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Summary of Part I

D: 5-(24, 8, 1) design (Witt system).

The binary code C of D is a doubly even self-dual [24, 12, 8]
code.

{supp(x) | x ∈ C , wt(x) = 8} = B.

There is a unique 5-(24, 8, 1) design up to isomorphism.

The Assmus–Mattson theorem implies that every doubly even
self-dual [24, 12, 8] code gives rise to a 5-(24, 8, 1) design, and hence
such a code (the extended binary Golay code) is also unique.
Part II will cover

proof of the Assmus–Mattson theorem

other 5-designs obtained from doubly even self-dual codes
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The Assmus–Mattson theorem (1969)

Let C be a binary code of length v , minimum weight k .

P = {1, 2, . . . , v},
B = {supp(x) | x ∈ C , wt(x) = k},
S = {wt(x) | x ∈ C⊥, 0 < wt(x) < v},
t = k − |S |.

Then (P ,B) is a t-(v , k , λ) design for some λ.

In fact

λ =
k(k − 1) · · · (k − t + 1)

v(v − 1) · · · (v − t + 1)
|B|.
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The real vector space of dimension 2v

From a t-(v , k , λ) design (P ,B),

p ∈ P → ep: a unit vector in Fv
2 .

B ∈ B → x (B) ∈ Fv
2 : characteristic vector

B → M(D): incidence matrix → C ⊂ Fv
2 : binary code

From a binary code C of length v and B ⊂ {1, 2, . . . , v},
V = R2v

= RFv
2 .

x ∈ Fv
2 → x̂ : a unit vector in V

B → x (B) ∈ Fv
2 → x̂ (B): a unit vector in V

B → {x (B) | B ∈ B} → characteristic vector in V

C → Ĉ : the characteristic vector of C in V
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Important 2v × 2v matrices

The linear transformation of V = R2v
which is a key to the argument

below is the Hadamard matrix of Sylvester type:

H = ((−1)x ·y)x ,y∈Fv
2
.

It satisfies
H = H>, H2 = HH> = 2v I .

We use H to investigate the metric space Fv
2 with the Hamming

distance

d(x , y) = wt(x − y) = wt(x + y) (x , y ∈ Fv
2).

The i -th distance matrix Ai is defined as

Ai = (δd(x ,y),i)x ,y∈Fv
2

(0 ≤ i ≤ v).
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Ai : the i -th distance matrix

A0 = I ,

A1Ai = (i + 1)Ai+1 + (v − i + 1)Ai−1 (1 ≤ i < v).

In particular, Ai is a polynomial of degree i in A1.

Define the diagonal matrix E ∗
i by

E ∗
i = (δx ,yδwt(x),i)x ,y∈Fv

2

= diag(Ai 0̂).

E ∗
i is “the projection onto weight-i vectors.”

E ∗
i 1 = Ai 0̂, where 1 = (1, 1, . . . , 1)> ∈ V .

E ∗
i E ∗

j = δi ,jE
∗
i ,

v∑
i=0

E ∗
i = I .
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E ∗
i is “the projection onto weight-i vectors.”

Theorem (Assmus–Mattson)

Let C be a binary code of length v ,

Ĉ = E ∗
0 Ĉ +

∑
i≥k

E ∗
i Ĉ (minimum weight = k),

P = {1, 2, . . . , v},
S = {wt(x) | x ∈ C⊥, 0 < wt(x) < v},
B = {supp(x) | x ∈ C , wt(x) = k},
t = k − |S |.

Then (P ,B) is a t-(v , k , λ) design for some λ.

(S can also be described by E ∗
i and Ĉ⊥, but we first express the

conclusion in terms of matrices.)
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i and Ĉ⊥, but we first express the

conclusion in terms of matrices.)

Akihiro Munemasa (Tohoku University) Codes and Designs 8 / 29



Design property expressed by matrices

T ⊂ P, |T | = t, x (T ) ∈ Fv
2 : the characteristic vector of T ,

Ck = {x ∈ C | wt(x) = k}, k = minimum weight of C ,
B = {supp(x) | x ∈ Ck}.

|{B ∈ B | T ⊂ B}| = |{x ∈ Ck | T ⊂ supp(x)}|
= |{x ∈ Ck | d(x (T ), x) = k − t}|
= |{x ∈ C | d(x (T ), x) = k − t}| − δk,2t

=
∑
x∈C

(Ak−t)x(T ),x − δk,2t

= (Ak−tĈ )x(T ) − δk,2t

= (E ∗
t Ak−tĈ )x(T ) − δk,2t .

So we want to show
E ∗

t Ak−tĈ is a constant multiple of E ∗
t 1.
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t Ak−tĈ is a constant multiple of E ∗
t 1.

