Triply even codes binary codes, lattices and framed vertex operator algebras

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with Koichi Betsumiya, Masaaki Harada and Ching-Hung Lam)

> July 12, 2010
> AGC2010, Gyeongju, Korea

The Hamming graph $H(n, q)$

- vertex set $=F^{n},|F|=q$.
- $\boldsymbol{x} \sim \boldsymbol{y} \Longleftrightarrow \boldsymbol{x}$ and \boldsymbol{y} differ at one position.
$H(n, q)$ is a distance-regular graph.
When $q=2$, we may take $F=\mathbb{F}_{2} . H(n, 2)=n$-cube.

$$
\begin{aligned}
\mathrm{wt}(\boldsymbol{x}) & =\text { distance between } \boldsymbol{x} \text { and } \mathbf{0} \\
& =\text { number of } 1 \text { 's in } \boldsymbol{x}
\end{aligned}
$$

A binary code $=$ a subset of \mathbb{F}_{2}^{n}
$=$ a subset of the vertex set of $H(n, 2)$
A binary linear code $=$ a linear subspace of \mathbb{F}_{2}^{n}
A codeword $=$ an element of a code

Simplex codes

The row vectors of the matrix

$$
G=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

generate the $[7,3,4]$ simplex code $\subset \mathbb{F}_{2}^{7}$.

- Columns $=$ points of $P G(2,2)$,
- Nonzero codewords $=$ complement of lines of $P G(2,2)$.
$\left[\begin{array}{ccc}0 \cdots 0 & 1 & 1 \cdots 1 \\ G & 0 & G\end{array}\right] \rightarrow \begin{aligned} & \text { columns = points } \\ & =\text { nonzero codewords } \\ & =\text { complement of planes }\end{aligned} \quad$ of $\operatorname{PG}(3,2)$.
generate the $[15,4,8]$ simplex code. 15 nonzero codewords of weight 8.

$[15,4,8]$ simplex code also comes from a Johnson

 graph $J(v, d)$- vertex set $=\binom{V}{k},|V|=v$.
- $A \sim B \Longleftrightarrow A$ and B differ by one element.
$J(v, d)$ is a distance-regular graph.
$d=2: T(m)=J(m, 2)$ (triangular graph) is a strongly regular graph.
$m=6$: the adjacency matrix of $T(6)$ is a 15×15 matrix.
Since $T(6)=\operatorname{srg}(15,8,4,4)$,
- every row has weight 8 ,
- every pair of rows has 1 in common 4 positions.

In fact, its row vectors are precisely the nonzero codewords of the $[15,4,8]$ simplex code.

Triple intersection numbers

- Г: graph, α, β, γ : vertices of 「
- $\Gamma(\alpha)$: the set of neighbors of a vertex α.

The triple intersection numbers of Γ are

$$
|\Gamma(\alpha) \cap \Gamma(\beta) \cap \Gamma(\gamma)| \quad(\alpha, \beta, \gamma: \text { distinct })
$$

For $\Gamma=T(6)$, the triple intersection numbers are 0,2 only. Note: Γ is not "triply regular": $|\Gamma(\alpha) \cap \Gamma(\beta) \cap \Gamma(\gamma)|=0,2$ even for pairwise adjacent α, β, γ.

- "Double" intersection numbers $|\Gamma(\alpha) \cap \Gamma(\beta)|=\lambda, \mu=4$.
- "Single" intersection numbers $|\Gamma(\alpha)|=k=$ valency $=8$.

Even, doubly even, and triply even codes

A binary linear code C is called

$$
\begin{aligned}
\text { even } & \Longleftrightarrow \mathrm{wt}(x) \equiv 0(\bmod 2) \\
\text { doubly even } & \Longleftrightarrow \mathrm{wt}(x) \equiv 0(\bmod 4) \quad(\forall x \in C) \\
\text { triply even } & \Longleftrightarrow \mathrm{wt}(x) \equiv 0(\bmod 8)
\end{aligned} \quad(\forall x \in C)
$$

The $[15,4,8]$ simplex code is a triply even code.

- $\ell: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}, \ell(\boldsymbol{x})=\mathrm{wt}(\boldsymbol{x}) \bmod 2$ (linear)
- $q: \operatorname{Ker} \ell \rightarrow \mathbb{F}_{2}, q(x)=\left(\frac{\mathrm{wt}(x)}{2} \bmod 2\right)$ (quadratic)
- $c: U \rightarrow \mathbb{F}_{2}, U \subset q^{-1}(0), c(\boldsymbol{x})=\left(\frac{\mathrm{wt}(\boldsymbol{x})}{4} \bmod 2\right)(c u b i c)$

A triply even code is a set of zeros of the cubic form c.

triply even $\Longleftrightarrow \mathrm{wt}(\boldsymbol{x}) \equiv 0(\bmod 8) \quad(\forall x \in C)$

