Graphs with complete multipartite μ -graphs

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University joint work with A. Jurišić and Y. Tagami Discrete Math. 310 (2010), 1812–1819

> February 6, 2012 Ghent University

Brouwer–Cohen–Neumaier (1988). Examples: Dual polar spaces = {max. totally isotropic subsp.} and their subconstituent: eg. alternating forms graph.

Main Problem: Classify distance-regular graphs.

- classification of feasible parameters
- characterization by parameters
- characterization by local structure

A local characterization of the graphs of alternating forms and the graphs of quadratic forms graphs over $\mathrm{GF}(2)$ A. Munemasa, D.V. Pasechnik, S.V. Shpectorov

Definition of a distance-regular graph

x •

- $\Gamma_i(x)$: the set of vertices at distance *i* from *x*
- the numbers a_i, b_i, c_i are independent of x and $y \in \Gamma_i(x)$.
- a_i, b_i, c_i are called the parameters of a distance-regular graph Γ.

1-Homogeneity

- Nomura (1987) obtained inequalities among a_i, b_i, c_i
- requiring constant number of edges between cells is an additional condition (1-homogeneity).

Generalized Quadrangle of order (s, t)

Local Characterization of Alternating Forms Graph Alt(n, 2) over GF(2)

Local Graph = $\Gamma(x)$ = neighborhood of x. Assume that a distance-regular graph Γ has the same local graph as Alt(n, 2), i.e., Grassmann graph (= line graph of PG(n - 1, 2)), and the same parameters (in particular $c_2 = \mu = 20$). Then $\Gamma \cong Alt(n, 2)$ or Quad(n - 1, 2) (M.–Shpectorov–Pasechnik).

Key idea: " μ local = local μ ", where " $\mu = \Gamma(x) \cap \Gamma(y)$ " with $y \in \Gamma_2(x)$. Taking $z \in \Gamma(x) \cap \Gamma(y)$,

$$\mu \text{ of local of } \Gamma = \mu \text{ of } \Gamma(z)$$

$$= (\Gamma(x) \cap \Gamma(y)) \cap \Gamma(z)$$

$$= \Gamma(z) \cap (\Gamma(x) \cap \Gamma(y))$$

$$= \text{local of } \Gamma(x) \cap \Gamma(y)$$

$$= \text{local of } \mu \text{ of } \Gamma.$$

Local Characterization of Alternating Forms Graph Alt(n, 2) over GF(2)

If local graphs of Γ are Grassmann (line graph of PG(n-1,2)), then " μ local = local μ " implies

 μ of Grassmann = local of μ

hence

$$3 \times 3 \text{ grid} = \text{ local of } \mu$$

 μ -graphs of Γ are locally 3×3 -grid, and $\mu = c_2 = 20 = \binom{6}{3}$ $\implies J(6,3).$ From now on, a μ -graph of a graph is the subgraph induced on the set of common neighbors of two vertices at distance 2.

Cocktail party graph = complete graph K_{2p} minus a matching = complete multipartite graph $K_{p\times 2}$ (p parts of size 2)

Classified 1-homogeneous distance-regular graphs with cocktail party μ -graph $K_{p\times 2}$ with $p\geq 2$.

The bottom rows are all grids.

Jurišić–Koolen (2007): 1-homogeneous distance-regular graphs with cocktail party μ -graph $K_{p\times 2}$ with $p \ge 2$ are contained in those shown above and some of their quotients.

Complete multipartite graph $K_{p\times n}$ is a generalization of cocktail party graph $K_{p\times 2}.$ Examples

They assumed distance-regularity, but having $K_{p \times n}$ as μ -graphs turns out to be a very strong restriction already.

"local $\mu=\mu$ local"

In local characterization,

Taking local, $\mu = K_{p \times n} \rightarrow \mu = K_{(p-1) \times n}$

Assume every μ -graph of Γ is $K_{p \times n}$. Taking local graph (p-1) times, one obtains a graph Δ whose μ -graphs are $K_{1 \times n} = \overline{K_n}$: equivalently, $\not \supseteq K_{1,1,2}$,

 $\forall edge \subset \exists!maximal clique$

Such graphs always come from a geometric graph such as GQ?

