Codes Generated by Designs, and Designs Supported by Codes Part II

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University

May, 2013
 CIMPA-UNESCO-MESR-MINECO-THAILAND research school
 Graphs, Codes, and Designs
 Ramkhamhaeng University

Contents

(1) PartI

- t-designs
- intersection numbers
- 5- $(24,8,1)$ design
- $[24,12,8]$ binary self-dual code
(2) Part II
- Assmus-Mattson theorem
- extremal binary doubly even codes
(3) Part III
- Hadamard matrices
- ternary self-dual codes

Summary of Part I

$\mathcal{D}: 5-(24,8,1)$ design (Witt system).

- The binary code C of \mathcal{D} is a doubly even self-dual $[24,12,8]$ code.
- $\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=8\}=\mathcal{B}$.
- There is a unique 5- $(24,8,1)$ design up to isomorphism.

Summary of Part I

$\mathcal{D}: 5-(24,8,1)$ design (Witt system).

- The binary code C of \mathcal{D} is a doubly even self-dual $[24,12,8]$ code.
- $\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=8\}=\mathcal{B}$.
- There is a unique 5 - $(24,8,1)$ design up to isomorphism.

The Assmus-Mattson theorem implies that every doubly even self-dual $[24,12,8]$ code gives rise to a $5-(24,8,1)$ design, and hence such a code (the extended binary Golay code) is also unique.

Summary of Part I

$\mathcal{D}: 5-(24,8,1)$ design (Witt system).

- The binary code C of \mathcal{D} is a doubly even self-dual $[24,12,8]$ code.
- $\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=8\}=\mathcal{B}$.
- There is a unique 5 - $(24,8,1)$ design up to isomorphism.

The Assmus-Mattson theorem implies that every doubly even self-dual $[24,12,8]$ code gives rise to a $5-(24,8,1)$ design, and hence such a code (the extended binary Golay code) is also unique. Part II will cover

- proof of the Assmus-Mattson theorem
- other 5-designs obtained from doubly even self-dual codes

The Assmus-Mattson theorem (1969)

Let C be a binary code of length v, minimum weight k.

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\} \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\} \\
S & =\left\{\operatorname{wt}(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\} \\
t & =k-|S|
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.

The Assmus-Mattson theorem (1969)

Let C be a binary code of length v, minimum weight k.

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\} \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\} \\
S & =\left\{\operatorname{wt}(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\} \\
t & =k-|S|
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.
In fact

$$
\lambda=\frac{k(k-1) \cdots(k-t+1)}{v(v-1) \cdots(v-t+1)}|\mathcal{B}| .
$$

The real vector space of dimension 2^{v}

From a $t-(v, k, \lambda)$ design $(\mathcal{P}, \mathcal{B})$,

- $p \in \mathcal{P} \rightarrow e_{p}$: a unit vector in \mathbb{F}_{2}^{v}.
- $B \in \mathcal{B} \rightarrow x^{(B)} \in \mathbb{F}_{2}^{v}$: characteristic vector
- $\mathcal{B} \rightarrow M(\mathcal{D})$: incidence matrix $\rightarrow C \subset \mathbb{F}_{2}^{v}$: binary code

The real vector space of dimension 2^{v}

From a $t-(v, k, \lambda)$ design $(\mathcal{P}, \mathcal{B})$,

- $p \in \mathcal{P} \rightarrow e_{p}$: a unit vector in \mathbb{F}_{2}^{v}.
- $B \in \mathcal{B} \rightarrow x^{(B)} \in \mathbb{F}_{2}^{v}$: characteristic vector
- $\mathcal{B} \rightarrow M(\mathcal{D})$: incidence matrix $\rightarrow C \subset \mathbb{F}_{2}^{v}$: binary code From a binary code C of length v and $B \subset\{1,2, \ldots, v\}$, $V=\mathbb{R}^{2^{V}}=\mathbb{R}^{\mathbb{F}^{V}}$.

The real vector space of dimension 2^{v}

From a $t-(v, k, \lambda)$ design $(\mathcal{P}, \mathcal{B})$,

- $p \in \mathcal{P} \rightarrow e_{p}$: a unit vector in \mathbb{F}_{2}^{v}.
- $B \in \mathcal{B} \rightarrow x^{(B)} \in \mathbb{F}_{2}^{v}$: characteristic vector
- $\mathcal{B} \rightarrow M(\mathcal{D})$: incidence matrix $\rightarrow C \subset \mathbb{F}_{2}^{\nu}$: binary code From a binary code C of length v and $B \subset\{1,2, \ldots, v\}$, $V=\mathbb{R}^{2^{V}}=\mathbb{R}^{\mathbb{F}^{V}}$.
- $x \in \mathbb{F}_{2}^{V} \rightarrow \hat{x}$: a unit vector in V
- $B \rightarrow x^{(B)} \in \mathbb{F}_{2}^{v} \rightarrow \widehat{x^{(B)}}$: a unit vector in V
- $\mathcal{B} \rightarrow\left\{x^{(B)} \mid B \in \mathcal{B}\right\} \rightarrow$ characteristic vector in V
- $C \rightarrow \hat{C}$: the characteristic vector of C in V

Important $2^{v} \times 2^{v}$ matrices

The linear transformation of $V=\mathbb{R}^{2 v}$ which is a key to the argument below is the Hadamard matrix of Sylvester type:

$$
H=\left((-1)^{x \cdot y}\right)_{x, y \in \mathbb{F}_{2}^{v}}
$$

Important $2^{v} \times 2^{v}$ matrices

The linear transformation of $V=\mathbb{R}^{2^{v}}$ which is a key to the argument below is the Hadamard matrix of Sylvester type:

$$
H=\left((-1)^{x \cdot y}\right)_{x, y \in \mathbb{F}_{2}^{\nu}} .
$$

It satisfies

$$
H=H^{\top}, \quad H^{2}=H H^{\top}=2^{\vee} l .
$$

Important $2^{v} \times 2^{v}$ matrices

The linear transformation of $V=\mathbb{R}^{2 v}$ which is a key to the argument below is the Hadamard matrix of Sylvester type:

$$
H=\left((-1)^{x \cdot y}\right)_{x, y \in \mathbb{F}_{2}^{v}} .
$$

It satisfies

$$
H=H^{\top}, \quad H^{2}=H H^{\top}=2^{\vee} I
$$

We use H to investigate the metric space \mathbb{F}_{2}^{v} with the Hamming distance

$$
d(x, y)=\mathrm{wt}(x-y)=\mathrm{wt}(x+y) \quad\left(x, y \in \mathbb{F}_{2}^{v}\right)
$$