If C is generator by a set of vectors r_{1}, \ldots, r_{n}, then C is triply even iff, (denoting by $*$ the entrywise product)
(i) $\mathrm{wt}\left(r_{h}\right) \equiv 0(\bmod 8)$
(ii) $\operatorname{wt}\left(r_{h} * r_{i}\right) \equiv 0(\bmod 4)$
(iii) $\operatorname{wt}\left(r_{h} * r_{i} * r_{j}\right) \equiv 0(\bmod 2)$ for all $h, i, j \in\{1, \ldots, n\}$. If C is generated by the row vectors of the adjacency matrix of a strongly regular graph Γ, then C is triply even iff
(i) $k \equiv 0(\bmod 8)$
(ii) $\lambda, \mu \equiv 0(\bmod 4)$
(iii) all triple intersection numbers are $\equiv 0(\bmod 2)$

For $\Gamma=T(m)$, $(\mathrm{i})-(\mathrm{iii}) \Longleftrightarrow m \equiv 2(\bmod 4)$.

The binary code T_{m} of the triangular graph $T(m)$

(i) Brouwer-Van Eijl (1992): $\operatorname{dim} T_{m}=m-2$ if $m \equiv 0$ (mod 2).
(ii) Betsumiya-M.: T_{m} is a triply even code iff $m \equiv 2$ (mod 4), maximal for its length.
(ii): $k=2(m-2) \equiv 0(\bmod 8) \Longrightarrow$ "only if." "if" part requires $\lambda=m-2, \mu=4$, and the triple intersection numbers. Proving maximality requires more work.
Let

$$
\tilde{T}_{m}=\left[\begin{array}{c}
\mathbf{1}_{n} \\
T_{m} ; 0
\end{array}\right]
$$

where $n=8\left\lceil\frac{1}{8} \frac{m(m-1)}{2}\right\rceil$ (for example, $m=6 \Longrightarrow n=16$).
(iii) Betsumiya-M.: \tilde{T}_{m} is a maximal triply even code.

From the $[15,4,8]$ simplex code T_{6} to. . .

$$
\tilde{T}_{6}=\left[\begin{array}{c}
\mathbf{1}_{16} \\
{[15,4,8] ; 0}
\end{array}\right] \rightsquigarrow \begin{aligned}
& {[16,5,8] \text { Reed-Muller code }} \\
& R=R M(1,4)
\end{aligned}
$$

A triply even code appeared in the construction of the moonshine module V^{\natural} (a vertex operator algebra with automorphism group Fischer-Griess Monster simple group), due to Dong-Griess-Höhn (1998), Miyamoto (2004).

$$
\left[\begin{array}{ccc}
\mathbf{1}_{16} & 0 & 0 \\
0 & \mathbf{1}_{16} & 0 \\
0 & 0 & \mathbf{1}_{16} \\
R & R & R
\end{array}\right] \quad(8 \times 48 \text { matrix })
$$

is a triply even $[48,7,16]$ code.

The extended doubling

Note

$$
R=R M(1,4)=\left[\begin{array}{cc}
\mathbf{1}_{8} & 0 \\
R M(1,3) & R M(1,3)
\end{array}\right]
$$

and $R M(1,3)$ is doubly even. In general, we define the extended doubling of a code C of length n to be

$$
\mathcal{D}(C)=\left[\begin{array}{ll}
\mathbf{1}_{n} & 0 \\
C & C
\end{array}\right]
$$

If C is doubly even and $n \equiv 0(\bmod 8)$, then $\mathcal{D}(C)$ is triply even.
If C is an indecomposable doubly even self-dual code, then $\mathcal{D}(C)$ is a maximal triply even code.
\mathcal{D} : doubly even length $n \rightarrow$ triply even length $2 n$, provided $8 \mid n$.
$R M(1,4)=\mathcal{D}(R M(1,3))$ is the only maximal triply even code of length 16 .
We slightly generalize the extended doubling

$$
\mathcal{D}(C)=\left[\begin{array}{ll}
\mathbf{1}_{n} & 0 \\
C & C
\end{array}\right]
$$

as

$$
\tilde{\mathcal{D}}(C)=\bigoplus_{i=1}^{s} \mathcal{D}\left(C_{i}\right) \quad \begin{aligned}
& \text { if } C \text { is the sum of } \\
& \text { indecomposable codes } C_{i}
\end{aligned}
$$

Every maximal triply even code of length 32 is of the form $\tilde{\mathcal{D}}(C)$ for some doubly even self-dual code of length 16 .

