Accumulation Points of
 the Smallest Eigenvalues of Graphs

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with H.J. Jang, J.H. Koolen and T. Taniguchi)
February 21, 2011
Analysis on Graphs in Sendai 2011

Eigenvalues of Graphs

- All graphs in this talks are finite, undirected and simple.
- Eigenvalues of a graph G are the eigenvalues of its adjacency matrix $A(G)$:

$$
A(G)_{x, y}= \begin{cases}1 & \text { if } x \text { and } y \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}
$$

- $\operatorname{Spec}(G)=$ the multiset of eigenvalues of G.
- $\lambda_{\min }(G)=$ the smallest eigenvalue of G.
- $\lambda_{\text {max }}(G)=$ the largest eigenvalue of G.
- The degree of a vertex x in G is the number of vertices adjacent to x, and is denoted by $d(x)$.
- $d_{\min }(G) \leq \bar{d}(G) \leq \lambda_{\max }(G) \leq d_{\max }(G)$.

Example: a path of length 2

$\lambda_{\max }\left(P_{2}\right)=\sqrt{2}:$

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right]=\sqrt{2}\left[\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right] .
$$

$\lambda_{\min }\left(P_{2}\right)=-\sqrt{2}$:

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right]=-\sqrt{2}\left[\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right] .
$$

$\lambda_{\min }(G)=$ the smallest eigenvalue

For bipartite graphs

- $\operatorname{Spec}(G)=-\operatorname{Spec}(G)$
- $\lambda_{\min }(G)=-\lambda_{\max }(G)$

In general, if we assume G is connected.
G has at least 2 vertices
$\Longrightarrow G$ has at least 1 edge
$\Longrightarrow A(G) \supset\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ as a principal submatrix $\Longrightarrow \lambda_{\text {min }}(G) \leq-1$.

Equality holds if and only if G is complete.

$$
G_{n}=K_{n+2}-\text { edge }
$$

- $K_{n}=$ complete graph with n vertices
- $J_{n}=n \times n$ matrix with all the entries 1
- $A\left(K_{n}\right)=J_{n}-I_{n}$.

$$
\begin{gathered}
A\left(G_{n}\right)=\left[\begin{array}{cc}
O_{2} & 1 \\
1 & A\left(K_{n}\right)
\end{array}\right] \\
\begin{aligned}
\lambda_{\min }\left(G_{n}\right) & \geq \lambda_{\min }\left(A\left(G_{n}\right)-J_{n}\right) \\
& =\lambda_{\min }\left(\left[\begin{array}{cc}
-J_{2} & O \\
O & -I_{n}
\end{array}\right]\right) \\
= & -2
\end{aligned}
\end{gathered}
$$

In fact, $\lambda_{\text {min }}\left(G_{n}\right) \rightarrow-2$ as $n \rightarrow \infty$, as we shall see. Set $\mu_{n}:=-\lambda_{\min }\left(G_{n}\right) \leq 2$. Then $\mu_{n}>1$.
$-\lambda_{\text {min }}(G)=\min \left\{\mu \in \mathbb{R}_{>0} \mid A(G)+\mu I_{n} \geq 0\right\}$ $G_{n}=K_{n+2}-$ edge. $\mu_{n}:=-\lambda_{\min }\left(G_{n}\right)$. Then $A\left(G_{n}\right)+\mu_{n} I_{n} \geq 0,1<\mu_{n} \leq 2$.

$$
\left[\begin{array}{cc|ccc}
\mu_{n} & 0 & & & \\
0 & \mu_{n} & & & \\
\hline & & \mu_{n} & & 1 \\
& 1 & & \ddots & \\
& & 1 & & \mu_{n}
\end{array}\right] \geq 0 . \Longrightarrow\left[\begin{array}{ccc|c}
\mu_{n} & 0 & n \\
0 & \mu_{n} & n \\
\hline n & n & \tilde{n}^{2}
\end{array}\right] \geq 0
$$

where \tilde{n} is slightly larger than $n ; \frac{\tilde{n}}{n} \rightarrow 1$.

$$
\left[\begin{array}{lll}
1 & 1 & -\frac{2}{n}
\end{array}\right]\left[\begin{array}{cc|c}
\mu_{n} & 0 & n \\
0 & \mu_{n} & n \\
\hline n & n & \tilde{n}^{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
-\frac{2}{n}
\end{array}\right] \geq 0
$$

implies $2 \mu_{n}-8+4 \frac{\tilde{n}}{n} \geq 0$,

$$
\lim _{n \rightarrow \infty} \lambda_{\min }\left(G_{n}\right)=\lim _{n \rightarrow \infty}\left(-\mu_{n}\right) \leq-2
$$

