Graphs with Smallest Eigenvalue at Least -3

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University (joint work with H.J. Jang, J.H. Koolen, Y. Sano and T. Taniguchi)

July 27, 2012 IWONT 2012 at ITB

Eigenvalues of Graphs

- All graphs in this talk are finite, undirected and simple.
- *Eigenvalues* of a graph G are the eigenvalues of its *adjacency matrix* A(G):

$$A(G)_{x,y} = \begin{cases} 1 & \text{if } x \text{ and } y \text{ are adjacent,} \\ 0 & \text{otherwise.} \end{cases}$$

 $\lambda_{\min}(G) = \text{the smallest eigenvalue of } G$ = the smallest eigenvalue of A(G).

We also denote by $\lambda_{\min}(M)$ the smallest eigenvalue of a real symmetric matrix M.

Claw $K_{1,k}$

• Bounding λ_{\min} from below $\implies \not\exists k$ -claw for large k.

The line graph L(G)

Let A = A(L(G)), C = edge-vertex incidence matrix

$$\lambda_{\min}(A) \ge \lambda_{\min}(A - CC^T) = \lambda_{\min}(-2I) = -2.$$

Theorem (Cvetković–Rowlinson–Simić, 2002)

Every graph with smallest eigenvalue at least -2 is a generalized line graph or contained in one of the 473 maximal graphs represented by the root system E_8 .

$$\lambda_{\min}(A) \ge \lambda_{\min}(A - CC^T).$$

Advantage of considering $A - CC^T$ over A is that $A - CC^T$ is often a diagonal join of smaller matrices even if A is the adjacency matrix of a connected graph.

Woo and Neumaier (1995)

Definition

A (fat) Hoffman graph H is a graph (V, E) whose vertex set V consists of "slim" vertices and "fat" vertices, satisfying the following conditions:

- every slim vertex is adjacent to at least one fat vertex,
- 2 every fat vertex is adjacent to at least one slim vertex,
- fat vertices are pairwise non-adjacent.

$$A(H) = \begin{pmatrix} slim & fat\\ A & C\\ C^T & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix}.$$
$$\lambda_{\min}(H) := \lambda_{\min}(A - CC^T).$$

Join and indecomposability

More generally, $H = H_1 \uplus H_2$ can be defined, for any graph G, its line graph is the slim part of a graph of the form $H_1 \uplus \cdots \uplus H_m$, where

Note $\lambda_{\min}(H_i) = -2$, so $\lambda_{\min}(L(G)) \ge \lambda_{\min}(H_1 \uplus \cdots \uplus H_m)$ $= \min\{\lambda_{\min}(H_1), \cdots, \lambda_{\min}(H_m)\} = -2.$

This gap between -2 and $-1 - \sqrt{2}$ has implication in accumulation points of λ_{\min} of ordinary graphs.

Theorem (Hoffman (1977))

If $\{G_n\}_{n=1}^{\infty}$ is a sequence of graphs with $d_{\min}(G_n) \to \infty$, $\lambda = \lim_{n \to \infty} \lambda_{\min}(G_n)$ exists and $\lambda < -2$, then $\lambda \leq -1 - \sqrt{2}$.

Theorem (Woo and Neumaier (1995))

If $\{G_n\}_{n=1}^{\infty}$ is a sequence of graphs with $d_{\min}(G_n) \to \infty$, $\lambda = \lim_{n \to \infty} \lambda_{\min}(G_n)$ exists and $\lambda < -1 - \sqrt{2}$, then $\lambda \le \alpha$, where α is the smallest root of $x^3 + 2x^2 - 2x - 2$ and is the smallest eigenvalue of the Hoffman graph

Conversely, λ_{\min} of a Hoffman graph is a limit point of λ_{\min} of ordinary graphs.

 $\tau = 1 +$

Definition

A Hoffman graph H is λ -irreducible if $\lambda_{\min}(H) \geq \lambda$ and H cannot be embedded nontrivially to a Hoffman graph $H_1 \uplus H_2$ with $\lambda_{\min}(H_1), \lambda_{\min}(H_2) \geq \lambda$.

Theorem (M.–Sano–Taniguchi, arXiv:1111.7284v3)

There are exactly $37 \ (-1 - \tau)$ -irreducible Hoffman graphs.

Note

$$-1 - \tau = -2.618 \dots < \alpha < -1 - \sqrt{2} < -2.$$

Edge-signed graphs

If a Hoffman graph ${\cal H}$ has adjacency matrix

$$\begin{pmatrix} \text{slim} & \text{fat} \\ A & C \\ C^T & 0 \end{pmatrix}$$

and all the off-diagonal entries of $A - CC^T$ are $0, \pm 1$, then one obtains an edge-signed graph S.

Theorem (Jang–Koolen–M.–Taniguchi, arXiv:1110.6821v1)

If $\lambda_{\min}(H) \geq -3$ and H has edge-signed graph S, then

- the minus graph of S is the Dynkin graph A_n, Ã_n, D_n, D̃_n (i.e., path plus 1 or 2 edges), or
- S is embeddable into the root system E₈ (hence finitely many possibilities).

$\lambda_{ m min}$	-1	-2	$-1 - \sqrt{2}$	α
irreducible Hoffman graphs	ŀ		Woo- Neumaier (4 graphs)	?
Hoffman type Theorem	Hoffman	Hoffman	Woo- Neumaier	?

$\lambda_{ m min}$	$-1-\tau$	-3	
irreducible	МСТ	JKMT	
Hoffman	(27 gramba)	(signed graphs	
graphs	(Sr graphs)	only)	
Hoffman type	2	2	
Theorem	:	:	