Triply even codes binary codes, lattices and framed vertex operator algebras

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint work with Koichi Betsumiya, Masaaki Harada and Ching-Hung Lam)

> July 12, 2010 AGC2010, Gyeongju, Korea

The Hamming graph H(n,q)

• vertex set
$$= F^n$$
, $|F| = q$.

• $x \sim y \iff x$ and y differ at one position.

H(n,q) is a distance-regular graph. When q = 2, we may take $F = \mathbb{F}_2$. H(n,2) = n-cube.

 $\begin{aligned} & \operatorname{wt}(\boldsymbol{x}) = \text{ distance between } \boldsymbol{x} \text{ and } \boldsymbol{0} \\ & = \text{ number of 1's in } \boldsymbol{x} \\ & \text{A binary code} = \text{a subset of } \mathbb{F}_2^n \\ & = \text{a subset of the vertex set of } H(n,2) \\ & \text{A binary linear code} = \text{a linear subspace of } \mathbb{F}_2^n \\ & \text{A codeword} = \text{an element of a code} \end{aligned}$

Simplex codes

The row vectors of the matrix

$$G = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

generate the [7, 3, 4] simplex code $\subset \mathbb{F}_2^7$.

- Columns = points of PG(2,2),
- Nonzero codewords = complement of lines of PG(2,2).

$$\begin{bmatrix} 0 \cdots 0 & 1 & 1 \cdots 1 \\ G & 0 & G \end{bmatrix} \xrightarrow[]{} organ matrix columns = points \\ \rightarrow \text{ nonzero codewords } of PG(3,2).$$
$$= \text{ complement of planes}$$

generate the [15, 4, 8] simplex code. 15 nonzero codewords of weight 8.

[15, 4, 8] simplex code also comes from a Johnson graph J(v, d)

• vertex set =
$$\binom{V}{k}$$
, $|V| = v$.

• $A \sim B \iff A$ and B differ by one element.

J(v, d) is a distance-regular graph. d = 2: T(m) = J(m, 2) (triangular graph) is a strongly regular graph.

m = 6: the adjacency matrix of T(6) is a 15×15 matrix. Since T(6) = srg(15, 8, 4, 4),

• every row has weight 8,

• every pair of rows has 1 in common 4 positions.

In fact, its row vectors are precisely the nonzero codewords of the [15, 4, 8] simplex code.

Triple intersection numbers

- Γ : graph, α, β, γ : vertices of Γ
- $\Gamma(\alpha)$: the set of neighbors of a vertex α .

The triple intersection numbers of $\boldsymbol{\Gamma}$ are

 $|\Gamma(\alpha) \cap \Gamma(\beta) \cap \Gamma(\gamma)|$ (α, β, γ : distinct).

For $\Gamma = T(6)$, the triple intersection numbers are 0, 2 only. Note: Γ is not "triply regular": $|\Gamma(\alpha) \cap \Gamma(\beta) \cap \Gamma(\gamma)| = 0, 2$ even for pairwise adjacent α, β, γ .

- "Double" intersection numbers $|\Gamma(\alpha) \cap \Gamma(\beta)| = \lambda, \mu = 4$.
- "Single" intersection numbers $|\Gamma(\alpha)| = k = \text{valency} = 8$.

Even, doubly even, and triply even codes

A binary linear code C is called

even
$$\iff \operatorname{wt}(x) \equiv 0 \pmod{2}$$
 ($\forall x \in C$)
doubly even $\iff \operatorname{wt}(x) \equiv 0 \pmod{4}$ ($\forall x \in C$)
triply even $\iff \operatorname{wt}(x) \equiv 0 \pmod{8}$ ($\forall x \in C$)

The [15, 4, 8] simplex code is a triply even code.

•
$$\ell: \mathbb{F}_2^n o \mathbb{F}_2$$
, $\ell(\boldsymbol{x}) = \mathsf{wt}(\boldsymbol{x}) ext{ mod } 2$ (linear)

• $q: \operatorname{Ker} \ell \to \mathbb{F}_2$, $q(\boldsymbol{x}) = (\frac{\operatorname{wt}(\boldsymbol{x})}{2} \mod 2)$ (quadratic)

•
$$c: U \to \mathbb{F}_2$$
, $U \subset q^{-1}(0)$, $c(\boldsymbol{x}) = (\frac{\operatorname{wt}(\boldsymbol{x})}{4} \mod 2)$ (cubic)

A triply even code is a set of zeros of the cubic form c.

triply even \iff wt $(x) \equiv 0 \pmod{8} \quad (\forall x \in C)$

If C is generator by a set of vectors r_1, \ldots, r_n , then C is triply even iff, (denoting by * the entrywise product)

