Complex Hadamard matrices contained in a Bose–Mesner algebra

Akihiro Munemasa¹ 宗政 昭弘

¹Graduate School of Information Sciences東北大學 Tohoku University (joint work with Takuya Ikuta) 生田 卓也

November 10, 2012 The 2nd 日本一台灣 Conference on Combinatorics and its Applications at 名古屋大學

Hadamard matrices and generalizations

- A Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 , satisfying $HH^T = nI$.
- A Butson-type Hadamard matrix of order n is an n × n matrix H with entries in {ζ ∈ C | ∃m ∈ N, ζ^m = 1}, satisfying HH^{*} = nI.
- A complex Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\{\zeta \in \mathbb{C} \mid |\zeta| = 1\}$, satisfying $HH^* = nI$.
- A type II (inverse orthogonal) matrix of order n is an $n \times n$ matrix H with entries in $\{\zeta \in \mathbb{C} \mid \zeta \neq 0\}$, satisfying $HH^{(-)T} = nI$, where $H^{(-)}$ is the entrywise inverse.

$$H = I + A_1 - A_2 \to H = I + x_1 A_1 + x_2 A_2$$

Goethals-Seidel (1970):

Regular symmetric Hadamard matrices \iff certain SRG.

$$H = I + A_1 - A_2$$

where

$$A_1 =$$
 adjacency matrix of a SRG Γ ,
 $A_2 =$ adjacency matrix of $\overline{\Gamma}$.

More generally, later we use "distance matrices":

$$(A_i)_{uv} = \begin{cases} 1 & \text{if } u, v \text{ are distance } i \text{ apart in } \Gamma, \\ 0 & \text{otherwise.} \end{cases}$$

Strongly regular graphs and complex Hadamard matrices

Godsil–Chan (2010) classified type II (inverse orthogonal) matrices of the form:

$$H = I + x_1 A_1 + x_2 A_2$$

where $x_1, x_2 \in \mathbb{C}^{\times}$, and

$$A_1 = adjacency matrix of a SRG \Gamma$$
,
 $A_2 = adjacency matrix of \overline{\Gamma}$.

Chan (arXiv:1102.5601v1) classified complex Hadamard matrices of the above form (i.e., $|x_1| = |x_2| = 1$).

$H = I + x_1 A_1 + x_2 A_2 + x_3 A_3$

Chan (arXiv:1102.5601v1) considered: Distance regular covers of complete graphs:

- a graph of diameter 3,
- "distance = 0 or 3" is an equivalence relation,
- the distance matrices $A_0 = I, A_1, A_2, A_3$ span a 4-dim. vector space closed under multiplication.

Theorem (Chan)

For covers of complete graphs, if

$$H = I + x_1 A_1 + x_2 A_2 + x_3 A_3$$

is a complex Hadamard matrix of order n, then $n \leq 16$.

 $n = 15, L(O_3) =$ the line graph of the Petersen graph.

The line graph $L(O_3)$ of the Petersen graph O_3

 $L(O_3)$ has 15 vertices. Its adjacency matrices satisfy

$$A_1^2 = 4I + A_1 + A_2,$$

 $A_1A_2 = 2A_1 + 2A_2 + 4A_3,$
 $A_1A_3 = A_2,$
 $\dots = \dots$

If $H = I + x_1A_1 + x_2A_2 + x_3A_3$, then $HH^* = (I + x_1A_1 + x_2A_2 + x_3A_3)(I + \overline{x_1}A_1 + \overline{x_2}A_2 + \overline{x_3}A_3)$ $|x_i| = 1 \implies \overline{x_i} = x_i^{-1} \implies HH^* = 15I$ leads to polynomial equations for x_1, x_2, x_3 . Chan found only the solutions which are quadratic, but we found quartic ones \implies generalized to an infinite family. A three-class association scheme consists of symmetric (0,1) matrices $A_0=I,A_1,A_2,A_3$ satisfying

- $I + A_1 + A_2 + A_3 =$ all-one matrix,
- $\langle I, A_1, A_2, A_3 \rangle$ is closed under multiplication (Bose–Mesner algebra)

Van Dam (1999) gives a list of order up to 100. **Question:** Which three-class association scheme has a complex Hadamard matrix $H = I + x_1A_1 + x_2A_2 + x_3A_3$ in its Bose-Mesner algebra? **Chan:** None for distance-regular covers of complete graphs

except $n \leq 16$.

An infinite family

• q: a power of 2,
$$q \ge 4$$
,
• $\Omega = PG(2,q)$: the projective plane over \mathbb{F}_q ,
• $Q = \{[a_0, a_1, a_2] \in \Omega \mid a_0^2 + a_1 a_2 = 0\}$: quadric,
• $X = \{[a_0, a_1, a_2] \in \Omega \setminus Q \mid [a_0, a_1, a_2] \neq [1, 0, 0]\}$,
• $|X| = q^2 - 1$.
($A_i)_{xy} = \begin{cases} 1 & i = 1, \ |(x+y) \cap Q| = 2, \\ 1 & i = 2, \ |(x+y) \cap Q| = 0, \\ 1 & i = 3, \ |(x+y) \cap Q| = 1, \end{cases}$

 $\begin{bmatrix} 0 & \text{otherwise.} \end{bmatrix}$

Then $\langle I, A_1, A_2, A_3 \rangle$ is the Bose–Mesner algebra of a three-class association scheme, which is $L(O_3)$ when q = 4.

PG(2,q) (q: even), $H = I + x_1A_1 + x_2A_2 + x_3A_3$

$$s = \sqrt{(q-1)(17q-1)} > 0,$$

$$r_1 = \frac{-(q-1)(q-2) + (q+2)s}{2q(q+1)}.$$

Then $0 < r_1 < 2$. Let x_1 be one of the roots of

$$x_1^2 - r_1 x_1 + 1 = 0.$$

Since the discriminant $r_1^2 - 4 < 0$, x_1 is imaginary, and $|x_1| = 1$. Defining quartic imaginary numbers $x_2, x_3 \in \mathbb{Q}[x_1]$ with $|x_2| = |x_3| = 1$ suitably, one obtains a complex Hadamard matrix $H = I + x_1A_1 + x_2A_2 + x_3A_3$ of order $q^2 - 1$.

$H = I + x_1 A_1 + x_2 A_2 + x_3 A_3$

$$x_2 = \frac{r_1 x_1 - 2}{r_{12} x_1 - r_2},$$

$$x_3 = \frac{r_1 x_1 - 2}{r_{13} x_1 - r_3},$$

where

$$\begin{aligned} r_2 &= \frac{(q-1)(q+2) - (q-2)s}{2q(q-3)}, \\ r_3 &= \frac{(5q^2 - 2q - 19) - (q-1)s}{2(q+1)(q-3)}, \\ r_{12} &= \frac{-2(q^4 - 2q^3 - 4q^2 + 10q - 1) + 2(q-1)s}{q^2(q+1)(q-3)}, \\ r_{13} &= \frac{-(q+2)(q-1) + (q-2)s}{2q(q-3)}. \end{aligned}$$