## Complex Hadamard matrices contained in a Bose－Mesner algebra

Akihiro Munemasa ${ }^{1}$ 宗政 昭弘
${ }^{1}$ Graduate School of Information Sciences 東北大學
Tohoku University （joint work with Takuya Ikuta）\＆

November 10， 2012
The 2nd 日本一台灣 Conference on Combinatorics and its Applications at 名古屋大學

## Hadamard matrices and generalizations

- A Hadamard matrix of order $n$ is an $n \times n$ matrix $H$ with entries $\pm 1$, satisfying $H H^{T}=n I$.
- A Butson-type Hadamard matrix of order $n$ is an $n \times n$ matrix $H$ with entries in $\left\{\zeta \in \mathbb{C} \mid \exists m \in \mathbb{N}, \zeta^{m}=1\right\}$, satisfying $H H^{*}=n I$.
- A complex Hadamard matrix of order $n$ is an $n \times n$ matrix $H$ with entries in $\{\zeta \in \mathbb{C}||\zeta|=1\}$, satisfying $H H^{*}=n I$.
- A type II (inverse orthogonal) matrix of order $n$ is an $n \times n$ matrix $H$ with entries in $\{\zeta \in \mathbb{C} \mid \zeta \neq 0\}$, satisfying $H H^{(-)^{T}}=n I$, where $H^{(-)}$is the entrywise inverse.


## $H=I+A_{1}-A_{2} \rightarrow H=I+x_{1} A_{1}+x_{2} A_{2}$

Goethals-Seidel (1970):
Regular symmetric Hadamard matrices $\Longleftrightarrow$ certain SRG.

$$
H=I+A_{1}-A_{2}
$$

where

$$
\begin{aligned}
& A_{1}=\text { adjacency matrix of a SRG } \Gamma, \\
& A_{2}=\text { adjacency matrix of } \bar{\Gamma} .
\end{aligned}
$$

More generally, later we use "distance matrices":

$$
\left(A_{i}\right)_{u v}= \begin{cases}1 & \text { if } u, v \text { are distance } i \text { apart in } \Gamma \\ 0 & \text { otherwise }\end{cases}
$$

## Strongly regular graphs and complex Hadamard matrices

Godsil-Chan (2010) classified type II (inverse orthogonal) matrices of the form:

$$
H=I+x_{1} A_{1}+x_{2} A_{2}
$$

where $x_{1}, x_{2} \in \mathbb{C}^{\times}$, and

$$
\begin{aligned}
& A_{1}=\text { adjacency matrix of a SRG } \Gamma, \\
& A_{2}=\text { adjacency matrix of } \bar{\Gamma} .
\end{aligned}
$$

Chan (arXiv:1102.5601v1) classified complex Hadamard matrices of the above form (i.e., $\left|x_{1}\right|=\left|x_{2}\right|=1$ ).

## $H=I+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}$

Chan (arXiv:1102.5601v1) considered:
Distance regular covers of complete graphs:

- a graph of diameter 3 ,
- "distance $=0$ or 3 " is an equivalence relation,
- the distance matrices $A_{0}=I, A_{1}, A_{2}, A_{3}$ span a 4-dim. vector space closed under multiplication.


## Theorem (Chan)

For covers of complete graphs, if

$$
H=I+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}
$$

is a complex Hadamard matrix of order $n$, then $n \leq 16$.
$n=15, L\left(O_{3}\right)=$ the line graph of the Petersen graph.

## The line graph $L\left(O_{3}\right)$ of the Petersen graph $O_{3}$

$L\left(O_{3}\right)$ has 15 vertices. Its adjacency matrices satisfy

$$
\begin{aligned}
A_{1}^{2} & =4 I+A_{1}+A_{2}, \\
A_{1} A_{2} & =2 A_{1}+2 A_{2}+4 A_{3}, \\
A_{1} A_{3} & =A_{2} \\
\cdots & =\cdots
\end{aligned}
$$

If $H=I+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}$, then
$H H^{*}=\left(I+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)\left(I+\overline{x_{1}} A_{1}+\overline{x_{2}} A_{2}+\overline{x_{3}} A_{3}\right)$
$\left|x_{i}\right|=1 \Longrightarrow \overline{x_{i}}=x_{i}^{-1} \Longrightarrow H H^{*}=15 I$ leads to polynomial equations for $x_{1}, x_{2}, x_{3}$.
Chan found only the solutions which are quadratic, but we found quartic ones $\Longrightarrow$ generalized to an infinite family.