(i) wt $(r_h) \equiv 0 \pmod{8}$ (ii) wt $(r_h * r_i) \equiv 0 \pmod{4}$ (iii) wt $(r_h * r_i * r_j) \equiv 0 \pmod{2}$ for all $h, i, j \in \{1, ..., n\}$. If C is generated by the row vectors of the adjacency matrix of a strongly regular graph Γ , then C is triply even iff

(i) $k \equiv 0 \pmod{8}$ (ii) $\lambda, \mu \equiv 0 \pmod{4}$ (iii) all triple intersection numbers are $\equiv 0 \pmod{2}$ For $\Gamma = T(m)$, (i)-(iii) $\iff m \equiv 2 \pmod{4}$.

The binary code T_m of the triangular graph T(m)

- (i) Brouwer-Van Eijl (1992): dim $T_m = m 2$ if $m \equiv 0$ (mod 2).
- (ii) Betsumiya-M.: T_m is a triply even code iff $m \equiv 2 \pmod{4}$, maximal for its length.

(ii): $k = 2(m-2) \equiv 0 \pmod{8} \implies$ "only if." "if" part requires $\lambda = m - 2$, $\mu = 4$, and the triple intersection numbers. Proving maximality requires more work. Let

$$\tilde{T}_m = \begin{bmatrix} \mathbf{1}_n \\ T_m; \mathbf{0} \end{bmatrix}$$

where $n = 8 \lceil \frac{1}{8} \frac{m(m-1)}{2} \rceil$ (for example, $m = 6 \implies n = 16$). (iii) Betsumiya-M.: \tilde{T}_m is a maximal triply even code.

From the [15, 4, 8] simplex code T_6 to...

$$\tilde{T}_6 = \begin{bmatrix} \mathbf{1}_{16} \\ [15,4,8]; \mathbf{0} \end{bmatrix} \rightsquigarrow \begin{bmatrix} \mathbf{16}, 5, 8 \end{bmatrix} \text{Reed-Muller code} \\ R = RM(\mathbf{1}, \mathbf{4})$$

A triply even code appeared in the construction of the moonshine module V^{\natural} (a vertex operator algebra with automorphism group Fischer–Griess Monster simple group), due to Dong–Griess–Höhn (1998), Miyamoto (2004).

$$\begin{bmatrix} \mathbf{1}_{16} & 0 & 0 \\ 0 & \mathbf{1}_{16} & 0 \\ 0 & 0 & \mathbf{1}_{16} \\ R & R & R \end{bmatrix} \quad (8 \times 48 \text{ matrix})$$

is a triply even [48, 7, 16] code.

The extended doubling

Note

$$R = RM(1,4) = \begin{bmatrix} \mathbf{1}_8 & \mathbf{0} \\ RM(1,3) & RM(1,3) \end{bmatrix}$$

and RM(1,3) is doubly even. In general, we define the extended doubling of a code C of length n to be

$$\mathcal{D}(C) = \begin{bmatrix} \mathbf{1}_n & \mathbf{0} \\ C & C \end{bmatrix}$$

If C is doubly even and $n \equiv 0 \pmod{8}$, then $\mathcal{D}(C)$ is triply even.

If C is an indecomposable doubly even self-dual code, then $\mathcal{D}(C)$ is a maximal triply even code.

 $\label{eq:D: doubly even length } \begin{array}{l} n \to \mbox{triply even length } 2n, \\ \mbox{provided } 8|n. \end{array}$

 $RM(1,4) = \mathcal{D}(RM(1,3))$ is the only maximal triply even code of length 16.

We slightly generalize the extended doubling

$$\mathcal{D}(C) = \begin{bmatrix} \mathbf{1}_n & \mathbf{0} \\ C & C \end{bmatrix}$$

as

$$\tilde{\mathcal{D}}(C) = \bigoplus_{i=1}^{s} \mathcal{D}(C_i)$$
 if C is the sum of
indecomposable codes C_i

Every maximal triply even code of length 32 is of the form $\tilde{\mathcal{D}}(C)$ for some doubly even self-dual code of length 16.