A triply even code of length 48

Dong-Griess-Höhn (1998) and Miyamoto (2004) used (although not maximal):

$$
\left[\begin{array}{ccc}
\mathbf{1}_{16} & 0 & \\
0 & \mathbf{1}_{16} & 0 \\
0 & 0 & \mathbf{1}_{16} \\
R & R & R
\end{array}\right]=\left[\begin{array}{cccccc}
\mathbf{1}_{8} & \mathbf{1}_{8} & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{1}_{8} & \mathbf{1}_{8} & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbf{1}_{8} & \mathbf{1}_{8} \\
\mathbf{1}_{8} & 0 & \mathbf{1}_{8} & 0 & \mathbf{1}_{8} & 0 \\
H & H & H & H & H & H
\end{array}\right]
$$

$$
\cong\left[\begin{array}{cccccc}
\mathbf{1}_{8} & \mathbf{1}_{8} & \mathbf{1}_{8} & 0 & 0 & 0 \\
\mathbf{1}_{8} & 0 & 0 & \mathbf{1}_{8} & 0 & 0 \\
0 & \mathbf{1}_{8} & 0 & 0 & \mathbf{1}_{8} & 0 \\
0 & 0 & \mathbf{1}_{8} & 0 & 0 & \mathbf{1}_{8} \\
H & H & H & H & H & H
\end{array}\right]=\mathcal{D}\left[\begin{array}{ccc}
\mathbf{1}_{8} & 0 & 0 \\
0 & \mathbf{1}_{8} & 0 \\
0 & 0 & \mathbf{1}_{8} \\
H & H & H
\end{array}\right]
$$

where $H=R M(1,3)$, so $R=\left[\begin{array}{cc}\mathbf{1}_{8} & 0 \\ H & H\end{array}\right]$.

The triply even codes of length 48

The moonshine module V^{\natural} is an infinite-dimensional algebra. However, it has finitely many (up to Aut V^{\natural}) Virasoro frames \mathcal{T}, and V^{\natural} is a sum of finitely many irreducible modules as a \mathcal{T}-module. To understand $V^{\natural}: \Longleftarrow$ classify Virasoro frames.

Virasoro frame \mathcal{T} of $V^{\natural} \rightsquigarrow$ triply even code of length 48 (called the structure code of \mathcal{T})

Theorem (Betsumiya-M.)

Every maximal triply even code of length 48 is equivalent to $\tilde{\mathcal{D}}(C)$ for some doubly even self-dual code, or to \tilde{T}_{10}.
Question. Then which of the triply even codes of length 48 actually occurs as the structure code of a Virasoro frame of $V^{\text {q }}$?

Virasoro frame of V^{\natural}

\rightsquigarrow triply even code D of length 48
Then
(i) D^{\perp} has minimum weight at least 4 .
(ii) D^{\perp} is even, or equivalently, $\mathbf{1}_{48} \in D$.
(i) excludes all subcodes of \tilde{T}_{10}.

Theorem (Harada-Lam-M.)
If $D=\mathcal{D}(C)$ for some doubly even code C of length 24 , then D is the structure code of a Virasoro frame of V^{\natural} iff C is realizable as the binary residue code of an extremal type II \mathbb{Z}_{4}-code of length 24 , i.e., there exist vectors f_{1}, \ldots, f_{24} of the Leech lattice L with $\left(f_{i}, f_{j}\right)=4 \delta_{i j}$ (called a 4-frame), and

$$
C=\left\{\boldsymbol{x} \bmod 2 \mid \boldsymbol{x} \in \mathbb{Z}^{n}, \frac{1}{4} \sum_{i=1}^{24} x_{i} f_{i} \in L\right\}
$$

$L=$ Leech lattice

A doubly even code C of length 24 is realizable if there exists a 4-frame f_{1}, \ldots, f_{24} of the Leech lattice L, and

$$
C=\left\{\boldsymbol{x} \bmod 2 \mid \boldsymbol{x} \in \mathbb{Z}^{n}, \frac{1}{4} \sum_{i=1}^{24} x_{i} f_{i} \in L\right\} .
$$

The following lemma was useful in determining realizability. Lemma
If C is realizable and $\boldsymbol{a} \in C^{\perp} \backslash C$ has weight 4, then $\langle C, \boldsymbol{a}\rangle$ is also realizable.
Using this lemma, we classified doubly even codes into realizable and non-realizable ones.

Extended doublings of doubly even codes of length

$$
24
$$

Numbers of inequivalent doubly even codes C of length 24 such that $1_{24} \in C$ and the minimum weight of C^{\perp} is ≥ 4.

Dimension	Total	Realizable	non-Realizable
12	9	9	0
11	21	21	0
10	49	47	2
9	60	46	14
8	32	20	12
7	7	5	2
6	1	1	0

$L=$ Leech lattice

\{Virasoro frames of $\left.V^{\natural}\right\}$ most difficult
$\left.\begin{array}{l}\text { triply even } D \\ \text { len }=48,1_{48} \in D \\ \min D^{\perp} \geq 4\end{array}\right\}$
Dong
\uparrow Mason
Zhu

(extended doubling)

$\{$ frames of L \}

The diagram commutes, and

$$
\operatorname{DMZ}(\{\text { frames of } L\}) \stackrel{(C)}{=} \operatorname{str}^{-1}(\mathcal{D}(\{\text { doubly even }\})) .
$$