## The Bose-Mesner algebra $\left\langle I, A_{1}, A_{2}, A_{3}\right\rangle$

A three-class association scheme consists of symmetric $(0,1)$ matrices $A_{0}=I, A_{1}, A_{2}, A_{3}$ satisfying

- $I+A_{1}+A_{2}+A_{3}=$ all-one matrix,
- $\left\langle I, A_{1}, A_{2}, A_{3}\right\rangle$ is closed under multiplication (Bose-Mesner algebra)
Van Dam (1999) gives a list of order up to 100.
Question: Which three-class association scheme has a
complex Hadamard matrix $H=I+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}$ in its Bose-Mesner algebra?
Chan: None for distance-regular covers of complete graphs except $n \leq 16$.


## An infinite family

- $q$ : a power of $2, q \geq 4$,
- $\Omega=\mathrm{PG}(2, q)$ : the projective plane over $\mathbb{F}_{q}$,
- $Q=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \mid a_{0}^{2}+a_{1} a_{2}=0\right\}$ : quadric,
- $X=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \backslash Q \mid\left[a_{0}, a_{1}, a_{2}\right] \neq[1,0,0]\right\}$,
- $|X|=q^{2}-1$.

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & i=1,|(x+y) \cap Q|=2 \\ 1 & i=2,|(x+y) \cap Q|=0 \\ 1 & i=3,|(x+y) \cap Q|=1 \\ 0 & \text { otherwise }\end{cases}
$$

Then $\left\langle I, A_{1}, A_{2}, A_{3}\right\rangle$ is the Bose-Mesner algebra of a three-class association scheme, which is $L\left(O_{3}\right)$ when $q=4$.

## $\operatorname{PG}(2, q)(q:$ even $), H=I+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}$

$$
\begin{gathered}
s=\sqrt{(q-1)(17 q-1)}>0 \\
r_{1}=\frac{-(q-1)(q-2)+(q+2) s}{2 q(q+1)}
\end{gathered}
$$

Then $0<r_{1}<2$. Let $x_{1}$ be one of the roots of

$$
x_{1}^{2}-r_{1} x_{1}+1=0
$$

Since the discriminant $r_{1}^{2}-4<0, x_{1}$ is imaginary, and $\left|x_{1}\right|=1$.
Defining quartic imaginary numbers $x_{2}, x_{3} \in \mathbb{Q}\left[x_{1}\right]$ with $\left|x_{2}\right|=\left|x_{3}\right|=1$ suitably, one obtains a complex Hadamard matrix $H=I+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}$ of order $q^{2}-1$.

## $H=I+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}$

$$
\begin{aligned}
& x_{2}=\frac{r_{1} x_{1}-2}{r_{12} x_{1}-r_{2}} \\
& x_{3}=\frac{r_{1} x_{1}-2}{r_{13} x_{1}-r_{3}}
\end{aligned}
$$

where

$$
\begin{aligned}
r_{2} & =\frac{(q-1)(q+2)-(q-2) s}{2 q(q-3)} \\
r_{3} & =\frac{\left(5 q^{2}-2 q-19\right)-(q-1) s}{2(q+1)(q-3)} \\
r_{12} & =\frac{-2\left(q^{4}-2 q^{3}-4 q^{2}+10 q-1\right)+2(q-1) s}{q^{2}(q+1)(q-3)} \\
r_{13} & =\frac{-(q+2)(q-1)+(q-2) s}{2 q(q-3)}
\end{aligned}
$$

