# An Infinite Family of Weighing Matrices 

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences<br>Tohoku University

December 12, 2010
Kobe, Japan

## Definition

A weighing matrix $W$ of order $n$ and weight $k$ is an $n \times n$ matrix $W$ with entries $1,-1,0$ such that

$$
W W^{T}=k I_{n}
$$

where $I_{n}$ is the identity matrix of order $n$ and $W^{T}$ denotes the transpose of $W$.
We say that two weighing matrices $W_{1}$ and $W_{2}$ of order $n$ and weight $k$ are equivalent if there exist monomial matrices $P$ and $Q$ with $W_{1}=P W_{2} Q$.
$k=n \Longrightarrow$ Hadamard matrix
$k=1 \Longrightarrow$ Monomial matrix

## Chan-Roger-Seberry (1986)

Classified all weighing matrices of weight $k \leq 5$.
In particular, there are two weighing matrices of order 12 and weight 5 , up to equivalence.

However, there is another one, discovered by Harada and A.M. recently, using the classification of self-dual codes of length 12 over $\mathbb{F}_{5}$.

Chan-Roger-Seberry (1986) missed:

| + | 0 | + | 0 | 0 | - | 0 | 0 | 0 | - | + | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | + | + | + | + | + | 0 | 0 | 0 | 0 | 0 | 0 |
| + | + | 0 | 0 | - | 0 | 0 | 0 | - | + | 0 | 0 |
| 0 | + | 0 | 0 | 0 | - | - | 0 | + | 0 | - | 0 |
| 0 | + | - | 0 | 0 | 0 | + | 0 | 0 | - | 0 | + |
| - | + | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | + | - |
| 0 | 0 | 0 | - | + | 0 | - | 0 | - | 0 | 0 | + |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - |
| 0 | 0 | - | + | 0 | 0 | - | - | 0 | 0 | + | 0 |
| - | 0 | + | 0 | - | 0 | 0 | - | 0 | 0 | 0 | + |
| + | 0 | 0 | - | 0 | + | 0 | - | + | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | + | - | + | - | 0 | + | 0 | 0 |

## Inner product on $\mathbb{F}_{5}^{2}$ over $\mathbb{F}_{5}$

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}
$$

|  | $(0,1)$ | $(1,0)$ | $(1,1)$ | $(1,2)$ | $(1,3)$ | $(1,4)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(0,1)$ | 1 | 0 | 1 | 2 | 3 | 4 |
| $(1,0)$ | 0 | 1 | 1 | 1 | 1 | 1 |
| $(1,1)$ | 1 | 1 | 2 | 3 | 4 | 0 |
| $(1,2)$ | 2 | 1 | 3 | 0 | 2 | 4 |
| $(1,3)$ | 3 | 1 | 4 | 2 | 0 | 3 |
| $(1,4)$ | 4 | 1 | 0 | 4 | 3 | 2 |

We change

$$
1 \rightarrow+, \quad 4 \rightarrow-, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0
$$

Inner product on $\mathbb{F}_{5}^{2}$ over $\mathbb{F}_{5}$ $\rightarrow$ a $6 \times 6$ matrix with entries $0, \pm 1$

$$
A_{1}=\begin{array}{ccccccc} 
& (0,1) & (1,0) & (1,1) & (1,2) & (1,3) & (1,4) \\
(0,1) & + & 0 & + & 0 & 0 & - \\
(1,0) & 0 & + & + & + & + & + \\
(1,1) & + & + & 0 & 0 & - & 0 \\
(1,2) & 0 & + & 0 & 0 & 0 & - \\
(1,3) & 0 & + & - & 0 & 0 & 0 \\
(1,4) & - & + & 0 & - & 0 & 0
\end{array}
$$

## Inner product on $\mathbb{F}_{5}^{2}$ over $\mathbb{F}_{5}$

 $\rightarrow$ a $6 \times 6$ matrix with entries $0, \pm 1$|  | $2(0,1)$ | $2(1,0)$ | $2(1,1)$ | $2(1,2)$ | $2(1,3)$ | $2(1,4)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(0,1)$ | 2 | 0 | 2 | 4 | 1 | 3 |
| $(1,0)$ | 0 | 2 | 2 | 2 | 2 | 2 |
| $(1,1)$ | 2 | 2 | 4 | 1 | 3 | 0 |
| $(1,2)$ | 4 | 2 | 1 | 0 | 4 | 3 |
| $(1,3)$ | 1 | 2 | 3 | 4 | 0 | 1 |
| $(1,4)$ | 3 | 2 | 0 | 3 | 1 | 4 |

Replace

$$
1 \rightarrow+, \quad 4 \rightarrow-, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0
$$

to obtain $A_{2}$.

