# Graphs with Smallest Eigenvalue at Least 

 -3
## Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences

Tohoku University
(joint work with H.J. Jang, J.H. Koolen, Y. Sano and T. Taniguchi)

> July 27, 2012
> IWONT 2012 at ITB

## Eigenvalues of Graphs

- All graphs in this talk are finite, undirected and simple.
- Eigenvalues of a graph $G$ are the eigenvalues of its adjacency matrix $A(G)$ :

$$
A(G)_{x, y}= \begin{cases}1 & \text { if } x \text { and } y \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
\lambda_{\min }(G) & =\text { the smallest eigenvalue of } G \\
& =\text { the smallest eigenvalue of } A(G)
\end{aligned}
$$

We also denote by $\lambda_{\text {min }}(M)$ the smallest eigenvalue of a real symmetric matrix $M$.

## Claw $K_{1, k}$

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0 & 1 \cdots 1 \\
1 & \\
\vdots & 0 \\
1 &
\end{array}\right) \\
& \operatorname{det}(x I-A)=x^{k-1}(x-\sqrt{k})(x+\sqrt{k}) .
\end{aligned}
$$

$\lambda_{\text {min }}(k$-claw $)=-\sqrt{k}$ :

- $\lambda_{\text {min }}(G)$ can be arbitrarily small.
- Bounding $\lambda_{\text {min }}$ from below $\Longrightarrow \nexists k$-claw for large $k$.


## The line graph $L(G)$



Let $A=A(L(G)), C=$ edge-vertex incidence matrix

$$
C=\text { edge } \begin{gathered}
\text { vertex } \\
0 \cdots 010 \cdots 010 \cdots 0 \\
\hline
\end{gathered}
$$

$$
\lambda_{\min }(A) \geq \lambda_{\min }\left(A-C C^{T}\right)=\lambda_{\min }(-2 I)=-2 .
$$

## Maximal exceptional graphs

## Theorem (Cameron-Goethals-Seidel-Shult, 1976)

Every graph with smallest eigenvalue at least -2 is represented by a root system of type $\underbrace{A_{n}, D_{n}}_{\text {infinite }}$ or $\underbrace{E_{8}}_{\text {finite }}$.

## Theorem (Cvetković-Rowlinson-Simić, 2002)

Every graph with smallest eigenvalue at least -2 is a generalized line graph or contained in one of the 473 maximal graphs represented by the root system $E_{8}$.

## Hoffman's idea



$$
\lambda_{\min }(A) \geq \lambda_{\min }\left(A-C C^{T}\right)
$$

Advantage of considering $A-C C^{T}$ over $A$ is that $A-C C^{T}$ is often a diagonal join of smaller matrices even if $A$ is the adjacency matrix of a connected graph.

## Woo and Neumaier (1995)

## Definition

A (fat) Hoffman graph $H$ is a graph $(V, E)$ whose vertex set $V$ consists of "slim" vertices and "fat" vertices, satisfying the following conditions:
(1) every slim vertex is adjacent to at least one fat vertex,
(2) every fat vertex is adjacent to at least one slim vertex,
(3) fat vertices are pairwise non-adjacent.

$$
A(H)=\left(\begin{array}{cc}
\text { slim } & \text { fat } \\
A & C \\
C^{T} & 0
\end{array}\right)=\left(\begin{array}{c|cc}
0 & 1 & 1 \\
\hline 1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

$\lambda_{\min }(H):=\lambda_{\min }\left(A-C C^{T}\right)$.

## Join and indecomposability


is obtained by


More generally, $H=H_{1} \uplus H_{2}$ can be defined, for any graph $G$, its line graph is the slim part of a graph of the form $H_{1} \uplus \cdots \uplus H_{m}$, where

$$
H_{i} \cong
$$



Note $\lambda_{\text {min }}\left(H_{i}\right)=-2$, so

$$
\begin{aligned}
\lambda_{\min }(L(G)) & \geq \lambda_{\min }\left(H_{1} \uplus \cdots \uplus H_{m}\right) \\
& =\min \left\{\lambda_{\min }\left(H_{1}\right), \cdots, \lambda_{\min }\left(H_{m}\right)\right\}=-2 .
\end{aligned}
$$

Essentially, the only other indecomposable Hoffman graph with
$\lambda_{\text {min }} \geq-2$ other than

(This leads to the definition of a generalized line graph).

