset \mathbb{F}_{2}^{24}$.

Classification of $F \subset L \Longrightarrow$ classification of $\mathcal{T} \subset V^{\text {a }}$?

Frame of $L \rightarrow$ Virasoro Frame of V^{\natural}

\{Virasoro frames of V^{\natural} \} most difficult
\uparrow DMZ
$\{$ frames of $L\}$

$\uparrow \mathcal{D}$ (doubling)

The diagram commutes, and
$\operatorname{DMZ}(\{$ frames of $L\}) \stackrel{(C)}{=} \operatorname{str}^{-1}(\mathcal{D}(\{$ doubly even $\}))$.

Theorem (Betsumiya-M.)

Every maximal member of

$$
\left\{\begin{array}{l}
\text { triply even } D \\
\text { length }=48, \mathbf{1}_{48} \in D
\end{array}\right\}
$$

is

- $\mathcal{D}(C)$ for some doubly even code C of length 24 , or
- decomposable (only two such codes, one of the form $\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right) \oplus \mathcal{D}\left(C_{3}\right)$, another of the form $\left.\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right)\right)$, or
- a code of dimension 9 obtained from the triangular graph T_{10} on 45 vertices
The last case does not occur if we assume $\min D^{\perp} \geq 4$.
According to Lam-Yamauchi, it must be a structure code of some framed VOA, not V^{\natural}.

Corollary (Betsumiya-M.)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { triply even } D \\
\text { len }=48,1_{48} \in D \\
\min D^{\perp} \geq 4
\end{array}\right\} \\
& =\mathcal{D}\left(\left\{\begin{array}{l}
\text { doubly even } C \\
\text { len }=24,1_{24} \in C \\
\text { min } C^{\perp} \geq 4
\end{array}\right\}\right) \\
& \cup\left\{\text { subcodes of decomposable } \mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right), \ldots\right\}
\end{aligned}
$$

Summary

$$
\left\{\mathcal{T} \subset V^{\natural}\right\} \quad \stackrel{\text { str }}{\rightarrow} \mathcal{D}\left(\left\{\begin{array}{l}
\text { doubly even } C \\
\text { length }=24 \\
1_{24} \in C \\
\min C^{\perp} \geq 4
\end{array}\right\}\right) \cup\left\{\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right), \ldots\right\}
$$

$\uparrow \mathcal{D}$ (doubling)
$\{F \subset L\} \xrightarrow{\bmod 2}\left\{\begin{array}{l}\text { doubly even } C \\ \text { length }=24 \\ \mathbf{1}_{24} \in C \\ \min C^{\perp} \geq 4\end{array}\right\}$
$\operatorname{DMZ}(\{$ frames of $L\})=\operatorname{str}^{-1}(\mathcal{D}(\{$ doubly even $\}))$.
Problem remains:

- $\left\{\mathcal{T} \subset V^{\natural}\right\} \rightarrow\left\{\mathcal{D}\left(C_{1}\right) \oplus \mathcal{D}\left(C_{2}\right), \ldots\right\}$?