Important $2^{v} \times 2^{v}$ matrices

The linear transformation of $V=\mathbb{R}^{2 v}$ which is a key to the argument below is the Hadamard matrix of Sylvester type:

$$
H=\left((-1)^{x \cdot y}\right)_{x, y \in \mathbb{F}_{2}^{\prime \prime}} .
$$

It satisfies

$$
H=H^{\top}, \quad H^{2}=H H^{\top}=2^{\vee} l .
$$

We use H to investigate the metric space \mathbb{F}_{2}^{ν} with the Hamming distance

$$
d(x, y)=\operatorname{wt}(x-y)=\operatorname{wt}(x+y) \quad\left(x, y \in \mathbb{F}_{2}^{\nu}\right) .
$$

The i-th distance matrix A_{i} is defined as

$$
A_{i}=\left(\delta_{d(x, y), i}\right)_{x, y \in \mathbb{F}_{2}^{v}} \quad(0 \leq i \leq v) .
$$

A_{j} : the i-th distance matrix

$$
\begin{aligned}
A_{0} & =l \\
A_{1} A_{i} & =(i+1) A_{i+1}+(v-i+1) A_{i-1} \quad(1 \leq i<v)
\end{aligned}
$$

In particular, A_{i} is a polynomial of degree i in A_{1}.

A_{j} : the i-th distance matrix

$$
\begin{aligned}
A_{0} & =I \\
A_{1} A_{i} & =(i+1) A_{i+1}+(v-i+1) A_{i-1} \quad(1 \leq i<v)
\end{aligned}
$$

In particular, A_{i} is a polynomial of degree i in A_{1}. Define the diagonal matrix E_{i}^{*} by

$$
\begin{aligned}
E_{i}^{*} & =\left(\delta_{x, y} \delta_{\mathrm{wt}(x), i}\right)_{x, y \in \mathbb{F}_{2}^{v}} \\
& =\operatorname{diag}\left(A_{i} \hat{0}\right) .
\end{aligned}
$$

A_{j} : the i-th distance matrix

$$
\begin{aligned}
A_{0} & =I \\
A_{1} A_{i} & =(i+1) A_{i+1}+(v-i+1) A_{i-1} \quad(1 \leq i<v)
\end{aligned}
$$

In particular, A_{i} is a polynomial of degree i in A_{1}. Define the diagonal matrix E_{i}^{*} by

$$
\begin{aligned}
E_{i}^{*} & =\left(\delta_{x, y} \delta_{\mathrm{wt}(x), i}\right)_{x, y \in \mathbb{F}_{2}^{\nu}} \\
& =\operatorname{diag}\left(A_{i} \hat{0}\right) .
\end{aligned}
$$

E_{i}^{*} is "the projection onto weight- i vectors."

$$
\begin{gathered}
E_{i}^{*} \mathbf{1}=A_{i} \hat{0}, \quad \text { where } \mathbf{1}=(1,1, \ldots, 1)^{\top} \in V \\
E_{i}^{*} E_{j}^{*}=\delta_{i, j} E_{i}^{*}, \quad \sum_{i=0}^{v} E_{i}^{*}=l
\end{gathered}
$$

E_{i}^{*} is "the projection onto weight- i vectors."

Theorem (Assmus-Mattson)

Let C be a binary code of length v,

$$
\begin{aligned}
\hat{C} & =E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \quad \text { (minimum weight }=k \text {), } \\
\mathcal{P} & =\{1,2, \ldots, v\}, \\
S & =\left\{\operatorname{wt}(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, w t(x)=k\}, \\
t & =k-|S| .
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.

E_{i}^{*} is "the projection onto weight- i vectors."

Theorem (Assmus-Mattson)

Let C be a binary code of length v,

$$
\begin{aligned}
\hat{C} & =E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \quad(\text { minimum weight }=k), \\
\mathcal{P} & =\{1,2, \ldots, v\} \\
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\} \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\} \\
t & =k-|S|
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.
(S can also be described by E_{i}^{*} and $\widehat{C^{\perp}}$, but we first express the conclusion in terms of matrices.)

E_{i}^{*} is "the projection onto weight- i vectors."

Theorem (Assmus-Mattson)

Let C be a binary code of length v,

$$
\begin{aligned}
\hat{C} & =E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \quad \text { (minimum weight }=k \text {), } \\
\mathcal{P} & =\{1,2, \ldots, v\}, \\
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, w t(x)=k\}, \\
t & =k-|S| .
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.
(S can also be described by E_{i}^{*} and $\widehat{C^{\perp}}$, but we first express the conclusion in terms of matrices.)

Design property expressed by matrices

- $T \subset \mathcal{P},|T|=t, x^{(T)} \in \mathbb{F}_{2}^{v}$: the characteristic vector of T,
- $C_{k}=\{x \in C \mid \operatorname{wt}(x)=k\}, k=$ minimum weight of C,
- $\mathcal{B}=\left\{\operatorname{supp}(x) \mid x \in C_{k}\right\}$.

Design property expressed by matrices

- $T \subset \mathcal{P},|T|=t, x^{(T)} \in \mathbb{F}_{2}^{\nu}$: the characteristic vector of T,
- $C_{k}=\{x \in C \mid \mathrm{wt}(x)=k\}, k=$ minimum weight of C,
- $\mathcal{B}=\left\{\operatorname{supp}(x) \mid x \in C_{k}\right\}$.

$$
\begin{aligned}
|\{B \in \mathcal{B} \mid T \subset B\}| & =\left|\left\{x \in C_{k} \mid T \subset \operatorname{supp}(x)\right\}\right| \\
& =\left|\left\{x \in C_{k} \mid d\left(x^{(T)}, x\right)=k-t\right\}\right| \\
& =\left|\left\{x \in C \mid d\left(x^{(T)}, x\right)=k-t\right\}\right|-\delta_{k, 2 t} \\
& =\sum_{x \in C}\left(A_{k-t}\right)_{x^{(T)}, x}-\delta_{k, 2 t} \\
& =\left(A_{k-t} \hat{C}\right)_{x(T)}-\delta_{k, 2 t} \\
& =\left(E_{t}^{*} A_{k-t} \hat{C}\right)_{x^{(T)}}-\delta_{k, 2 t} .
\end{aligned}
$$

Design property expressed by matrices

- $T \subset \mathcal{P},|T|=t, x^{(T)} \in \mathbb{F}_{2}^{\nu}$: the characteristic vector of T,
- $C_{k}=\{x \in C \mid \operatorname{wt}(x)=k\}, k=$ minimum weight of C,
- $\mathcal{B}=\left\{\operatorname{supp}(x) \mid x \in C_{k}\right\}$.