Akihiro Munemasa (Tohoku University) Codes and Designs 9 / 29



Design property expressed by matrices

T ⊂ P, |T | = t, x (T ) ∈ Fv
2 : the characteristic vector of T ,

Ck = {x ∈ C | wt(x) = k}, k = minimum weight of C ,
B = {supp(x) | x ∈ Ck}.

|{B ∈ B | T ⊂ B}| = |{x ∈ Ck | T ⊂ supp(x)}|
= |{x ∈ Ck | d(x (T ), x) = k − t}|
= |{x ∈ C | d(x (T ), x) = k − t}| − δk,2t

=
∑
x∈C

(Ak−t)x(T ),x − δk,2t
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t Ak−tĈ is a constant multiple of E ∗
t 1.

Akihiro Munemasa (Tohoku University) Codes and Designs 9 / 29



Design property expressed by matrices

T ⊂ P, |T | = t, x (T ) ∈ Fv
2 : the characteristic vector of T ,

Ck = {x ∈ C | wt(x) = k}, k = minimum weight of C ,
B = {supp(x) | x ∈ Ck}.

|{B ∈ B | T ⊂ B}| = |{x ∈ Ck | T ⊂ supp(x)}|
= |{x ∈ Ck | d(x (T ), x) = k − t}|
= |{x ∈ C | d(x (T ), x) = k − t}| − δk,2t

=
∑
x∈C

(Ak−t)x(T ),x − δk,2t

= (Ak−tĈ )x(T ) − δk,2t

= (E ∗
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t Ak−tĈ )x(T ) − δk,2t .

So we want to show
E ∗
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E ∗
t Ak−tĈ = λE ∗

t 1

Theorem (Assmus–Mattson)

Ĉ = E ∗
0 Ĉ +

∑
i≥k

E ∗
i Ĉ (minimum weight = k),

S = {wt(x) | x ∈ C⊥, 0 < wt(x) < v},

t = k − |S |.

Then
E ∗

t Ak−tĈ is a constant multiple of E ∗
t 1.

(S can also be described by E ∗
i and Ĉ⊥, but then we need to express

S in terms of Ĉ )
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i and Ĉ⊥, but then we need to express

S in terms of Ĉ )
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C and C⊥ are connected by H

(HĈ )x =
∑
y∈C

(−1)x ·y =

{
|C | if x ∈ C⊥

0 otherwise
= (|C |Ĉ⊥)x ,

so

Ĉ⊥ =
1

|C |
HĈ .

Define

Ei =
1

2v
HE ∗

i H = H−1E ∗
i H (0 ≤ i ≤ v).

Then EiEj = δi ,jEi ,
∑v

i=0 Ei = I .

E ∗
i Ĉ⊥ 6= 0 ⇐⇒ E ∗

i HĈ 6= 0 ⇐⇒ H−1E ∗
i HĈ 6= 0

⇐⇒ Ei Ĉ 6= 0.
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⇐⇒ Ei Ĉ 6= 0.

Akihiro Munemasa (Tohoku University) Codes and Designs 11 / 29



C and C⊥ are connected by H
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(HĈ )x =
∑
y∈C

(−1)x ·y =

{
|C | if x ∈ C⊥

0 otherwise
= (|C |Ĉ⊥)x ,

so
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∑
i∈S
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0 Ĉ +

∑
i≥k

E ∗
i Ĉ ,
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∑
i∈S

Ei Ĉ ) ∈ RE ∗
t 1.

reduces to

Theorem (Assmus–Mattson)

(E0 + Ev)Ĉ +
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i Ĉ and t = k − |S |

and t = k − |S | =⇒ E ∗
t Ak−t(E0 + Ev)Ĉ + E ∗
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H diagonalizes A1

For y ∈ Fv
2 with wt(y) = i ,

(A1H)x ,y =
∑
z∈Fv

2

(A1)x ,z(−1)z·y =
∑
z∈Fv

2
d(x ,z)=1

(−1)z·y

=
v∑

j=1

(−1)x ·y(−1)yj = Hx ,y

v∑
j=1

(−1)yj

= Hx ,y(v − 2 wt(y)) = (v − 2i)(HE ∗
i )x ,y

= (
v∑

j=1

(v − 2j)HE ∗
j )x ,y = (H

v∑
j=1

(v − 2j)E ∗
j )x ,y .

Thus H diagonalizes A1:

A1H = H
v∑

j=1

(v − 2j)E ∗
j .
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A1H = H
∑v

j=1(v − 2j)E ∗
j

Ei ’s are projections onto eigenspaces of A1

A1Ei = A1(
1

2v
HE ∗

i H) =
1

2v
(A1H)E ∗

i H

=
1

2v
(H

v∑
j=1

(v − 2j)E ∗
j )E ∗

i H =
1

2v
(v − 2i)HE ∗

i H

= (v − 2i)Ei .

