Constructive enumeration of self-dual codes using tools from permutation groups

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint with K. Betsumiya and M. Harada)

August 25, 2011 International Conference on Coding and Cryptography Ewha Womans University Seoul, Korea

Binary Codes

•
$$\mathbb{F}_2 = \{0, 1\}.$$

• $X = \mathbb{F}_2^n$ with d = Hamming distance.

- d(x,y) = the number of *i*'s with $x_i \neq y_i$, where $x, y \in X$.
- d(x,y) = wt(x-y), the weight of the vector x y, the number of nonzero (in this case 1) entries in x y.
- supp(x), the support of a vector x, the set of nonzero (in this case 1) coordinates in x.
- C = linear code of length n, i.e., $C \subseteq \mathbb{F}_2^n$, closed under binary addition.
 - $\min(C) := \min\{ \operatorname{wt}(x) \mid x \in C, \ x \neq 0 \}.$
 - We say C is an [n, k] code if dim C = k.
 - We say C is an [n, k, d] code if moreover $\min(C) = d$.

Definition

If σ is a permutation on $\{1, 2, \ldots, n\}$ and $x = (x_1, \ldots, x_n) \in \mathbb{F}_2^n$, then $\sigma(x) := (x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)})$. Two binary codes C, C' of length n are said to be equivalent if $\sigma(C) = C'$ for some permutation σ of $\{1, 2, \ldots, n\}$.

Definition

A permutation σ is an automorphism of a linear code $C \subseteq \mathbb{F}_2^n$ if $\sigma(C) = C$. Aut(C) denotes the group of all automorphisms of C.

Self-Dual Codes

- Scalar product: $(x, y) = \sum_{i=1}^{n} x_i y_i$.
- $C^{\perp}=\{x\in\mathbb{F}_2^n\mid (x,y)=0\}$: dual code
- C is self-orthogonal if $C \subset C^{\perp}$
- C is self-dual if $C = C^{\perp}$
- C is doubly even if $wt(c) \equiv 0 \pmod{4}$ for all $c \in C$.

Proposition

 $C \subset \mathbb{F}_2^n$ is self-dual $\implies \dim C = \frac{n}{2}$. doubly even \implies self-orthogonal. doubly even self-dual code exists $\iff n \equiv 0 \pmod{8}$.

Extremal Doubly Even Self-Dual Codes

Recall that a doubly even self-dual (d.e.s.d.) code is a linear code C with $C = C^{\perp}$, satisfying $\operatorname{wt}(x) \equiv 0 \pmod{4}$ for all $x \in C$.

Proposition (Mallows-Sloane, 1973)

A doubly even self-dual code C of length n satisfies $\min(C) \leq 4[\frac{n}{24}] + 4.$

Definition

A doubly even self-dual code is said to be extremal if $\min(C) = 4[\frac{n}{24}] + 4.$

Table of Doubly Even Self-Dual Codes

Pless (1972), Pless–Sloane (1975), Conway–Pless (1980), Conway–Pless–Sloane (1992), Betsumiya–Harada–Munemasa (2011)

Punctured and shortened codes

Let $S \subset \{1, \ldots, n\}$. Let C be a binary linear code of length n.

Definition

The punctured code of C with respect to S is the code obtained from C by restricting to the coordinates $\{1, \ldots, n\} \setminus S$.

(forget S)

Definition

The shortened code of C with respect to S is the subcode of C consisting of codewords whose support is disjoint from S, and then deleting the coordinates S.

```
(forget S only if 0)
```

The balance principle

Suppose

$$\{1, \ldots, n\} = S_1 \cup S_2$$
 (disjoint), $|S_1| = n_1, |S_2| = n_2.$

Theorem (The balance principle (Koch 1989))

Let C be a self-dual code of length n.

$$C_1$$
 = the shortend code of C with respect to S_2 ,
 C_2 = the shortend code of C with respect to S_1 ,
 $k_1 = \dim C_1, \ k_2 = \dim C_2.$

