An Infinite Family of Weighing Matrices

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University

> December 12, 2010 Kobe, Japan

Definition

A weighing matrix W of order n and weight k is an $n\times n$ matrix W with entries 1,-1,0 such that

$$WW^T = kI_n,$$

where I_n is the identity matrix of order n and W^T denotes the transpose of W.

We say that two weighing matrices W_1 and W_2 of order n and weight k are *equivalent* if there exist monomial matrices P and Q with $W_1 = PW_2Q$.

- $k = n \implies$ Hadamard matrix
- $k = 1 \implies$ Monomial matrix

Chan-Roger-Seberry (1986)

Classified all weighing matrices of weight $k \leq 5$.

In particular, there are two weighing matrices of order 12 and weight 5, up to equivalence.

However, there is another one, discovered by Harada and A.M. recently, using the classification of self-dual codes of length 12 over $\mathbb{F}_5.$

Chan-Roger-Seberry (1986) missed:

Inner product on \mathbb{F}_5^2 over \mathbb{F}_5

We change

 $1 \rightarrow +, \quad 4 \rightarrow -, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0$

to obtain A_2 .

Replace

$$1 \rightarrow +, \quad 4 \rightarrow -, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0$$

to obtain A_3 (which is the same as A_2).

Replace

$$1 \rightarrow +, \quad 4 \rightarrow -, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0$$

to obtain A_4 (which is the same as $-A_1$).

Notation

- q: a prime power, $q \equiv 1 \pmod{4}$ (ex. q = 5)
- F = GF(q): a finite field, $F^{\times} = \langle a \rangle$ (ex. a = 2)
- V: a vector space of dimension m + 1 over F, m ≥ 1 (ex. m = 1)
- V[#] = V \ {0}
 n = 2 · (q^{m+1} − 1)/(q − 1) (ex. n = 12)
 X = V[#]/⟨a²⟩ = {⟨a²⟩x_i | 1 ≤ i ≤ n} (|X| = n)
- $B: V \times V \rightarrow F$: nondegenerate bilinear form (ex. $B(x, y) = x_1y_1 + x_2y_2$)

Define $n \times n$ matrix W by

$$W_{ij} = \begin{cases} 1 & \text{if } B(x_i, x_j) \in \langle a^4 \rangle, \text{ (ex. } \in \{1\}) \\ -1 & \text{if } B(x_i, x_j) \in a^2 \langle a^4 \rangle, \text{ (ex. } \in \{4\}) \\ 0 & \text{ otherwise.} \end{cases}$$

Main result

- q: a prime power, $q \equiv 1 \pmod{4}$
- F=GF(q): a finite field, $F^{\times}=\langle a\rangle$
- $V{:}$ a vector space of dimension m+1 over $F,\,m\geq 1$
- $V^{\sharp} = V \setminus \{0\}$ • $n = 2 \cdot (q^{m+1} - 1)/(q - 1)$ • $X = V^{\sharp}/\langle a^2 \rangle = \{\langle a^2 \rangle x_i \mid 1 \le i \le n\} (|X| = n)$ • $B : V \times V \to F$: nondegenerate bilinear form

$$W_{ij} = \begin{cases} 1 & \text{if } B(x_i, x_j) \in \langle a^4 \rangle, \\ -1 & \text{if } B(x_i, x_j) \in a^2 \langle a^4 \rangle, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem

W is a weighing matrix of order n and weight q^m .

Balanced generalized weighing (BGW) matrix

- n,k: positive integers
- G: multiplicatively written group
- $M: n \times n$ matrix with entries in $G \cup \{0\}$

M is a balanced generalized weighing (BGW) matrix of order n, weight k over G if

- \forall row has k entries in G, n-k entries 0
- $|\{j \mid M_{hj}M_{ij}^{-1} = g, M_{hj} \neq 0, M_{ij} \neq 0\}|$ is a constant independent of h, i (distinct) and $g \in G$.

 $G = \{\pm 1\} \implies$ weighing matrix $k = n \implies$ generalized Hadamard matrix

Jungnickel–Tonchev (1999)

- q: prime power, $m \in \mathbb{N}$, $G = \mathrm{GF}(q)^{\times}$
- $\operatorname{Tr}: \operatorname{GF}(q^{m+1}) \to \operatorname{GF}(q)$
- $\operatorname{GF}(q^{m+1})^{\times} = \langle \alpha \rangle$, $n = \frac{q^{m+1}-1}{q-1}$
- $M = (\operatorname{Tr}(\alpha^{i+j}))_{0 \le i < n}$

Then M is a BGW matrix of weight q^m

 $\begin{array}{l} M: \mbox{ BGW matrix over } G, \ \chi: G \to H \mbox{ is a group epimorphism,} \\ \mbox{then extending } \chi \mbox{ to } \chi: G \cup \{0\} \to H \cup \{0\} \\ \Longrightarrow \ \chi(M) \mbox{ is a BGW matrix over } H. \\ \mbox{For a BGW matrix over } \mathrm{GF}(q)^{\times}, \mbox{ one may take } \chi \mbox{ to be a multiplicative character.} \end{array}$

$q \equiv 1 \pmod{4}$

• q: prime power, $m \in \mathbb{N}$, $G = \mathrm{GF}(q)^{\times}$

•
$$\operatorname{Tr}: \operatorname{GF}(q^{m+1}) \to \operatorname{GF}(q)$$

• GF $(q^{m+1})^{\times} = \langle \alpha \rangle$, $n = \frac{q^{m+1}-1}{q-1}$

•
$$M = (\operatorname{Tr}(\alpha^{i+j}))_{0 \le i < n}$$

• $\chi : GF(q)^{\times} \to \langle \sqrt{-1} \rangle = \{\pm 1, \pm \sqrt{-1}\}$: character of order 4

Then $Z = \chi(M)$ is a BGW of order n, weight q^m over $\langle \sqrt{-1} \rangle$

Write $Z = X + \sqrt{-1}Y$, where X, Y are (0, 1)-matrices.

$$W = \begin{bmatrix} X & Y \\ -Y & X \end{bmatrix}$$

is a weighing matrix of order 2n, weight q^m .

An easy proof

Let Z be a BGW matrix of order n, weight k over $\langle \sqrt{-1} \rangle$. Then $Z = X + \sqrt{-1}Y \in M_n(\mathbb{C})$, where X, Y are (0, 1)-matrices. Since Z is a BGW matrix,

$$ZZ^* = kI$$

 $(1, -1, \sqrt{-1}, -\sqrt{-1} \text{ appear exactly the same number of times}$ \implies inner product of rows = 0)

$$\implies XX^T + YY^T = kI, \quad -XY^T + YX^T = 0$$
$$\implies W = \begin{bmatrix} X & Y \\ -Y & X \end{bmatrix} \text{ satisfies } WW^T = kI.$$