Thus A1 has eigenvalue v − 2i on EiV , and

V =
v⊕

i=0

EiV

is the eigenspace decomposition of A1.
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Ei = 1
2v HE ∗

i H , in particular,

2v(Ev)x ,y = (HE ∗
v H)x ,y =

∑
z∈Fv

2
wt(z)=v

Hx ,zHz,y

= Hx ,1H1,y = (− 1)x ·1(− 1)y ·1 (1 = (1, . . . , 1) ∈ Fv
2)

= (− 1)wt(x)(− 1)wt(y) = (− 1)wt(y)

(
v∑

i=0

(− 1)iE ∗
i 1

)
x

.

EvV = R
v∑

i=0

(−1)iE ∗
i 1 (1 = (1, . . . , 1)> ∈ V ).

Similarly

E0V = R
v∑

i=0

E ∗
i 1 = R1.
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1 also leave EiV invariant. Thus
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1E0V + E ∗
t Aj
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t E0V + E ∗

t EvV

= RE ∗
t 1 + RE ∗

t

v∑
i=0

(−1)iE ∗
i 1

= RE ∗
t 1.

Being a polynomial in A1, the matrices Ak−t also has the same
property

E ∗
t Ak−t(E0 + Ev)Ĉ ∈ RE ∗

t 1.
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E ∗
t Aj

1(E0 + Ev)Ĉ , E ∗
t Ak−t(E0 + Ev)Ĉ ∈ RE ∗

t 1

Theorem (Assmus–Mattson)

(E0 + Ev)Ĉ +
∑
i∈S

Ei Ĉ = E ∗
0 Ĉ +

∑
i≥k

E ∗
i Ĉ and t = k − |S |

=⇒ E ∗
t Ak−t(E0 + Ev)Ĉ + E ∗

t Ak−t

∑
i∈S

Ei Ĉ ∈ RE ∗
t 1.

reduces to

Theorem (Assmus–Mattson)

E ∗
t Aj

1

∑
i∈S

Ei Ĉ ≡ E ∗
t Aj

1(E
∗
0 Ĉ +

∑
i≥k

E ∗
i Ĉ ) (mod RE ∗

t 1) (∀j)

and t = k − |S | =⇒ E ∗
t Ak−t

∑
i∈S

Ei Ĉ ∈ RE ∗
t 1.
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0 Ĉ +

∑
i≥k

E ∗
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∑
i∈S
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t 1

Theorem (Assmus–Mattson)

(E0 + Ev)Ĉ +
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i Ĉ and t = k − |S |

=⇒ E ∗
t Ak−t(E0 + Ev)Ĉ + E ∗
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i Ĉ ) (mod RE ∗

t 1) (∀j)

and t = k − |S | =⇒ E ∗
t Ak−t

∑
i∈S
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Ei Ĉ ∈ RE ∗
t 1.

Akihiro Munemasa (Tohoku University) Codes and Designs 18 / 29



E ∗
t Aj

1(E0 + Ev)Ĉ , E ∗
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〈I , A1, A
2
1, A

3
1, . . . 〉 = 〈I , A1, A2, A3, . . . 〉

Also,

E ∗
t AjE

∗
0 Ĉ = E ∗

t Aj 0̂

= E ∗
t E ∗

j 1

= δt,jE
∗
t 1

∈ RE ∗
t 1.

Thus
E ∗

t AjE
∗
0 Ĉ ∈ RE ∗

t 1,

E ∗
t Aj

1E
∗
0 Ĉ ∈ RE ∗

t 1.
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0 Ĉ ∈ RE ∗

t 1.

Akihiro Munemasa (Tohoku University) Codes and Designs 19 / 29



E ∗
t Aj

1E
∗
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Ei Ĉ ≡ E ∗
t Aj

1

∑
i≥k

E ∗
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V =
⊕v

i=0 EiV : eigenspace decomposition of A1

A1 has |S | eigenvalues on

W =
⊕
i∈S

EiV .

Being a polynomial in A1, the matrix Ak−t has at most |S |
eigenvalues on W , so ∃a0, . . . , a|S |−1 ∈ Q such that

Ak−t =

|S |−1∑
j=0

ajA
j
1 on W .

So

Ak−t

∑
i∈S

Ei Ĉ =

|S |−1∑
j=0

ajA
j
1

∑
i∈S

Ei Ĉ .
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≡
|S |−1∑
j=0

ajE
∗
t Aj

1

∑
i≥k

E ∗
i Ĉ =
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Ei Ĉ = E ∗
t

|S |−1∑
j=0

ajA
j
1

∑
i∈S

Ei Ĉ =
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End of proof.
Need to show:

|S |−1∑
j=0

∑
i≥k

aj(E
∗
t Aj

1E
∗
i )Ĉ = 0.