$G_{n}=K_{n+2}-$ edge

G_{n} and K_{n+2} differ only by an edge, but their smallest eigenvalues differ as $n \rightarrow \infty$:

$$
\lambda_{\min }\left(G_{n}\right) \downarrow-2 \text { while } \lambda_{\min }\left(K_{n+2}\right)=-1 .
$$

Note $d_{\min }\left(G_{n}\right)=n$.
Theorem (Hoffman (1977))
If $\left\{H_{n}\right\}_{n=1}^{\infty}$ is a sequence of graphs with $d_{\min }\left(H_{n}\right) \rightarrow \infty$, $\lambda=\lim _{n \rightarrow \infty} \lambda_{\min }\left(H_{n}\right)$ exists and $\lambda<-1$, then $\lambda \leq-2$.

Woo and Neumaier (1995)

Definition

A Hoffman graph \mathfrak{H} is a graph (V, E) whose vertex set V consists of "slim" vertices and "fat" vertices, satisfying the following conditions:

1. every fat vertex is adjacent to at least one slim vertex,
2. fat vertices are pairwise non-adjacent.

Hoffman's limit theorem

Theorem

Let \mathfrak{H} be a Hoffman graph. Let H_{n} be the ordinary graph obtained from \mathfrak{H} by replacing every fat vertex f of \mathfrak{H} by a n-clique $K(f)$, and joining all the neighbors of f with all the vertices of $K(f)$ by edges. Then

$$
\begin{aligned}
\lambda_{\min }\left(H_{n}\right) & \geq \lambda_{\min }(\mathfrak{H}) \\
\lim _{n \rightarrow \infty} \lambda_{\min }\left(H_{n}\right) & =\lambda_{\min (\mathfrak{H})} .
\end{aligned}
$$

$H_{n}=K_{n+4}-2$ disjoint edges

The corresponding Hoffman graph has adjacency matrix

Since

$$
\left[\begin{array}{cc}
A+\mu I & C \\
C^{T} & 0
\end{array}\right] \geq 0 \Longleftrightarrow A+\mu I+C C^{T} \geq 0
$$

$$
\lim _{n \rightarrow \infty} \lambda_{\min }\left(H_{n}\right)=\lambda_{\min }(\mathfrak{H})=-\mu
$$

where $\mu=$ smallest μ with

$$
\left[\begin{array}{cc|c}
\mu I_{2} & O_{2} & \mathbf{1} \\
O_{2} & \mu I_{2} & \mathbf{1} \\
\hline \mathbf{1} & \mathbf{1} & 0
\end{array}\right] \geq 0 \Longleftrightarrow\left[\begin{array}{c|c}
\mu I_{2}-J_{2} & O_{2} \\
\hline O_{2} & \mu I_{2}-J_{2}
\end{array}\right] \geq 0
$$

The smallest eigenvalue of the Hoffman graph

is $-\mu$, where μ is the smallest real number μ with

$$
\begin{aligned}
{\left[\begin{array}{cc|c}
\mu I_{2} & O_{2} & \mathbf{1} \\
O_{2} & \mu I_{2} & \mathbf{1} \\
\hline \mathbf{1} & \mathbf{1} & 0
\end{array}\right] \geq 0 } & \Longleftrightarrow\left[\begin{array}{c|c}
\mu I_{2}-J_{2} & O_{2} \\
\hline O_{2} & \mu I_{2}-J_{2}
\end{array}\right] \geq 0 \\
& \Longleftrightarrow \mu I_{2}-J_{2} \geq 0 \Longleftrightarrow\left[\begin{array}{c|c}
\mu I_{2} & \mathbf{1} \\
\hline \mathbf{1} & 0
\end{array}\right] \geq 0
\end{aligned}
$$

Same smallest eigenvalue as

Sum

Definition

Let \mathfrak{H}^{1} and \mathfrak{H}^{2} be two non-empty induced Hoffman subgraphs of \mathfrak{H}. We write $\mathfrak{H}=\mathfrak{H}^{1} \uplus \mathfrak{H}^{2}$, if