## Inner product on $\mathbb{F}_{5}^{2}$ over $\mathbb{F}_{5}$

 $\rightarrow$ a $6 \times 6$ matrix with entries $0, \pm 1$|  | $(0,1)$ | $(1,0)$ | $(1,1)$ | $(1,2)$ | $(1,3)$ | $(1,4)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2(0,1)$ | 2 | 0 | 2 | 4 | 1 | 3 |
| $2(1,0)$ | 0 | 2 | 2 | 2 | 2 | 2 |
| $2(1,1)$ | 2 | 2 | 4 | 1 | 3 | 0 |
| $2(1,2)$ | 4 | 2 | 1 | 0 | 4 | 3 |
| $2(1,3)$ | 1 | 2 | 3 | 4 | 0 | 1 |
| $2(1,4)$ | 3 | 2 | 0 | 3 | 1 | 4 |

Replace

$$
1 \rightarrow+, \quad 4 \rightarrow-, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0
$$

to obtain $A_{3}$ (which is the same as $A_{2}$ ).

## Inner product on $\mathbb{F}_{5}^{2}$ over $\mathbb{F}_{5}$

 $\rightarrow$ a $6 \times 6$ matrix with entries $0, \pm 1$|  | $2(0,1)$ | $2(1,0)$ | $2(1,1)$ | $2(1,2)$ | $2(1,3)$ | $2(1,4)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2(0,1)$ | 4 | 0 | 4 | 3 | 2 | 1 |
| $2(1,0)$ | 0 | 4 | 4 | 4 | 4 | 4 |
| $2(1,1)$ | 4 | 4 | 3 | 2 | 1 | 0 |
| $2(1,2)$ | 3 | 4 | 2 | 0 | 3 | 1 |
| $2(1,3)$ | 2 | 4 | 1 | 3 | 0 | 2 |
| $2(1,4)$ | 1 | 4 | 0 | 1 | 2 | 3 |

Replace

$$
1 \rightarrow+, \quad 4 \rightarrow-, \quad 2 \rightarrow 0, \quad 3 \rightarrow 0
$$

to obtain $A_{4}$ (which is the same as $-A_{1}$ ).

## Notation

- $q$ : a prime power, $q \equiv 1(\bmod 4)($ ex. $q=5)$
- $F=G F(q)$ : a finite field, $F^{\times}=\langle a\rangle($ ex. $a=2)$
- $V$ : a vector space of dimension $m+1$ over $F, m \geq 1$ (ex. $m=1$ )
- $V^{\sharp}=V \backslash\{0\}$
- $n=2 \cdot\left(q^{m+1}-1\right) /(q-1)($ ex. $n=12)$
- $X=V^{\sharp} /\left\langle a^{2}\right\rangle=\left\{\left\langle a^{2}\right\rangle x_{i} \mid 1 \leq i \leq n\right\} \quad(|X|=n)$
- $B: V \times V \rightarrow F:$ nondegenerate bilinear form (ex.

$$
\left.B(x, y)=x_{1} y_{1}+x_{2} y_{2}\right)
$$

Define $n \times n$ matrix $W$ by

$$
W_{i j}= \begin{cases}1 & \text { if } B\left(x_{i}, x_{j}\right) \in\left\langle a^{4}\right\rangle,(\text { ex. } \in\{1\}) \\ -1 & \text { if } B\left(x_{i}, x_{j}\right) \in a^{2}\left\langle a^{4}\right\rangle,(\text { ex. } \in\{4\}) \\ 0 & \text { otherwise }\end{cases}
$$

## Main result

- $q$ : a prime power, $q \equiv 1(\bmod 4)$
- $F=G F(q)$ : a finite field, $F^{\times}=\langle a\rangle$
- $V$ : a vector space of dimension $m+1$ over $F, m \geq 1$
- $V^{\sharp}=V \backslash\{0\}$
- $n=2 \cdot\left(q^{m+1}-1\right) /(q-1)$
- $X=V^{\sharp} /\left\langle a^{2}\right\rangle=\left\{\left\langle a^{2}\right\rangle x_{i} \mid 1 \leq i \leq n\right\}(|X|=n)$
- $B: V \times V \rightarrow F$ : nondegenerate bilinear form

$$
W_{i j}= \begin{cases}1 & \text { if } B\left(x_{i}, x_{j}\right) \in\left\langle a^{4}\right\rangle \\ -1 & \text { if } B\left(x_{i}, x_{j}\right) \in a^{2}\left\langle a^{4}\right\rangle \\ 0 & \text { otherwise }\end{cases}
$$

Theorem
$W$ is a weighing matrix of order $n$ and weight $q^{m}$.