Then

$$n_1 - 2k_1 = n_2 - 2k_2.$$

The balance principle: $n_1 - 2k_1 = n_2 - 2k_2$

A generator matrix of a self-dual code of length $n = n_1 + n_2$ has the following form:

$$n_{1} \qquad n_{2}$$

$$k_{1} \{ \begin{array}{c|c} C_{1} & 0 \\ \hline 0 & C_{2} \\ \hline c_{1}^{\perp}/C_{1} & C_{2}^{\perp}/C_{2} \end{array} \} k_{2}$$

$$n_{1} - 2k_{1} \{ \begin{array}{c|c} C_{1}^{\perp}/C_{1} & C_{2}^{\perp}/C_{2} \\ \hline c_{1}^{\perp}/C_{1} & C_{2}^{\perp}/C_{2} \end{array} \} n_{2} - 2k_{2}$$

$$n_{1} - 2k_{1} = \dim C_{1}^{\perp}/C_{1} = n_{2} - 2k_{2} = \dim C_{2}^{\perp}/C_{2}.$$

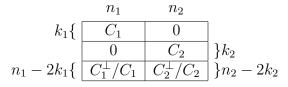
 C_1 = the shortend code of C with respect to S_2 , C_2 = the shortend code of C with respect to S_1 . Self-dual [10, 5, 4] code does not exist $n_1 - 2k_1 = n_2 - 2k_2$

$$k_{1} = 1\{ \begin{array}{c|c} n_{1} = 4 & n_{2} = 6\\ 11111 & 0\\ \hline 0 & 1111111\\ 0 & ?\\ n_{1} - 2k_{1} = 2\{ \hline * & * \\ \end{array} \right) \leftarrow k_{2} = 2\\ k_{2} = 2\\ h_{2} - 2k_{2} = 2$$

▲ 伊 ▶ ▲ 三 ▶

The balance principle: $n_1 - 2k_1 = n_2 - 2k_2$

Aim: Given C_1, C_2 , construct self-dual codes of length $n_1 + n_2$.



Filling the last set of rows is equivalent to choosing a linear bijection

$$f: C_1^\perp/C_1 \to C_2^\perp/C_2$$

Then the resulting code is

$$C_f = \{(x|y) \mid x \in C_1^{\perp}, y \in f(x+C_1)\}$$

dim
$$C_f = k_1 + k_2 + n_1 - 2k_1 = \frac{1}{2}(n_1 + n_2).$$

The balance principle: $n_1 - 2k_1 = n_2 - 2k_2$

Proposition

 C_1 : self-orthogonal $[n_1, k_1]$ code C_2 : self-orthogonal $[n_2, k_2]$ code

For $f: C_1^{\perp}/C_1 \rightarrow C_2^{\perp}/C_2$: linear bijection, define

$$C_f = \{(x|y) \mid x \in C_1^{\perp}, y \in f(x+C_1)\}.$$

Then C_f is an $[n_1 + n_2, \frac{1}{2}(n_1 + n_2)]$ code.

When is C_f self-dual (equivalently, self-orthogonal)? This occurs precisely when

$$\forall x,\forall x'\in C_1^{\perp},\;\forall y\in f(x+C_1),\;\forall y'\in f(x'+C_1),\;(x,x')=(y,y').$$

 $C_i: \text{ self-orthogonal } [n_i, k_i] \text{ code for } i = 1, 2$ $C_f = \{(x|y) \mid x \in C_1^{\perp}, y \in f(x + C_1)\}$

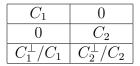
Induced scalar product

$$(,): C_1^{\perp}/C_1 \times C_1^{\perp}/C_1 \to \mathbb{F}_2$$
$$(,): C_2^{\perp}/C_2 \times C_2^{\perp}/C_2 \to \mathbb{F}_2$$