The parameter α

For a graph Γ , we say the parameter α exists if $\exists x, y, z$,

$$d(x,y) = 1, \ d(x,z) = d(y,z) = 2$$

and $|\Gamma(x) \cap \Gamma(y) \cap \Gamma(z)| = \alpha(\Gamma)$ for all such x, y, z. Example: $\alpha(\mathsf{GQ}(s, t)) = 1$ if $s, t \ge 2$.

α -graph is a clique, hence $\alpha \leq p$

Suppose every μ -graph of Γ is $K_{p \times n}$, and α exists. Claim: $\Gamma(x) \cap \Gamma(y) \cap \Gamma(z)$ is a clique. Indeed, if nonadjacent $u, v \in \Gamma(x) \cap \Gamma(y) \cap \Gamma(z)$, then $x, y, z \in \Gamma(u) \cap \Gamma(v) \cong K_{p \times n}$, but

$$d(x,y)=1,\;d(x,z)=d(y,z)=2:\;\text{contradiction}.$$

 $\alpha(\Gamma)$ is bounded by the clique size in $\Gamma(x)\cap\Gamma(z)\cong K_{p\times n}$ which is p.

We have shown $\alpha(\Gamma) \leq p$.

- One can also shows $\alpha(\Gamma) \ge p 1$.
- If Δ is a local graph, then $\alpha(\Delta)$ exists and $\alpha(\Delta) = \alpha(\Gamma) 1$.

Lemma

Let Γ be a connected graph, M a non-complete graph. Assume every $\mu\text{-}\mathsf{graph}$ of Γ is M. Then Γ is regular.

Proof.

By two-way counting (BCN, p.4, Proposition 1.1.2.)

Lemma

Let Γ be graph, M a graph without isolated vertex. Assume every μ -graph of Γ is M. Then every local graph of M has diameter 2.

Lemma

Let Γ be a connected graph. Assume every μ -graph of Γ is $K_{p \times n}$, and α exists. Let Δ be a local graph of Γ . Then

- Γ is regular,
- Δ has diameter 2,
- every μ -graph of Δ is $K_{(p-1)\times n}$.
- $\alpha(\Delta)$ exists and $\alpha(\Delta) = \alpha(\Gamma) 1$.

We know $\alpha(\Gamma) = p$ or p - 1.

Suggests that the reverse procedure of taking a local graph does not seem possible so many times, meaning p cannot be too large.

Main Result

Theorem

Let Γ be a connected graph. Assume every μ -graph of Γ is $K_{p \times n}$, where $p, n \geq 2$, and α exists in Γ . Then (i) $p = \alpha(\Gamma)$ unless $(p, \alpha(\Gamma)) = (2, 1)$ and diameter ≥ 3 . (ii) If $n \geq 3$, then

$$\begin{split} p &= \alpha(\Gamma) = 2 \implies \Gamma \text{ locally } \operatorname{GQ}(s, n-1), \\ p &= \alpha(\Gamma) = 3 \implies \Gamma \text{ locally}^2 \operatorname{GQ}(n-1, n-1), \\ p &= \alpha(\Gamma) = 4 \implies \Gamma \text{ locally}^3 \operatorname{GQ}(2, 2), \end{split}$$

 $p \ge 5$: impossible.

proof of (i). Rule out $(p, \alpha(\Gamma)) = (2, 1)$ when diameter= 2 (strongly regular).

Open Problem

Rule out $(p, \alpha(\Gamma)) = (2, 1)$ when diameter ≥ 3 .

This might occur even when n = 2: μ -graph of Γ is cocktail party graph $K_{2\times 2} = C_4$. Nonexistence was conjectured by Jurišić-Koolen (2003).