## Balanced generalized weighing (BGW) matrix

- $n, k$ : positive integers
- $G$ : multiplicatively written group
- $M: n \times n$ matrix with entries in $G \cup\{0\}$
$M$ is a balanced generalized weighing (BGW) matrix of order $n$, weight $k$ over $G$ if
- $\forall$ row has $k$ entries in $G, n-k$ entries 0
- $\left|\left\{j \mid M_{h j} M_{i j}^{-1}=g, M_{h j} \neq 0, M_{i j} \neq 0\right\}\right|$ is a constant independent of $h, i$ (distinct) and $g \in G$.
$G=\{ \pm 1\} \Longrightarrow$ weighing matrix
$k=n \Longrightarrow$ generalized Hadamard matrix


## Jungnickel-Tonchev (1999)

- $q$ : prime power, $m \in \mathbb{N}, G=\mathrm{GF}(q)^{\times}$
- $\mathrm{Tr}: \mathrm{GF}\left(q^{m+1}\right) \rightarrow \mathrm{GF}(q)$
- $\mathrm{GF}\left(q^{m+1}\right)^{\times}=\langle\alpha\rangle, n=\frac{q^{m+1}-1}{q-1}$
- $M=\left(\operatorname{Tr}\left(\alpha^{i+j}\right)\right)_{0 \leq i<n}$

Then $M$ is a BGW matrix of weight $q^{m}$
M: BGW matrix over $G, \chi: G \rightarrow H$ is a group epimorphism, then extending $\chi$ to $\chi: G \cup\{0\} \rightarrow H \cup\{0\}$
$\Longrightarrow \chi(M)$ is a BGW matrix over $H$.
For a BGW matrix over $\operatorname{GF}(q)^{\times}$, one may take $\chi$ to be a multiplicative character.

## $q \equiv 1(\bmod 4)$

- $q$ : prime power, $m \in \mathbb{N}, G=\mathrm{GF}(q)^{\times}$
- $\mathrm{Tr}: \mathrm{GF}\left(q^{m+1}\right) \rightarrow \mathrm{GF}(q)$
- $\operatorname{GF}\left(q^{m+1}\right)^{\times}=\langle\alpha\rangle, n=\frac{q^{m+1}-1}{q-1}$
- $M=\left(\operatorname{Tr}\left(\alpha^{i+j}\right)\right)_{0 \leq i<n}$
- $\chi: \operatorname{GF}(q)^{\times} \rightarrow\langle\sqrt{-1}\rangle=\{ \pm 1, \pm \sqrt{-1}\}:$ character of order 4

Then $Z=\chi(M)$ is a BGW of order $n$, weight $q^{m}$ over $\langle\sqrt{-1}\rangle$
Write $Z=X+\sqrt{-1} Y$, where $X, Y$ are $(0,1)$-matrices.

$$
W=\left[\begin{array}{cc}
X & Y \\
-Y & X
\end{array}\right]
$$

is a weighing matrix of order $2 n$, weight $q^{m}$.

## An easy proof

Let $Z$ be a BGW matrix of order $n$, weight $k$ over $\langle\sqrt{-1}\rangle$. Then $Z=X+\sqrt{-1} Y \in M_{n}(\mathbb{C})$, where $X, Y$ are ( 0,1 )-matrices.
Since $Z$ is a BGW matrix,

$$
Z Z^{*}=k I
$$

$(1,-1, \sqrt{-1},-\sqrt{-1}$ appear exactly the same number of times $\Longrightarrow$ inner product of rows $=0$ )

$$
\begin{aligned}
& \Longrightarrow X X^{T}+Y Y^{T}=k I, \quad-X Y^{T}+Y X^{T}=0 \\
& \Longrightarrow W=\left[\begin{array}{cc}
X & Y \\
-Y & X
\end{array}\right] \text { satisfies } W W^{T}=k I .
\end{aligned}
$$