$$
\begin{aligned}
|\{B \in \mathcal{B} \mid T \subset B\}| & =\left|\left\{x \in C_{k} \mid T \subset \operatorname{supp}(x)\right\}\right| \\
& =\left|\left\{x \in C_{k} \mid d\left(x^{(T)}, x\right)=k-t\right\}\right| \\
& =\left|\left\{x \in C \mid d\left(x^{(T)}, x\right)=k-t\right\}\right|-\delta_{k, 2 t} \\
& =\sum_{x \in C}\left(A_{k-t}\right)_{x^{(T)}, x}-\delta_{k, 2 t} \\
& =\left(A_{k-t} \hat{C}\right)_{x(T)}-\delta_{k, 2 t} \\
& =\left(E_{t}^{*} A_{k-t} \hat{C}\right)_{x^{(T)}}-\delta_{k, 2 t}
\end{aligned}
$$

Design property expressed by matrices

- $T \subset \mathcal{P},|T|=t, x^{(T)} \in \mathbb{F}_{2}^{\nu}$: the characteristic vector of T,
- $C_{k}=\{x \in C \mid \mathrm{wt}(x)=k\}, k=$ minimum weight of C,
- $\mathcal{B}=\left\{\operatorname{supp}(x) \mid x \in C_{k}\right\}$.

$$
\begin{aligned}
|\{B \in \mathcal{B} \mid T \subset B\}| & =\left|\left\{x \in C_{k} \mid T \subset \operatorname{supp}(x)\right\}\right| \\
& =\left|\left\{x \in C_{k} \mid d\left(x^{(T)}, x\right)=k-t\right\}\right| \\
& =\left|\left\{x \in C \mid d\left(x^{(T)}, x\right)=k-t\right\}\right|-\delta_{k, 2 t} \\
& =\sum_{x \in C}\left(A_{k-t}\right)_{x^{(T)}, x}-\delta_{k, 2 t} \\
& =\left(A_{k-t} \hat{C}\right)_{x(T)}-\delta_{k, 2 t} \\
& =\left(E_{t}^{*} A_{k-t} \hat{C}\right)_{x^{(T)}}-\delta_{k, 2 t} .
\end{aligned}
$$

Design property expressed by matrices

- $T \subset \mathcal{P},|T|=t, x^{(T)} \in \mathbb{F}_{2}^{\nu}$: the characteristic vector of T,
- $C_{k}=\{x \in C \mid \mathrm{wt}(x)=k\}, k=$ minimum weight of C,
- $\mathcal{B}=\left\{\operatorname{supp}(x) \mid x \in C_{k}\right\}$.

$$
\begin{aligned}
|\{B \in \mathcal{B} \mid T \subset B\}| & =\left|\left\{x \in C_{k} \mid T \subset \operatorname{supp}(x)\right\}\right| \\
& =\left|\left\{x \in C_{k} \mid d\left(x^{(T)}, x\right)=k-t\right\}\right| \\
& =\left|\left\{x \in C \mid d\left(x^{(T)}, x\right)=k-t\right\}\right|-\delta_{k, 2 t} \\
& =\sum_{x \in C}\left(A_{k-t}\right)_{x^{(T)}, x}-\delta_{k, 2 t} \\
& =\left(A_{k-t} \hat{C}\right)_{x(T)}-\delta_{k, 2 t} \\
& =\left(E_{t}^{*} A_{k-t} \hat{C}\right)_{x^{(T)}}-\delta_{k, 2 t} .
\end{aligned}
$$

Design property expressed by matrices

- $T \subset \mathcal{P},|T|=t, x^{(T)} \in \mathbb{F}_{2}^{\nu}$: the characteristic vector of T,
- $C_{k}=\{x \in C \mid \mathrm{wt}(x)=k\}, k=$ minimum weight of C,
- $\mathcal{B}=\left\{\operatorname{supp}(x) \mid x \in C_{k}\right\}$.

$$
\begin{aligned}
|\{B \in \mathcal{B} \mid T \subset B\}| & =\left|\left\{x \in C_{k} \mid T \subset \operatorname{supp}(x)\right\}\right| \\
& =\left|\left\{x \in C_{k} \mid d\left(x^{(T)}, x\right)=k-t\right\}\right| \\
& =\left|\left\{x \in C \mid d\left(x^{(T)}, x\right)=k-t\right\}\right|-\delta_{k, 2 t} \\
& =\sum_{x \in C}\left(A_{k-t}\right)_{x^{(T)}, x}-\delta_{k, 2 t} \\
& =\left(A_{k-t} \hat{C}\right)_{x(T)}-\delta_{k, 2 t} \\
& =\left(E_{t}^{*} A_{k-t} \hat{C}\right)_{x^{(T)}}-\delta_{k, 2 t} .
\end{aligned}
$$

Design property expressed by matrices

- $T \subset \mathcal{P},|T|=t, x^{(T)} \in \mathbb{F}_{2}^{V}:$ the characteristic vector of T,
- $C_{k}=\{x \in C \mid \mathrm{wt}(x)=k\}, k=$ minimum weight of C,
- $\mathcal{B}=\left\{\operatorname{supp}(x) \mid x \in C_{k}\right\}$.

$$
\begin{aligned}
|\{B \in \mathcal{B} \mid T \subset B\}| & =\left|\left\{x \in C_{k} \mid T \subset \operatorname{supp}(x)\right\}\right| \\
& =\left|\left\{x \in C_{k} \mid d\left(x^{(T)}, x\right)=k-t\right\}\right| \\
& =\left|\left\{x \in C \mid d\left(x^{(T)}, x\right)=k-t\right\}\right|-\delta_{k, 2 t} \\
& =\sum_{x \in C}\left(A_{k-t}\right)_{x^{(T)}, x}-\delta_{k, 2 t} \\
& =\left(A_{k-t} \hat{C}\right)_{x^{(T)}}-\delta_{k, 2 t} \\
& =\left(E_{t}^{*} A_{k-t} \hat{C}\right)_{x^{(T)}}-\delta_{k, 2 t} .
\end{aligned}
$$

So we want to show

$$
E_{t}^{*} A_{k-t} \hat{C} \text { is a constant multiple of } E_{t}^{*} \mathbf{1}
$$

$E_{t}^{*} A_{k-t} \hat{C}=\lambda E_{t}^{*} \mathbf{1}$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \quad \text { (minimum weight }=k \text {), } \\
S=\left\{\operatorname{wt}(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
t=k-|S| .
\end{gathered}
$$