For a linear bijection $f: C_1^\perp/C_1 \to C_2^\perp/C_2$,

$$\begin{array}{l} C_f \text{ is self-dual (} \Longleftrightarrow \text{ self-orthogonal)} \\ \Longleftrightarrow f \text{ is an isometry, i.e.,} \\ (x+C_1, x'+C_1) = (f(x+C_1), f(x'+C_1)) \quad (\forall x, x' \in C_1^{\perp}). \end{array}$$

Special case:
$$n_2 = 2$$
, $C_2 = 0$



becomes

$$\begin{array}{c|cccc} n_1 & 2 \\ k_1 \{ \begin{array}{c|c} C_1 & 0 \\ \hline C_1^{\perp} / C_1 & 0^{\perp} \end{array} \} 2 = 1 + 1 \end{array}$$

Then $k_1 = \frac{1}{2}n_1 - 1$. $\implies C_1$ is a subcode of of codimension 1 in a self-dual $[n_1, \frac{1}{2}n_1]$ code \tilde{C}_1 .

Special case:
$$n_2 = 2$$
, $C_2 = 0$

C_1	0
x	11
y	01

 $C_1 \subset \langle C_1, x \rangle = \tilde{C}_1$: self-dual $[n_1, \frac{1}{2}n_1]$ code

Every self-dual $[n_1 + 2, \frac{1}{2}n_1 + 1, d]$ code with d > 2 can be obtained from

• a self-dual
$$[n_1, rac{1}{2}n_1]$$
 code $ilde{C}_1$,

• an $[n_1, \frac{1}{2}n_1 - 1]$ subcode C_1 of \tilde{C}_1 ,

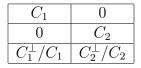
•
$$y \in C_1^{\perp}$$
 with $\operatorname{wt}(y)$ odd

Actually y and C_1 determine each other.

Special case: $n_2 = 2$, $C_2 = 0$

In practice one starts from a self-dual $[n_1, \frac{1}{2}n_1]$ code $ilde{C}_1$

Then y determines C_1 as $C_1 \cap y^{\perp}$. Alternatively, C_1 can be specified as a kernel of a nonzero linear mapping $\tilde{C}_1 \to \mathbb{F}_2$ (building-up method). General case: $n_1 - 2k_1 = n_2 - 2k_2$ C_i : self-orthogonal $[n_i, k_i]$ code for i = 1, 2



Assume $1 \in C_1$, $1 \in C_2$ (so n_1 and n_2 are even). The induced scalar products on C_1^{\perp}/C_1 , C_2^{\perp}/C_2 are symplectic. A linear bijection

$$f: C_1^\perp/C_1 \to C_2^\perp/C_2$$

corresponds to an element of Sp(2m, 2) $(2m = n_1 - 2k_1)$

$$|\operatorname{Sp}(2m,2)| = 2^{m^2} \prod_{i=1}^{m} (2^{2i} - 1).$$

General case: $n_1 - 2k_1 = n_2 - 2k_2$ C_i : self-orthogonal $[n_i, k_i]$ code for i = 1, 2 $f : C_1^{\perp}/C_1 \to C_2^{\perp}/C_2$ $C_f = \{(x|y) \mid x \in C_1^{\perp}, y \in f(x + C_1)\}$

$$\sigma_i \in \operatorname{Aut} C_i \implies \sigma_i \text{ induces } C_i^{\perp}/C_i \to C_i^{\perp}/C_i$$
$$\sigma_2 \circ f \circ \sigma_1 : C_1^{\perp}/C_1 \to C_2^{\perp}/C_2$$

Then $C_f \cong C_{\sigma_2 \circ f \circ \sigma_1}$. This means that

 $\{\text{isometries } f\} \rightarrow \{\text{self-dual codes obtained from } C_1, C_2\}$

induces

Aut
$$C_2 \setminus \operatorname{Sp}(2m, 2) / \operatorname{Aut} C_1$$

 $\rightarrow \{ \text{self-dual codes obtained from } C_1, C_2 \} / \cong .$

Theorem

Let C_i be a self-orthogonal $[n_i, k_i]$ code $\ni \mathbf{1}$ for i = 1, 2, and assume $n - 2k_1 = n_2 - 2k_2 = 2m$. Then there is a mapping from $\operatorname{Aut} C_2 \setminus \operatorname{Sp}(2m, 2) / \operatorname{Aut} C_1$ to the set of equivalence classes of self-dual codes with generator matrix of the form