Since

t = k − |S |,
0 ≤ j < |S |,
k ≤ i .

we have t + j < k ≤ i , and hence E ∗
t Aj

1E
∗
i = 0 by the triangle

inequality for the Hamming distance. Indeed,

(Aj
1)x ,y = #(paths of length j from x to y)

= 0 if wt(x) = t and wt(y) = i .
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i )Ĉ = 0.

Since

t = k − |S |,
0 ≤ j < |S |,
k ≤ i .

we have t + j < k ≤ i , and hence E ∗
t Aj

1E
∗
i = 0 by the triangle

inequality for the Hamming distance. Indeed,

(Aj
1)x ,y = #(paths of length j from x to y)

= 0 if wt(x) = t and wt(y) = i .

Akihiro Munemasa (Tohoku University) Codes and Designs 23 / 29



End of proof.
Need to show:

|S |−1∑
j=0

∑
i≥k

aj(E
∗
t Aj

1E
∗
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The Assmus–Mattson theorem

Theorem
Let C be a binary code of length v , minimum weight k .

P = {1, 2, . . . , v},
B = {supp(x) | x ∈ C , wt(x) = k},
S = {wt(x) | x ∈ C⊥, 0 < wt(x) < v},
t = k − |S |.

Then (P ,B) is a t-(v , k , λ) design for some λ.

C : [24, 12, 8] binary doubly even self-dual (C = C⊥) code, so
k = 8 and C has only weights 0, 8, 12, 16, 24.

S = {wt(x) | x ∈ C⊥, 0 < wt(x) < 24} = {8, 12, 16},
t = k − |S | = 8− 3 = 5.
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Uniqueness of the extended binary Golay code

C : [24, 12, 8] binary doubly even self-dual (C = C⊥) code.

The Assmus–Mattson theorem implies (P ,B) is a 5-(24, 8, λ)
design, where P = {1, 2, . . . , 24},

B = {supp(x) | x ∈ C , wt(x) = 8},

for some λ.

If λ > 1, then there are two distinct blocks in B sharing at least
5 (hence 6) points. Their symmetric difference would make a
vector of weight 4 in C , contradicting the fact that C has
minimum weight 8. Thus λ = 1.

So C is the binary code of a 5-(24, 8, 1) design which was
already shown to be unqiue.

This proves the uniqueness of the extended binary Golay code.
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Applicability of the Assmus–Mattson theorem

Theorem
Let C be a binary code of length v , minimum weight k .

P = {1, 2, . . . , v},
B = {supp(x) | x ∈ C , wt(x) = k},
S = {wt(x) | x ∈ C⊥, 0 < wt(x) < v},
t = k − |S |.

Then (P ,B) is a t-(v , k , λ) design for some λ.

The conclusion is stronger if k is large and |S | is small. These are
conflicting requirments:

larger k =⇒ smaller C =⇒ larger C⊥ =⇒ larger S

suppose C = C⊥, doubly even =⇒ S not too large
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Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly
even self-dual code? Let k be the minimum weight.

S = {wt(x) | x ∈ C , 0 < wt(x) < v},
5 = k − |S |.

k = 8, |S | = 3, S = {8, 12, 16}, v = 24.

k = 12, |S | = 7, S = {12, 16, 20, 24, 28, 32, 36}, v = 48.

k = 16, |S | = 11, S = {16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56},
v = 72.

In general, ∀k : a multiple of 4, |S | = k − 5,

S = {k , k + 4, k + 8, . . . , 5k − 24 = v − k}

v = 6k − 24 = 24m, where k = 4m + 4.
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In general, ∀k : a multiple of 4, |S | = k − 5,

S = {k , k + 4, k + 8, . . . , 5k − 24 = v − k}

v = 6k − 24 = 24m, where k = 4m + 4.
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Extremal binary doubly even self-dual codes

Theorem (Mallows–Sloane, 1973)

For m ≥ 1, a binary doubly even self-dual [24m, 12m] code has
minimum weight at most 4m + 4.

Definition
A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

For m ≥ 1, an extremal binary doubly even self-dual code gives a
5-(24m, 4m + 4, λ) design by the Assmus–Mattson theorem.

m = 1: the extended binary Golay code and the 5-(24, 8, 1)
design
m = 2: Houghten–Lam–Thiel–Parker (2003): unique [48, 24, 12]
code and a 5-(48, 12, 8) design which is unique under
self-orthogonality.
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Extremal binary doubly even self-dual codes

Definition
A binary doubly even self-dual [24m, 12m] code with minimum weight
4m + 4 is called extremal.

For m ≥ 1, an extremal binary doubly even self-dual code gives a
5-(24m, 4m + 4, λ) design by the Assmus–Mattson theorem.

For m ≥ 3, neither a code nor a design is known.

Theorem (Zhang, 1999)

There does not exist an extremal [24m, 12m, 4m + 4] binary doubly
even self-dual code for m ≥ 154.
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