Then

$$
E_{t}^{*} A_{k-t} \hat{C} \text { is a constant multiple of } E_{t}^{*} \mathbf{1} \text {. }
$$

$E_{t}^{*} A_{k-t} \hat{C}=\lambda E_{t}^{*} \mathbf{1}$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\left.\hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \quad \text { (minimum weight }=k\right), \\
S=\left\{\operatorname{wt}(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
t=k-|S| .
\end{gathered}
$$

Then

$$
E_{t}^{*} A_{k-t} \hat{C} \text { is a constant multiple of } E_{t}^{*} \mathbf{1} \text {. }
$$

(S can also be described by E_{i}^{*} and $\widehat{C^{\perp}}$, but then we need to express S in terms of \hat{C})

C and C^{\perp} are connected by H

$$
(H \hat{C})_{x}=\sum_{y \in C}(-1)^{\times y}=\left\{\begin{array}{ll}
|C| & \text { if } x \in C^{\perp} \\
0 & \text { otherwise }
\end{array}=\left(|C| \widehat{C^{\perp}}\right)_{x},\right.
$$

so

$$
\widehat{C^{\perp}}=\frac{1}{|C|} H \hat{C} .
$$

C and C^{\perp} are connected by H

$$
(H \hat{C})_{x}=\sum_{y \in C}(-1)^{\times \cdot y}=\left\{\begin{array}{ll}
|C| & \text { if } x \in C^{\perp} \\
0 & \text { otherwise }
\end{array}=\left(|C| \widehat{C^{\perp}}\right)_{x},\right.
$$

so

$$
\widehat{C^{\perp}}=\frac{1}{|C|} H \hat{C} .
$$

Define

$$
E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H=H^{-1} E_{i}^{*} H \quad(0 \leq i \leq v) .
$$

C and C^{\perp} are connected by H

$$
(H \hat{C})_{x}=\sum_{y \in C}(-1)^{x \cdot y}=\left\{\begin{array}{ll}
|C| & \text { if } x \in C^{\perp} \\
0 & \text { otherwise }
\end{array}=\left(|C| \widehat{C^{\perp}}\right)_{x},\right.
$$

SO

$$
\widehat{C^{\perp}}=\frac{1}{|C|} H \hat{C} .
$$

Define

$$
E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H=H^{-1} E_{i}^{*} H \quad(0 \leq i \leq v) .
$$

Then $E_{i} E_{j}=\delta_{i, j} E_{i}, \sum_{i=0}^{v} E_{i}=I$.

C and C^{\perp} are connected by H

$$
(H \hat{C})_{x}=\sum_{y \in C}(-1)^{\times \cdot y}=\left\{\begin{array}{ll}
|C| & \text { if } x \in C^{\perp} \\
0 & \text { otherwise }
\end{array}=\left(|C| \widehat{C^{\perp}}\right)_{x},\right.
$$

so

$$
\widehat{C^{\perp}}=\frac{1}{|C|} H \hat{C} .
$$

Define

$$
E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H=H^{-1} E_{i}^{*} H \quad(0 \leq i \leq v) .
$$

Then $E_{i} E_{j}=\delta_{i, j} E_{i}, \sum_{i=0}^{v} E_{i}=I$.

$$
\begin{aligned}
E_{i}^{*} \widehat{C^{\perp}} \neq 0 & \Longleftrightarrow E_{i}^{*} H \hat{C} \neq 0 \Longleftrightarrow H^{-1} E_{i}^{*} H \hat{C} \neq 0 \\
& \Longleftrightarrow E_{i} \hat{C} \neq 0 .
\end{aligned}
$$

C and C^{\perp} are connected by H

$$
(H \hat{C})_{x}=\sum_{y \in C}(-1)^{\times \cdot y}=\left\{\begin{array}{ll}
|C| & \text { if } x \in C^{\perp} \\
0 & \text { otherwise }
\end{array}=\left(|C| \widehat{C^{\perp}}\right)_{x},\right.
$$

so

$$
\widehat{C^{\perp}}=\frac{1}{|C|} H \hat{C} .
$$

Define

$$
E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H=H^{-1} E_{i}^{*} H \quad(0 \leq i \leq v) .
$$

Then $E_{i} E_{j}=\delta_{i, j} E_{i}, \sum_{i=0}^{v} E_{i}=I$.

$$
\begin{aligned}
E_{i}^{*} \widehat{C^{\perp}} \neq 0 & \Longleftrightarrow E_{i}^{*} H \hat{C} \neq 0 \Longleftrightarrow H^{-1} E_{i}^{*} H \hat{C} \neq 0 \\
& \Longleftrightarrow E_{i} \hat{C} \neq 0 .
\end{aligned}
$$

C and C^{\perp} are connected by H

$$
(H \hat{C})_{x}=\sum_{y \in C}(-1)^{\times \cdot y}=\left\{\begin{array}{ll}
|C| & \text { if } x \in C^{\perp} \\
0 & \text { otherwise }
\end{array}=\left(|C| \widehat{C^{\perp}}\right)_{x},\right.
$$

so

$$
\widehat{C^{\perp}}=\frac{1}{|C|} H \hat{C} .
$$

Define

$$
E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H=H^{-1} E_{i}^{*} H \quad(0 \leq i \leq v) .
$$

Then $E_{i} E_{j}=\delta_{i, j} E_{i}, \sum_{i=0}^{v} E_{i}=I$.

$$
\begin{aligned}
E_{i}^{*} \widehat{C^{\perp}} \neq 0 & \Longleftrightarrow E_{i}^{*} H \hat{C} \neq 0 \Longleftrightarrow H^{-1} E_{i}^{*} H \hat{C} \neq 0 \\
& \Longleftrightarrow E_{i} \hat{C} \neq 0 .
\end{aligned}
$$

$S=\left\{w t(x) \mid x \in C^{\perp}, 0<w t(x)<v\right\}$

$$
\begin{aligned}
S & =\left\{i \mid 0<i<v, E_{i}^{*} \widehat{C^{\perp}} \neq 0\right\} \\
& =\left\{i \mid 0<i<v, E_{i} \hat{C} \neq 0\right\} .
\end{aligned}
$$

Since $\sum_{i=0}^{v} E_{i}=I$,

$$
\hat{C}=\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}
$$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\hat{C}=\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}, \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

Restating further

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\hat{C}=\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}, \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

Restating further

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\hat{C}=\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}, \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

Restating further

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\hat{C}=\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}, \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}
$$

$$
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t}\left(\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}\right) \in \mathbb{R} E_{t}^{*} \mathbf{1}
$$