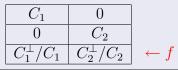
$$\begin{array}{c|cc} C_1 & 0 \\ \hline 0 & C_2 \\ \hline C_1^{\perp}/C_1 & C_2^{\perp}/C_2 \end{array} \leftarrow f$$

Doubly even version

 $O^+(2m,2) =$ orthogonal group.

Theorem

Let C_i be a doubly even $[n_i, k_i] \operatorname{code} \ni \mathbf{1}$ for i = 1, 2, and assume $n - 2k_1 = n_2 - 2k_2 = 2m$, $n_1 \equiv n_2 \equiv 0 \pmod{8}$. Then there is a mapping from $\operatorname{Aut} C_2 \setminus O^+(2m, 2) / \operatorname{Aut} C_1$ to the set of equivalence classes of doubly even self-dual codes with generator matrix of the form



We now apply this theorem with $n_1 = 16$, $n_2 = 24$.

 $\begin{array}{l} C_1: \text{ doubly even } [16,k_1] \text{ code } \ni \mathbf{1} \\ C_2: \text{ doubly even } [24,k_2] \text{ code } \ni \mathbf{1} \\ 16-2k_1=24-2k_2=2m. \end{array}$

There is a mapping from $\operatorname{Aut} C_2 \setminus \operatorname{O}^+(2m, 2) / \operatorname{Aut} C_1$ to the set of equivalence classes of doubly even self-dual codes with generator matrix of the form

C_1	0
0	C_2
C_1^\perp/C_1	C_2^\perp/C_2

Possible C_1, C_2 can easily be enumerated for all k_1, k_2 . However ... C_1 : doubly even $[16, \mathbf{k}_1] \operatorname{code} \ni \mathbf{1}$ C_2 : doubly even $[24, \mathbf{k}_2] \operatorname{code} \ni \mathbf{1}$ MAGMA could not compute $\operatorname{Aut} C_2 \setminus \operatorname{O}^+(2m, 2) / \operatorname{Aut} C_1$ when $m \ge 6$. Thus we need:

$$16 - 2k_1 = 24 - 2k_2 = 2m \le 10,$$

or equivalently, $k_1 \geq 3$.

We obtain a classification of doubly even self-dual [40, 20, 8] codes containing a $[16, \geq 3]$ code (\ni 1) as a shortened code. There are 16468 codes up to equivalence.

Doubly even self-dual [40, 20, 8] codes

• King (2001) computed (without classifying) the total number of doubly even self-dual [40, 20, 8] codes:

 $102633 \\ {\color{red}35567003567415076803513287627980544163840000000} \\$

• We found 16468 codes up to equivalence, whose total number is

 $102633 {\color{black}{2}} 8648423680225300693565121891639210557440000000$

Slightly short of complete!

There is at least one doubly even self-dual [40, 20, 8] code which does not contain $[16, \ge 3]$ code (\ni 1) as a shortened code.

16468+2 doubly even self-dual [40, 20, 8] codes

Theorem

- There are exactly two (up to equivalence) doubly even self-dual [40, 20, 8] codes which do not contain [16, ≥ 3] code (∋ 1) as a shortened code.
- There are 16470 (up to equivalence) doubly even self-dual [40, 20, 8] codes.

Remark

- The two exceptional codes appeared already in the work of Yorgov (1983) and Yorgov–Zyapkov (1996).
- We have no direct proof of Part 1 of the above theorem.
- Similar consideration played an important role in the proof (by computer) of the uniqueness of doubly even self-dual [48, 24, 12] code by Houghten-Lam-Thiel-Parker (2003).