A triply even code of length 48

Dong–Griess–Höhn (1998) and Miyamoto (2004) used (although not maximal):

$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1_8 \\ 1_8 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
$\begin{bmatrix} 1_{16} & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1_8 & 1_8 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1_8 & 1_8 & 0 & 0 \end{bmatrix}$	
$\begin{bmatrix} 1_{16} & 0 \\ 0 & 1_{16} & 0 \\ 0 & 0 & 1_{16} \\ R & R & R \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1_8 & 1_8 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1_8 & 1_8 \\ 1_8 & 0 & 1_8 & 0 & 1_8 & 0 \\ H & H & H & H & H \end{bmatrix}$	
$\begin{bmatrix} 0 & 0 & 1_{16} \\ R & R & R \end{bmatrix} \begin{bmatrix} 1_8 & 0 & 1_8 & 0 & 1_8 & 0 \\ H & H & H & H & H & H \end{bmatrix}$	
$\begin{bmatrix} 1_8 & 1_8 & 1_8 & 0 & 0 \end{bmatrix}$	۲ ۸
$\cong \begin{bmatrix} 1_8 & 1_8 & 1_8 & 0 & 0 & 0 \\ 1_8 & 0 & 0 & 1_8 & 0 & 0 \\ 0 & 1_8 & 0 & 0 & 1_8 & 0 \\ 0 & 0 & 1_8 & 0 & 0 & 1_8 \end{bmatrix} = \mathcal{D} \begin{bmatrix} 1_8 & 0 \\ 0 & 1_8 \\ 0 & 0 & 1_8 \end{bmatrix}$	
$\cong \left[\begin{array}{ccccccccc} 0 & 1_8 & 0 & 0 & 1_8 & 0 \end{array} \right] = \mathcal{D} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} 0 & 0 & 1_8 & 0 & 0 & 1_8 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1_8 \\ 1 & 1 & 1_1 \end{bmatrix}$	H^{L_8}

where H = RM(1,3), so $R = \begin{vmatrix} \mathbf{1}_8 & \mathbf{0} \\ H & H \end{vmatrix}$.

The triply even codes of length 48

The moonshine module V^{\natural} is an infinite-dimensional algebra. However, it has finitely many (up to Aut V^{\natural}) Virasoro frames \mathcal{T} , and V^{\natural} is a sum of finitely many irreducible modules as a \mathcal{T} -module. To understand V^{\natural} : \Leftarrow classify Virasoro frames.

Virasoro frame \mathcal{T} of $V^{\natural} \rightsquigarrow$ triply even code of length 48 (called the structure code of \mathcal{T})

Theorem (Betsumiya-M.)

Every maximal triply even code of length 48 is equivalent to $\tilde{\mathcal{D}}(C)$ for some doubly even self-dual code, or to \tilde{T}_{10} . Question. Then which of the triply even codes of length 48 actually occurs as the structure code of a Virasoro frame of

 $V^{\natural}?$

Virasoro frame of V^{\natural}

 \leadsto triply even code D of length 48 Then

(i) D^{\perp} has minimum weight at least 4.

(ii) D^{\perp} is even, or equivalently, $\mathbf{1}_{48} \in D$.

(i) excludes all subcodes of \tilde{T}_{10} .

Theorem (Harada–Lam–M.)

If $D = \mathcal{D}(C)$ for some doubly even code C of length 24, then D is the structure code of a Virasoro frame of V^{\natural} iff C is realizable as the binary residue code of an extremal type II \mathbb{Z}_4 -code of length 24, i.e., there exist vectors f_1, \ldots, f_{24} of the Leech lattice L with $(f_i, f_j) = 4\delta_{ij}$ (called a 4-frame), and

$$C = \{ \boldsymbol{x} \bmod 2 \mid \boldsymbol{x} \in \mathbb{Z}^n, \ \frac{1}{4} \sum_{i=1}^{24} x_i f_i \in L \}.$$

L =Leech lattice

A doubly even code C of length 24 is realizable if there exists a 4-frame f_1, \ldots, f_{24} of the Leech lattice L, and

$$C = \{ \boldsymbol{x} \mod 2 \mid \boldsymbol{x} \in \mathbb{Z}^n, \ \frac{1}{4} \sum_{i=1}^{24} x_i f_i \in L \}.$$

The following lemma was useful in determining realizability.

Lemma

If C is realizable and $a \in C^{\perp} \setminus C$ has weight 4, then $\langle C, a \rangle$ is also realizable.

Using this lemma, we classified doubly even codes into realizable and non-realizable ones.

Extended doublings of doubly even codes of length 24

Numbers of inequivalent doubly even codes C of length 24 such that $\mathbf{1}_{24} \in C$ and the minimum weight of C^{\perp} is ≥ 4 .

Dimension	Total	Realizable	non-Realizable
12	9	9	0
11	21	21	0
10	49	47	2
9	60	46	14
8	32	20	12
7	7	5	2
6	1	1	0

The diagram commutes, and

DMZ({frames of L}) $\stackrel{(\subseteq)}{=}$ str⁻¹($\mathcal{D}({\text{doubly even}}))$.