Restating further

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\hat{C}=\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}, \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}
$$

$$
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t}\left(\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}\right) \in \mathbb{R} E_{t}^{*} \mathbf{1}
$$

Restating further

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\hat{C}=\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}, \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}
$$

$$
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t}\left(\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}\right) \in \mathbb{R} E_{t}^{*} 1
$$

Restating further

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\hat{C}=\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}, \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S|
$$

$$
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 \text {. }
$$

Restating further

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\hat{C}=\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}, \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S|
$$

$$
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 \text {. }
$$

H diagonalizes A_{1}

For $y \in \mathbb{F}_{2}^{v}$ with $\operatorname{wt}(y)=i$,

$$
\begin{aligned}
\left(A_{1} H\right)_{x, y} & =\sum_{z \in \mathbb{F}_{2}^{v}}\left(A_{1}\right)_{x, z}(-1)^{z \cdot y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
d(x, z)^{\prime}=1}}(-1)^{z \cdot y} \\
& =\sum_{j=1}^{v}(-1)^{x \cdot y}(-1)^{y_{j}}=H_{x, y} \sum_{j=1}^{v}(-1)^{y_{j}} \\
& =H_{x, y}(v-2 w t(y))=(v-2 i)\left(H E_{i}^{*}\right)_{x, y} \\
& =\left(\sum_{j=1}^{v}(v-2 j) H E_{j}^{*}\right)_{x, y}=\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right)_{x, y} .
\end{aligned}
$$

Thus H diagonalizes A_{1} :

$$
A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}
$$

H diagonalizes A_{1}

For $y \in \mathbb{F}_{2}^{v}$ with $\operatorname{wt}(y)=i$,

$$
\begin{aligned}
\left(A_{1} H\right)_{x, y} & =\sum_{z \in \mathbb{F}_{2}^{v}}\left(A_{1}\right)_{x, z}(-1)^{z \cdot y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
d(x, z)^{v}=1}}(-1)^{z \cdot y} \\
& =\sum_{j=1}^{v}(-1)^{x \cdot y}(-1)^{y_{j}}=H_{x, y} \sum_{j=1}^{v}(-1)^{y_{j}} \\
& =H_{x, y}(v-2 w t(y))=(v-2 i)\left(H E_{i}^{*}\right)_{x, y} \\
& =\left(\sum_{j=1}^{v}(v-2 j) H E_{j}^{*}\right)_{x, y}=\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right)_{x, y}
\end{aligned}
$$

Thus H diagonalizes A_{1} :

$$
A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}
$$

H diagonalizes A_{1}

For $y \in \mathbb{F}_{2}^{v}$ with $\operatorname{wt}(y)=i$,

$$
\begin{aligned}
\left(A_{1} H\right)_{x, y} & =\sum_{z \in \mathbb{F}_{2}^{v}}\left(A_{1}\right)_{x, z}(-1)^{z \cdot y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
d(x, z)^{v}=1}}(-1)^{z \cdot y} \\
& =\sum_{j=1}^{v}(-1)^{x \cdot y}(-1)^{y_{j}}=H_{x, y} \sum_{j=1}^{v}(-1)^{y_{j}} \\
& =H_{x, y}(v-2 w t(y))=(v-2 i)\left(H E_{i}^{*}\right)_{x, y} \\
& =\left(\sum_{j=1}^{v}(v-2 j) H E_{j}^{*}\right)_{x, y}=\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right)_{x, y}
\end{aligned}
$$

Thus H diagonalizes A_{1} :

$$
A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}
$$

H diagonalizes A_{1}

For $y \in \mathbb{F}_{2}^{v}$ with $\operatorname{wt}(y)=i$,

$$
\begin{aligned}
\left(A_{1} H\right)_{x, y} & =\sum_{z \in \mathbb{F}_{2}^{v}}\left(A_{1}\right)_{x, z}(-1)^{z \cdot y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
d(x, z)^{\prime}=1}}(-1)^{z \cdot y} \\
& =\sum_{j=1}^{v}(-1)^{x \cdot y}(-1)^{y_{j}}=H_{x, y} \sum_{j=1}^{v}(-1)^{y_{j}} \\
& =H_{x, y}(v-2 w t(y))=(v-2 i)\left(H E_{i}^{*}\right)_{x, y} \\
& =\left(\sum_{j=1}^{v}(v-2 j) H E_{j}^{*}\right)_{x, y}=\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right)_{x, y} .
\end{aligned}
$$

Thus H diagonalizes A_{1} :

$$
A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}
$$

H diagonalizes A_{1}

For $y \in \mathbb{F}_{2}^{v}$ with $\operatorname{wt}(y)=i$,

$$
\begin{aligned}
\left(A_{1} H\right)_{x, y} & =\sum_{z \in \mathbb{F}_{2}^{v}}\left(A_{1}\right)_{x, z}(-1)^{z \cdot y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
d(x, z)^{v}}}(-1)^{z \cdot y} \\
& =\sum_{j=1}^{v}(-1)^{x \cdot y}(-1)^{y_{j}}=H_{x, y} \sum_{j=1}^{v}(-1)^{y_{j}} \\
& =H_{x, y}(v-2 w t(y))=(v-2 i)\left(H E_{i}^{*}\right)_{x, y} \\
& =\left(\sum_{j=1}^{v}(v-2 j) H E_{j}^{*}\right)_{x, y}=\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right)_{x, y}
\end{aligned}
$$

Thus H diagonalizes A_{1} :

$$
A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}
$$

H diagonalizes A_{1}

For $y \in \mathbb{F}_{2}^{v}$ with $\operatorname{wt}(y)=i$,

$$
\begin{aligned}
\left(A_{1} H\right)_{x, y} & =\sum_{z \in \mathbb{F}_{2}^{v}}\left(A_{1}\right)_{x, z}(-1)^{z \cdot y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
d(x, z)^{\prime}=1}}(-1)^{z \cdot y} \\
& =\sum_{j=1}^{v}(-1)^{x \cdot y}(-1)^{y_{j}}=H_{x, y} \sum_{j=1}^{v}(-1)^{y_{j}} \\
& =H_{x, y}(v-2 w t(y))=(v-2 i)\left(H E_{i}^{*}\right)_{x, y} \\
& =\left(\sum_{j=1}^{v}(v-2 j) H E_{j}^{*}\right)_{x, y}=\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right)_{x, y} .
\end{aligned}
$$