1. $V(\mathfrak{H})=V\left(\mathfrak{H}^{1}\right) \cup V\left(\mathfrak{H}^{2}\right)$;
2. $\left\{V_{s}\left(\mathfrak{H}^{1}\right), V_{s}\left(\mathfrak{H}^{2}\right)\right\}$ is a partition of $V_{s}(\mathfrak{H})$;
3. if $x \in V_{s}\left(\mathfrak{H}^{i}\right), y \in V_{f}(\mathfrak{H})$ and $x \sim y$, then $y \in V_{f}\left(\mathfrak{H}^{i}\right)$;
4. if $x \in V_{s}\left(\mathfrak{H}^{1}\right), y \in V_{s}\left(\mathfrak{H}^{2}\right)$, then x and y have at most one common fat neighbor, and they have one if and only if they are adjacent.
If $\mathfrak{H}=\mathfrak{H}^{1} \uplus \mathfrak{H}^{2}$ for some non empty subgraphs \mathfrak{H}^{1} and \mathfrak{H}^{2}, then we call \mathfrak{H} decomposable.

\uplus and $\lambda_{\text {min }}$

Theorem

$$
\lambda_{\min }\left(\mathfrak{H}^{1} \uplus \mathfrak{H}^{2}\right)=\min \left\{\lambda_{\min }\left(\mathfrak{H}^{1}\right), \lambda_{\min }\left(\mathfrak{H}^{2}\right)\right\} .
$$

- Because of this, the smallest eigenvalues of Hoffman graphs are easier to investigate than ordinary graphs.
- Hoffman graphs can be thought as sequence of ordinary graphs with increasing size of cliques.
- By Hoffman's limit theorem, the smallest eigenvalue of a Hoffman graph is a limit point of the smallest eigenvalues of ordinary graphs.
- There is no Hoffman graph with smallest eigenvalue between -1 and -2 . The next largest possible smallest eigenvalue of a Hoffman graph is $-1-\sqrt{2}$.

$$
-1-\sqrt{2}
$$

Theorem (Hoffman (1977))
If $\left\{H_{n}\right\}_{n=1}^{\infty}$ is a sequence of graphs with $d_{\min }\left(H_{n}\right) \rightarrow \infty$, $\lambda=\lim _{n \rightarrow \infty} \lambda_{\text {min }}\left(H_{n}\right)$ exists and $\lambda<-2$, then $\lambda \leq-1-\sqrt{2}$.

Theorem (Woo and Neumaier (1995))
If $\left\{H_{n}\right\}_{n=1}^{\infty}$ is a sequence of graphs with $d_{\min }\left(H_{n}\right) \rightarrow \infty$, $\lambda=\lim _{n \rightarrow \infty} \lambda_{\min }\left(H_{n}\right)$ exists and $\lambda<-1-\sqrt{2}$, then $\lambda \leq \alpha$, where α is the smallest root of $x^{3}+2 x^{2}-2 x-2$.

The smallest root of $x^{3}+2 x^{2}-2 x-2$

is the eigenvalue of the Hoffman graph

Every Hoffman graph with smallest eigenvalue at least -2 is obtained by taking sums and subgraphs from just two Hoffman graphs, provided every slim vertex has at least one fat neighbor:

Every graph with smallest eigenvalue at least -2 with sufficiently large minimum degree is represented by a root system A_{n} or D_{n}.

Representation of a graph

Definition

A representation of norm m of a graph $G=(V, E)$ is a mapping $\phi: V \rightarrow \mathbb{R}^{n}$ such that

$$
(\phi(x), \phi(y))= \begin{cases}m & \text { if } x=y \in V \\ 1 & \text { if } x \text { and } y \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, G has a representation of norm m iff $\lambda_{\min }(G) \geq-m$. So $\lambda_{\min }(G) \geq-2 \Longrightarrow G$ is represented by a root system A_{n}, D_{n} or E_{n}.
We wish to investigate limit points of the smallest eigenvalues of graphs between -2 and -3 . To do this, we need to investigate Hoffman graphs with the smallest eigenvalue between -2 and -3 .

Theorem

Let $\mathfrak{H}=(V, E)$ be a Hoffman graph with $\lambda_{\text {min }}(\mathfrak{H}) \geq-3$.
Suppose

1. every slim vertex has at least one fat neighbor.
2. two distinct slim vertices have at most one common fat neighbor
Then there is a mapping $\phi: V_{s} \rightarrow \mathbb{R}^{n}$ such that $(\phi(x), \phi(y))$
$\{2$ if $x=y$, and x has a unique fat neighbor
1 if $x=y$, and x has two fat neighbors
if x and y are adjacent, \nexists common fat neighbor
-1 if x and y are not adjacent, \exists common fat neighbor
0 otherwise.
In particular, the image of ϕ generates a orthogonal direct sum of the standard lattices \mathbb{Z}^{n} and root lattices A_{n}, D_{n}, E_{n}.