The next largest $\lambda_{\min }(H)$ is $-1-\sqrt{2}$ :


This gap between -2 and $-1-\sqrt{2}$ has implication in accumulation points of $\lambda_{\text {min }}$ of ordinary graphs.

## Theorem (Hoffman (1977))

If $\left\{G_{n}\right\}_{n=1}^{\infty}$ is a sequence of graphs with $d_{\min }\left(G_{n}\right) \rightarrow \infty$, $\lambda=\lim _{n \rightarrow \infty} \lambda_{\min }\left(G_{n}\right)$ exists and $\lambda<-2$, then $\lambda \leq-1-\sqrt{2}$.

## Theorem (Woo and Neumaier (1995))

If $\left\{G_{n}\right\}_{n=1}^{\infty}$ is a sequence of graphs with $d_{\text {min }}\left(G_{n}\right) \rightarrow \infty$, $\lambda=\lim _{n \rightarrow \infty} \lambda_{\min }\left(G_{n}\right)$ exists and $\lambda<-1-\sqrt{2}$, then $\lambda \leq \alpha$, where $\alpha$ is the smallest root of $x^{3}+2 x^{2}-2 x-2$ and is the smallest eigenvalue of the Hoffman graph


$$
\alpha=-2.48119 \ldots
$$

Conversely, $\lambda_{\text {min }}$ of a Hoffman graph is a limit point of $\lambda_{\text {min }}$ of ordinary graphs.

$$
\tau=\frac{1+\sqrt{5}}{2}
$$

## Definition

A Hoffman graph $H$ is $\lambda$-irreducible if $\lambda_{\min }(H) \geq \lambda$ and $H$ cannot be embedded nontrivially to a Hoffman graph $H_{1} \uplus H_{2}$ with $\lambda_{\min }\left(H_{1}\right), \lambda_{\text {min }}\left(H_{2}\right) \geq \lambda$.

## Theorem (M.-Sano-Taniguchi, arXiv:1111.7284v3)

There are exactly $37(-1-\tau)$-irreducible Hoffman graphs.
Note

$$
-1-\tau=-2.618 \cdots<\alpha<-1-\sqrt{2}<-2
$$

## Edge-signed graphs

If a Hoffman graph $H$ has adjacency matrix

$$
\left(\begin{array}{cc}
\text { slim } & \text { fat } \\
A & C \\
C^{T} & 0
\end{array}\right)
$$

and all the off-diagonal entries of $A-C C^{T}$ are $0, \pm 1$, then one obtains an edge-signed graph $S$.

## Theorem (Jang-Koolen-M.-Taniguchi, arXiv:1110.6821v1)

If $\lambda_{\min }(H) \geq-3$ and $H$ has edge-signed graph $S$, then

- the minus graph of $S$ is the Dynkin graph $A_{n}, \tilde{A}_{n}, D_{n}, \tilde{D}_{n}$ (i.e., path plus 1 or 2 edges), or
- $S$ is embeddable into the root system $E_{8}$ (hence finitely many possibilities).


## Summary

| $\lambda_{\min }$ | -1 | -2 | $-1-\sqrt{2}$ | $\alpha$ |
| :---: | :---: | :---: | :---: | :---: |
| irreducible <br> Hoffman <br> graphs | 0 |  | Woo- <br> Neumaier <br> $(4$ graphs | $?$ |
| Hoffman type <br> Theorem | Hoffman | Hoffman | Woo- <br> Neumaier | $?$ |


| $\lambda_{\min }$ | $-1-\tau$ | -3 |
| :---: | :---: | :---: |
| irreducible <br> Hoffman <br> graphs | MST <br> (37 graphs) | JKMT <br> (signed graphs <br> only) |
| Hoffman type <br> Theorem | $?$ | $?$ |