Thus H diagonalizes A_{1} :

$$
A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}
$$

H diagonalizes A_{1}

For $y \in \mathbb{F}_{2}^{v}$ with $\operatorname{wt}(y)=i$,

$$
\begin{aligned}
\left(A_{1} H\right)_{x, y} & =\sum_{z \in \mathbb{F}_{2}^{v}}\left(A_{1}\right)_{x, z}(-1)^{z \cdot y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
d(x, z)^{\prime}=1}}(-1)^{z \cdot y} \\
& =\sum_{j=1}^{v}(-1)^{x \cdot y}(-1)^{y_{j}}=H_{x, y} \sum_{j=1}^{v}(-1)^{y_{j}} \\
& =H_{x, y}(v-2 w t(y))=(v-2 i)\left(H E_{i}^{*}\right)_{x, y} \\
& =\left(\sum_{j=1}^{v}(v-2 j) H E_{j}^{*}\right)_{x, y}=\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right)_{x, y} .
\end{aligned}
$$

Thus H diagonalizes A_{1} :

$$
A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}
$$

H diagonalizes A_{1}

For $y \in \mathbb{F}_{2}^{v}$ with $\operatorname{wt}(y)=i$,

$$
\begin{aligned}
\left(A_{1} H\right)_{x, y} & =\sum_{z \in \mathbb{F}_{2}^{v}}\left(A_{1}\right)_{x, z}(-1)^{z \cdot y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
d(x, z)^{v}=1}}(-1)^{z \cdot y} \\
& =\sum_{j=1}^{v}(-1)^{x \cdot y}(-1)^{y_{j}}=H_{x, y} \sum_{j=1}^{v}(-1)^{y_{j}} \\
& =H_{x, y}(v-2 w t(y))=(v-2 i)\left(H E_{i}^{*}\right)_{x, y} \\
& =\left(\sum_{j=1}^{v}(v-2 j) H E_{j}^{*}\right)_{x, y}=\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right)_{x, y} .
\end{aligned}
$$

Thus H diagonalizes A_{1} :

$$
A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}
$$

H diagonalizes A_{1}

For $y \in \mathbb{F}_{2}^{v}$ with $\operatorname{wt}(y)=i$,

$$
\begin{aligned}
\left(A_{1} H\right)_{x, y} & =\sum_{z \in \mathbb{F}_{2}^{v}}\left(A_{1}\right)_{x, z}(-1)^{z \cdot y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
d(x, z)^{v}=1}}(-1)^{z \cdot y} \\
& =\sum_{j=1}^{v}(-1)^{x \cdot y}(-1)^{y_{j}}=H_{x, y} \sum_{j=1}^{v}(-1)^{y_{j}} \\
& =H_{x, y}(v-2 w t(y))=(v-2 i)\left(H E_{i}^{*}\right)_{x, y} \\
& =\left(\sum_{j=1}^{v}(v-2 j) H E_{j}^{*}\right)_{x, y}=\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right)_{x, y} .
\end{aligned}
$$

Thus H diagonalizes A_{1} :

$$
A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*} .
$$

$A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}$

E_{i} 's are projections onto eigenspaces of A_{1}

$$
\begin{aligned}
A_{1} E_{i} & =A_{1}\left(\frac{1}{2^{v}} H E_{i}^{*} H\right)=\frac{1}{2^{v}}\left(A_{1} H\right) E_{i}^{*} H \\
& =\frac{1}{2^{v}}\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right) E_{i}^{*} H=\frac{1}{2^{v}}(v-2 i) H E_{i}^{*} H \\
& =(v-2 i) E_{i} .
\end{aligned}
$$

Thus A_{1} has eigenvalue $v-2 i$ on $E_{i} V$, and

$$
V=\bigoplus_{i=0}^{v} E_{i} V
$$

is the eigenspace decomposition of A_{1}.

$A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}$

E_{i} 's are projections onto eigenspaces of A_{1}

$$
\begin{aligned}
A_{1} E_{i} & =A_{1}\left(\frac{1}{2^{v}} H E_{i}^{*} H\right)=\frac{1}{2^{v}}\left(A_{1} H\right) E_{i}^{*} H \\
& =\frac{1}{2^{v}}\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right) E_{i}^{*} H=\frac{1}{2^{v}}(v-2 i) H E_{i}^{*} H \\
& =(v-2 i) E_{i} .
\end{aligned}
$$

Thus A_{1} has eigenvalue $v-2 i$ on $E_{i} V$, and

$$
V=\bigoplus_{i=0}^{v} E_{i} V
$$

is the eigenspace decomposition of A_{1}.

$A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}$

E_{i} 's are projections onto eigenspaces of A_{1}

$$
\begin{aligned}
A_{1} E_{i} & =A_{1}\left(\frac{1}{2^{v}} H E_{i}^{*} H\right)=\frac{1}{2^{v}}\left(A_{1} H\right) E_{i}^{*} H \\
& =\frac{1}{2^{v}}\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right) E_{i}^{*} H=\frac{1}{2^{v}}(v-2 i) H E_{i}^{*} H \\
& =(v-2 i) E_{i} .
\end{aligned}
$$

Thus A_{1} has eigenvalue $v-2 i$ on $E_{i} V$, and

$$
V=\bigoplus_{i=0}^{v} E_{i} V
$$

is the eigenspace decomposition of A_{1}.
E_{i} 's are projections onto eigenspaces of A_{1}

$$
\begin{aligned}
A_{1} E_{i} & =A_{1}\left(\frac{1}{2^{v}} H E_{i}^{*} H\right)=\frac{1}{2^{v}}\left(A_{1} H\right) E_{i}^{*} H \\
& =\frac{1}{2^{v}}\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right) E_{i}^{*} H=\frac{1}{2^{v}}(v-2 i) H E_{i}^{*} H \\
& =(v-2 i) E_{i} .
\end{aligned}
$$

Thus A_{1} has eigenvalue $v-2 i$ on $E_{i} V$, and

$$
V=\bigoplus_{i=0}^{v} E_{i} V
$$

is the eigenspace decomposition of A_{1}.

$A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}$

E_{i} 's are projections onto eigenspaces of A_{1}

$$
\begin{aligned}
A_{1} E_{i} & =A_{1}\left(\frac{1}{2^{v}} H E_{i}^{*} H\right)=\frac{1}{2^{v}}\left(A_{1} H\right) E_{i}^{*} H \\
& =\frac{1}{2^{v}}\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right) E_{i}^{*} H=\frac{1}{2^{v}}(v-2 i) H E_{i}^{*} H \\
& =(v-2 i) E_{i} .
\end{aligned}
$$

Thus A_{1} has eigenvalue $v-2 i$ on $E_{i} V$, and

$$
V=\bigoplus_{i=0}^{v} E_{i} V
$$

is the eigenspace decomposition of A_{1}.

