Graphs with complete multipartite μ-graphs

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
joint work with A. Jurišić and Y. Tagami
Discrete Math. 310 (2010), 1812-1819

February 6, 2012
Ghent University

Distance-Regular Graphs

Brouwer-Cohen-Neumaier (1988).
Examples: Dual polar spaces $=\{$ max. totally isotropic subsp. $\}$ and their subconstituent: eg. alternating forms graph.

Main Problem: Classify distance-regular graphs.

- classification of feasible parameters
- characterization by parameters
- characterization by local structure

A local characterization of the graphs of alternating forms and the graphs of quadratic forms graphs over GF(2)
A. Munemasa, D.V. Pasechnik, S.V. Shpectorov

Definition of a distance-regular graph

- $\Gamma_{i}(x)$: the set of vertices at distance i from x
- the numbers a_{i}, b_{i}, c_{i} are independent of x and $y \in \Gamma_{i}(x)$.
- a_{i}, b_{i}, c_{i} are called the parameters of a distance-regular graph Γ.

1-Homogeneity

- Nomura (1987) obtained inequalities among a_{i}, b_{i}, c_{i}
- requiring constant number of edges between cells is an additional condition (1-homogeneity).

Generalized Quadrangle of order (s, t)

Local Characterization of Alternating Forms Graph

Alt $(n, 2)$ over GF(2)

Local Graph $=\Gamma(x)=$ neighborhood of x. Assume that a distance-regular graph Γ has the same local graph as $\operatorname{Alt}(n, 2)$, i.e., Grassmann graph ($=$ line graph of $\mathrm{PG}(n-1,2)$), and the same parameters (in particular $c_{2}=\mu=20$). Then $\Gamma \cong \operatorname{Alt}(n, 2)$ or $\operatorname{Quad}(n-1,2)$ (M.-Shpectorov-Pasechnik). Key idea: " μ local $=$ local μ ", where " $\mu=\Gamma(x) \cap \Gamma(y)$ " with $y \in \Gamma_{2}(x)$. Taking $z \in \Gamma(x) \cap \Gamma(y)$,

$$
\begin{aligned}
\mu \text { of local of } \Gamma & =\mu \text { of } \Gamma(z) \\
& =(\Gamma(x) \cap \Gamma(y)) \cap \Gamma(z) \\
& =\Gamma(z) \cap(\Gamma(x) \cap \Gamma(y)) \\
& =\text { local of } \Gamma(x) \cap \Gamma(y) \\
& =\text { local of } \mu \text { of } \Gamma .
\end{aligned}
$$

Local Characterization of Alternating Forms Graph $\operatorname{Alt}(n, 2)$ over GF(2)

If local graphs of Γ are Grassmann (line graph of
$\operatorname{PG}(n-1,2))$, then " μ local $=$ local μ " implies

$$
\mu \text { of Grassmann }=\text { local of } \mu
$$

hence

$$
3 \times 3 \text { grid }=\text { local of } \mu
$$

μ-graphs of Γ are locally 3×3-grid, and $\mu=c_{2}=20=\binom{6}{3}$ $\Longrightarrow J(6,3)$.

Jurišić-Koolen, 2003

From now on, a μ-graph of a graph is the subgraph induced on the set of common neighbors of two vertices at distance 2 .

Cocktail party graph $=$ complete graph $K_{2 p}$ minus a matching = complete multipartite graph $K_{p \times 2}$ (p parts of size 2)

Classified 1-homogeneous distance-regular graphs with cocktail party μ-graph $K_{p \times 2}$ with $p \geq 2$.

Examples

	$K_{p \times 2}$				μ-graph
	\vdots				
	$K_{6 \times 2}$	Gosset			$K_{5 \times 2}$
local \downarrow	$K_{5 \times 2}$	Schläfli			$K_{4 \times 2}$
	$K_{4 \times 2}$	$\frac{1}{2} 5$-cube	$\frac{1}{2} n$-cube		$K_{3 \times 2}$
	$K_{3 \times 2}$	$J(5,2)$	$J(n, 2)$	$J(n, k)$	$K_{2 \times 2}$
	$K_{2 \times 2}$	2×3	$2 \times(n-2)$	$k \times(n-k)$	$K_{1 \times 2}$

The bottom rows are all grids.
Jurišić-Koolen (2007): 1-homogeneous distance-regular graphs with cocktail party μ-graph $K_{p \times 2}$ with $p \geq 2$ are contained in those shown above and some of their quotients.

Jurišić-Koolen, 2007

Complete multipartite graph $K_{p \times n}$ is a generalization of cocktail party graph $K_{p \times 2}$.

Examples

\vdots					μ-graph
$K_{6 \times n}$					$K_{5 \times n}$
$K_{5 \times n}$	$3 . O_{7}(3)$				$K_{4 \times n}$
$K_{4 \times n}$	$O_{6}^{+}(3)$	Meixner			$K_{3 \times n}$
$K_{3 \times n}$	$O_{5}(3)$	$U_{5}(2)$	Patterson	$3 . O_{6}^{-}(3)$	$K_{2 \times n}$
$K_{2 \times n}$	$\mathrm{GQ}(2,2)$	$\mathrm{GQ}(3,3)$	$\operatorname{GQ}(9,3)$	$\mathrm{GQ}(4,2)$	$K_{1 \times n}=\overline{K_{n}}$
					$n=t+1$

They assumed distance-regularity, but having $K_{p \times n}$ as μ-graphs turns out to be a very strong restriction already.

