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Hadamard matrices and generalizations

A Hadamard matrix of order n is an n× n matrix H with
entries ±1, satisfying HHT = nI.

A Butson-type Hadamard matrix of order n is an n× n
matrix H with entries in {ζ ∈ C | ∃m ∈ N, ζm = 1},
satisfying HH∗ = nI.

A complex Hadamard matrix of order n is an n× n
matrix H with entries in {ζ ∈ C | |ζ| = 1}, satisfying
HH∗ = nI.

A type II (inverse orthogonal) matrix of order n is an
n×n matrix H with entries in {ζ ∈ C | ζ 6= 0}, satisfying

HH(−)T = nI, where H(−) is the entrywise inverse.
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H = I + A1 − A2 → H = I + x1A1 + x2A2

Goethals–Seidel (1970):

Regular symmetric Hadamard matrices ⇐⇒ certain SRG.

H = I + A1 − A2

where

A1 = adjacency matrix of a SRG Γ,

A2 = adjacency matrix of Γ.

More generally, later we use “distance matrices”:

(Ai)uv =

{
1 if u, v are distance i apart in Γ,

0 otherwise.
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Strongly regular graphs and complex Hadamard

matrices

Godsil–Chan (2010) classified type II (inverse orthogonal)
matrices of the form:

H = I + x1A1 + x2A2

where x1, x2 ∈ C×, and

A1 = adjacency matrix of a SRG Γ,

A2 = adjacency matrix of Γ.

Chan (arXiv:1102.5601v1) classified complex Hadamard
matrices of the above form (i.e., |x1| = |x2| = 1).
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H = I + x1A1 + x2A2 + x3A3

Chan (arXiv:1102.5601v1) considered:
Distance regular covers of complete graphs:

a graph of diameter 3,

“distance = 0 or 3” is an equivalence relation,

the distance matrices A0 = I, A1, A2, A3 span a 4-dim.
vector space closed under multiplication.

Theorem (Chan)

For covers of complete graphs, if

H = I + x1A1 + x2A2 + x3A3

is a complex Hadamard matrix of order n, then n ≤ 16.

n = 15, L(O3) = the line graph of the Petersen graph.
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The line graph L(O3) of the Petersen graph O3

L(O3) has 15 vertices. Its adjacency matrices satisfy

A2
1 = 4I + A1 + A2,

A1A2 = 2A1 + 2A2 + 4A3,

A1A3 = A2,

· · · = · · ·

If H = I + x1A1 + x2A2 + x3A3, then

HH∗ = (I + x1A1 + x2A2 + x3A3)(I + x1A1 + x2A2 + x3A3)

|xi| = 1 =⇒ xi = x−1
i =⇒ HH∗ = 15I leads to polynomial

equations for x1, x2, x3.
Chan found only the solutions which are quadratic, but we
found quartic ones =⇒ generalized to an infinite family.
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The Bose–Mesner algebra 〈I, A1, A2, A3〉

A three-class association scheme consists of symmetric (0, 1)
matrices A0 = I, A1, A2, A3 satisfying

I + A1 + A2 + A3 = all-one matrix,

〈I, A1, A2, A3〉 is closed under multiplication
(Bose–Mesner algebra)

Van Dam (1999) gives a list of order up to 100.
Question: Which three-class association scheme has a
complex Hadamard matrix H = I + x1A1 + x2A2 + x3A3 in
its Bose–Mesner algebra?
Chan: None for distance-regular covers of complete graphs
except n ≤ 16.
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An infinite family

q: a power of 2, q ≥ 4,

Ω = PG(2, q): the projective plane over Fq,

Q = {[a0, a1, a2] ∈ Ω | a2
0 + a1a2 = 0}: quadric,

X = {[a0, a1, a2] ∈ Ω \Q | [a0, a1, a2] 6= [1, 0, 0]},
|X| = q2 − 1.

(Ai)xy =


1 i = 1, |(x + y) ∩Q| = 2,

1 i = 2, |(x + y) ∩Q| = 0,

1 i = 3, |(x + y) ∩Q| = 1,

0 otherwise.

Then 〈I, A1, A2, A3〉 is the Bose–Mesner algebra of a
three-class association scheme, which is L(O3) when q = 4.
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PG(2, q) (q: even), H = I + x1A1 + x2A2 + x3A3

s =
√

(q − 1)(17q − 1) > 0,

r1 =
−(q − 1)(q − 2) + (q + 2)s

2q(q + 1)
.

Then 0 < r1 < 2. Let x1 be one of the roots of

x2
1 − r1x1 + 1 = 0.

Since the discriminant r2
1 − 4 < 0, x1 is imaginary, and

|x1| = 1.
Defining quartic imaginary numbers x2, x3 ∈ Q[x1] with
|x2| = |x3| = 1 suitably, one obtains a complex Hadamard
matrix H = I + x1A1 + x2A2 + x3A3 of order q2 − 1.
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H = I + x1A1 + x2A2 + x3A3

x2 =
r1x1 − 2

r12x1 − r2

,

x3 =
r1x1 − 2

r13x1 − r3

,

where

r2 =
(q − 1)(q + 2)− (q − 2)s

2q(q − 3)
,

r3 =
(5q2 − 2q − 19)− (q − 1)s

2(q + 1)(q − 3)
,

r12 =
−2(q4 − 2q3 − 4q2 + 10q − 1) + 2(q − 1)s

q2(q + 1)(q − 3)
,

r13 =
−(q + 2)(q − 1) + (q − 2)s

2q(q − 3)
.
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