$A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}$

E_{i} 's are projections onto eigenspaces of A_{1}

$$
\begin{aligned}
A_{1} E_{i} & =A_{1}\left(\frac{1}{2^{v}} H E_{i}^{*} H\right)=\frac{1}{2^{v}}\left(A_{1} H\right) E_{i}^{*} H \\
& =\frac{1}{2^{v}}\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right) E_{i}^{*} H=\frac{1}{2^{v}}(v-2 i) H E_{i}^{*} H \\
& =(v-2 i) E_{i} .
\end{aligned}
$$

Thus A_{1} has eigenvalue $v-2 i$ on $E_{i} V$, and

$$
V=\bigoplus_{i=0}^{v} E_{i} V
$$

is the eigenspace decomposition of A_{1}.

$A_{1} H=H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}$

E_{i} 's are projections onto eigenspaces of A_{1}

$$
\begin{aligned}
A_{1} E_{i} & =A_{1}\left(\frac{1}{2^{v}} H E_{i}^{*} H\right)=\frac{1}{2^{v}}\left(A_{1} H\right) E_{i}^{*} H \\
& =\frac{1}{2^{v}}\left(H \sum_{j=1}^{v}(v-2 j) E_{j}^{*}\right) E_{i}^{*} H=\frac{1}{2^{v}}(v-2 i) H E_{i}^{*} H \\
& =(v-2 i) E_{i} .
\end{aligned}
$$

Thus A_{1} has eigenvalue $v-2 i$ on $E_{i} V$, and

$$
V=\bigoplus_{i=0}^{v} E_{i} V
$$

is the eigenspace decomposition of A_{1}.

$E=\frac{1}{2^{v}} H E^{*} H$, in particular,

$$
\begin{aligned}
& 2^{v}\left(E_{v}\right)_{x, y}=\left(H E_{v}^{*} H\right)_{x, y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
\operatorname{wt}(z)=v}} H_{x, z} H_{z, y} \\
& =H_{x, 1} H_{1, y}=(-1)^{x \cdot 1}(-1)^{y \cdot 1} \quad\left(\mathbf{1}=(1, \ldots, 1) \in \mathbb{F}_{2}^{v}\right) \\
& =(-1)^{\mathrm{wt}(x)}(-1)^{\mathrm{wt}(y)}=(-1)^{\mathrm{wt}(y)}\left(\sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1}\right)_{x} . \\
& E_{v} V=\mathbb{R} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \quad\left(\mathbf{1}=(1, \ldots, 1)^{\top} \in V\right) .
\end{aligned}
$$

Similarly

$$
E_{0} V=\mathbb{R} \sum_{i=0}^{v} E_{i}^{*} \mathbf{1}=\mathbb{R} \mathbf{1}
$$

$E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H$, in particular,

$$
\begin{aligned}
& 2^{v}\left(E_{v}\right)_{x, y}=\left(H E_{v}^{*} H\right)_{x, y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
\operatorname{wt}(z)=v}} H_{x, z} H_{z, y} \\
& =H_{x, 1} H_{1, y}=(-1)^{x \cdot 1}(-1)^{y \cdot 1} \quad\left(\mathbf{1}=(1, \ldots, 1) \in \mathbb{F}_{2}^{v}\right) \\
& =(-1)^{\mathrm{wt}(x)}(-1)^{\mathrm{wt}(y)}=(-1)^{\mathrm{wt}(y)}\left(\sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1}\right)_{x} . \\
& E_{v} V=\mathbb{R} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \quad\left(\mathbf{1}=(1, \ldots, 1)^{\top} \in V\right) .
\end{aligned}
$$

Similarly

$$
E_{0} V=\mathbb{R} \sum_{i=0}^{v} E_{i}^{*} \mathbf{1}=\mathbb{R} \mathbf{1}
$$

$E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H$, in particular,

$$
\begin{aligned}
& 2^{v}\left(E_{v}\right)_{x, y}=\left(H E_{v}^{*} H\right)_{x, y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
\operatorname{wt}(z)=v}} H_{x, z} H_{z, y} \\
& =H_{x, 1} H_{1, y}=(-1)^{x \cdot 1}(-1)^{y \cdot 1} \quad\left(\mathbf{1}=(1, \ldots, 1) \in \mathbb{F}_{2}^{v}\right) \\
& =(-1)^{\mathrm{wt}(x)}(-1)^{\mathrm{wt}(y)}=(-1)^{\mathrm{wt}(y)}\left(\sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1}\right)_{x} . \\
& E_{v} V=\mathbb{R} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \quad\left(\mathbf{1}=(1, \ldots, 1)^{\top} \in V\right) .
\end{aligned}
$$

Similarly

$$
E_{0} V=\mathbb{R} \sum_{i=0}^{v} E_{i}^{*} \mathbf{1}=\mathbb{R} \mathbf{1}
$$

$E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H$, in particular,

$$
\begin{aligned}
& 2^{v}\left(E_{v}\right)_{x, y}=\left(H E_{v}^{*} H\right)_{x, y}=\sum_{\substack{z \in \mathbb{F}_{v}^{v} \\
\mathrm{wt}(2)=v}} H_{x, z} H_{z, y} \\
& =H_{x, 1} H_{1, y}=(-1)^{x \cdot 1}(-1)^{y \cdot 1} \quad\left(\mathbf{1}=(1, \ldots, 1) \in \mathbb{F}_{2}^{v}\right) \\
& =(-1)^{\mathrm{wt}(x)}(-1)^{\mathrm{wt}(y)}=(-1)^{\mathrm{wt}(y)}\left(\sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1}\right)_{x} . \\
& E_{v} V=\mathbb{R} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \quad\left(\mathbf{1}=(1, \ldots, 1)^{\top} \in V\right) .
\end{aligned}
$$

Similarly

$$
E_{0} V=\mathbb{R} \sum_{i=0}^{v} E_{i}^{*} \mathbf{1}=\mathbb{R} \mathbf{1}
$$

$E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H$, in particular,

$$
\begin{aligned}
& 2^{v}\left(E_{v}\right)_{x, y}=\left(H E_{v}^{*} H\right)_{x, y}=\sum_{\substack{z \in \mathbb{F}_{V}^{v} \\
\mathrm{wt}(2)=v}} H_{x, z} H_{z, y} \\
& =H_{x, 1} H_{1, y}=(-1)^{x \cdot 1}(-1)^{v \cdot \mathbf{1}} \quad\left(\mathbf{1}=(1, \ldots, 1) \in \mathbb{F}_{2}^{v}\right) \\
& =(-1)^{\mathrm{wt}(x)}(-1)^{\mathrm{wt}(y)}=(-1)^{\mathrm{wtt}(y)}\left(\sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1}\right)_{x} . \\
& \quad E_{v} V=\mathbb{R} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \quad\left(\mathbf{1}=(1, \ldots, 1)^{\top} \in V\right) .
\end{aligned}
$$