"local $\mu=\mu$ local"

In local characterization,

In μ characterization,

Example

Taking local, $\mu=K_{p \times n} \rightarrow \mu=K_{(p-1) \times n}$

Assume every μ-graph of Γ is $K_{p \times n}$. Taking local graph $(p-1)$ times, one obtains a graph Δ whose μ-graphs are $K_{1 \times n}=\overline{K_{n}}$: equivalently, $\nexists K_{1,1,2}$,
\forall edge $\subset \exists$!maximal clique
Such graphs always come from a geometric graph such as GQ?

\vdots					μ-graph
$K_{6 \times n}$					$K_{5 \times n}$
$K_{5 \times n}$	$3 . O_{7}(3)$			$K_{4 \times n}$	
$K_{4 \times n}$	$O_{6}^{+}(3)$	Meixner		$K_{3 \times n}$	
$K_{3 \times n}$	$O_{5}(3)$	$U_{5}(2)$	Patterson	$3 . O_{6}^{-}(3)$	$K_{2 \times n}$
$K_{2 \times n}$	$\mathrm{GQ}(2,2)$	$\mathrm{GQ}(3,3)$	$\mathrm{GQ}(9,3)$	$\mathrm{GQ}(4,2)$	$K_{1 \times n}=\overline{K_{n}}$
					$n=t+1$

The parameter α

For a graph Γ, we say the parameter α exists if $\exists x, y, z$,

$$
d(x, y)=1, d(x, z)=d(y, z)=2
$$

and $|\Gamma(x) \cap \Gamma(y) \cap \Gamma(z)|=\alpha(\Gamma)$ for all such x, y, z.
Example: $\alpha(\mathrm{GQ}(s, t))=1$ if $s, t \geq 2$.

α-graph is a clique, hence $\alpha \leq p$

Suppose every μ-graph of
Γ is $K_{p \times n}$, and α exists.
Claim: $\Gamma(x) \cap \Gamma(y) \cap \Gamma(z)$ is a clique. Indeed, if nonadjacent $u, v \in \Gamma(x) \cap \Gamma(y) \cap \Gamma(z)$, then $x, y, z \in \Gamma(u) \cap \Gamma(v) \cong K_{p \times n}$, but

$$
d(x, y)=1, d(x, z)=d(y, z)=2: \text { contradiction. }
$$

$\alpha(\Gamma)$ is bounded by the clique size in $\Gamma(x) \cap \Gamma(z) \cong K_{p \times n}$ which is p.

The parameter α

We have shown $\alpha(\Gamma) \leq p$.

- One can also shows $\alpha(\Gamma) \geq p-1$.
- If Δ is a local graph, then $\alpha(\Delta)$ exists and $\alpha(\Delta)=\alpha(\Gamma)-1$.

Regularity

Lemma

Let Γ be a connected graph, M a non-complete graph. Assume every μ-graph of Γ is M. Then Γ is regular.

Proof.

By two-way counting (BCN, p.4, Proposition 1.1.2.)

Lemma

Let Γ be graph, M a graph without isolated vertex. Assume every μ-graph of Γ is M. Then every local graph of M has diameter 2.

Reduction

Lemma

Let Γ be a connected graph. Assume every μ-graph of Γ is $K_{p \times n}$, and α exists. Let Δ be a local graph of Γ. Then

- Γ is regular,
- Δ has diameter 2,
- every μ-graph of Δ is $K_{(p-1) \times n}$.
- $\alpha(\Delta)$ exists and $\alpha(\Delta)=\alpha(\Gamma)-1$.

We know $\alpha(\Gamma)=p$ or $p-1$.
Suggests that the reverse procedure of taking a local graph does not seem possible so many times, meaning p cannot be too large.

Main Result

Theorem

Let Γ be a connected graph. Assume every μ-graph of Γ is $K_{p \times n}$, where $p, n \geq 2$, and α exists in Γ. Then
(i) $p=\alpha(\Gamma)$ unless $(p, \alpha(\Gamma))=(2,1)$ and diameter ≥ 3.
(ii) If $n \geq 3$, then

$$
\begin{aligned}
& p=\alpha(\Gamma)=2 \Longrightarrow \Gamma \text { locally } \mathrm{GQ}(s, n-1), \\
& p=\alpha(\Gamma)=3 \Longrightarrow \Gamma \text { locally }{ }^{2} \mathrm{GQ}(n-1, n-1), \\
& p=\alpha(\Gamma)=4 \Longrightarrow \Gamma \text { locally }{ }^{3} \mathrm{GQ}(2,2),
\end{aligned}
$$

$p \geq 5$: impossible.
proof of (i).
Rule out $(p, \alpha(\Gamma))=(2,1)$ when diameter= 2 (strongly regular).

Open Problem

Rule out $(p, \alpha(\Gamma))=(2,1)$ when diameter ≥ 3.
This might occur even when $n=2$: μ-graph of Γ is cocktail party graph $K_{2 \times 2}=C_{4}$. Nonexistence was conjectured by Jurišić-Koolen (2003).