Similarly

$$
E_{0} V=\mathbb{R} \sum_{i=0}^{v} E_{i}^{*} \mathbf{1}=\mathbb{R} \mathbf{1}
$$

$E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H$, in particular,

$$
\begin{aligned}
& 2^{v}\left(E_{v}\right)_{x, y}=\left(H E_{v}^{*} H\right)_{x, y}=\sum_{\substack{z \in \mathbb{F}_{V}^{v} \\
\mathrm{wt}(z)=v}} H_{x, z} H_{z, y} \\
& =H_{x, 1} H_{1, y}=(-1)^{x \cdot 1}(-1)^{v \cdot \mathbf{1}} \quad\left(\mathbf{1}=(1, \ldots, 1) \in \mathbb{F}_{2}^{v}\right) \\
& =(-1)^{\mathrm{wt}(x)}(-1)^{\mathrm{wt}(y)}=(-1)^{\mathrm{wtt}(y)}\left(\sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1}\right)_{x} . \\
& \quad E_{v} V=\mathbb{R} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \quad\left(\mathbf{1}=(1, \ldots, 1)^{\top} \in V\right) .
\end{aligned}
$$

Similarly

$$
E_{0} V=\mathbb{R} \sum_{i=0}^{v} E_{i}^{*} \mathbf{1}=\mathbb{R} \mathbf{1}
$$

$E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H$, in particular,

$$
\begin{aligned}
& 2^{v}\left(E_{v}\right)_{x, y}=\left(H E_{v}^{*} H\right)_{x, y}=\sum_{\substack{z \in \mathbb{F}_{v}^{v} \\
\operatorname{wt}(z)=v}} H_{x, z} H_{z, y} \\
& =H_{x, 1} H_{1, y}=(-1)^{x \cdot 1}(-1)^{y \cdot 1} \quad\left(\mathbf{1}=(1, \ldots, 1) \in \mathbb{F}_{2}^{v}\right) \\
& =(-1)^{\mathrm{wt}(x)}(-1)^{\mathrm{wt}(y)}=(-1)^{\mathrm{wt}(y)}\left(\sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1}\right)_{x} . \\
& E_{v} V=\mathbb{R} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \quad\left(\mathbf{1}=(1, \ldots, 1)^{\top} \in V\right) .
\end{aligned}
$$

Similarly

$$
E_{0} V=\mathbb{R} \sum_{i=0}^{v} E_{i}^{*} \mathbf{1}=\mathbb{R} \mathbf{1}
$$

$E_{i}=\frac{1}{2^{v}} H E_{i}^{*} H$, in particular,

$$
\begin{aligned}
& 2^{v}\left(E_{v}\right)_{x, y}=\left(H E_{v}^{*} H\right)_{x, y}=\sum_{\substack{z \in \mathbb{F}_{2}^{v} \\
\operatorname{wt}(z)=v}} H_{x, z} H_{z, y} \\
& =H_{x, 1} H_{1, y}=(-1)^{x \cdot 1}(-1)^{y \cdot 1} \quad\left(\mathbf{1}=(1, \ldots, 1) \in \mathbb{F}_{2}^{v}\right) \\
& =(-1)^{\mathrm{wt}(x)}(-1)^{\mathrm{wt}(y)}=(-1)^{\mathrm{wt}(y)}\left(\sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1}\right)_{x} . \\
& E_{v} V=\mathbb{R} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \quad\left(\mathbf{1}=(1, \ldots, 1)^{\top} \in V\right) .
\end{aligned}
$$

Similarly

$$
E_{0} V=\mathbb{R} \sum_{i=0}^{v} E_{i}^{*} \mathbf{1}=\mathbb{R} \mathbf{1}
$$

$E_{V} V=\mathbb{R} \sum_{i=0}^{V}(-1)^{i} E_{i}^{*} \mathbf{1}, \quad E_{0} V=\mathbb{R} \mathbf{1}$ $A_{1} E_{i}=(v-2 i) E_{i}$, so $A_{1} E_{i} V \subset E_{i} V$

A_{1}^{j} also leave $E_{i} V$ invariant. Thus

$$
\begin{aligned}
E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C} & \in E_{t}^{*} A_{1}^{j} E_{0} V+E_{t}^{*} A_{1}^{j} E_{v} V \\
& \subset E_{t}^{*} E_{0} V+E_{t}^{*} E_{v} V \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}+\mathbb{R} E^{*}{ }_{t} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}
\end{aligned}
$$

$E_{V} V=\mathbb{R} \sum_{i=0}^{V}(-1)^{i} E_{i}^{*} \mathbf{1}, \quad E_{0} V=\mathbb{R} \mathbf{1}$ $A_{1} E_{i}=(v-2 i) E_{i}$, so $A_{1} E_{i} V \subset E_{i} V$

A_{1}^{j} also leave $E_{i} V$ invariant. Thus

$$
\begin{aligned}
E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C} & \in E_{t}^{*} A_{1}^{j} E_{0} V+E_{t}^{*} A_{1}^{j} E_{v} V \\
& \subset E_{t}^{*} E_{0} V+E_{t}^{*} E_{v} V \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}+\mathbb{R} E^{*}{ }_{t} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}
\end{aligned}
$$

$E_{V} V=\mathbb{R} \sum_{i=0}^{V}(-1)^{i} E_{i}^{*} \mathbf{1}, \quad E_{0} V=\mathbb{R} \mathbf{1}$ $A_{1} E_{i}=(v-2 i) E_{i}$, so $A_{1} E_{i} V \subset E_{i} V$

A_{1}^{j} also leave $E_{i} V$ invariant. Thus

$$
\begin{aligned}
E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C} & \in E_{t}^{*} A_{1}^{j} E_{0} V+E_{t}^{*} A_{1}^{j} E_{v} V \\
& \subset E_{t}^{*} E_{0} V+E_{t}^{*} E_{v} V \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}+\mathbb{R} E^{*}{ }_{t} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}
\end{aligned}
$$

$E_{V} V=\mathbb{R} \sum_{i=0}^{V}(-1)^{i} E_{i}^{*} \mathbf{1}, \quad E_{0} V=\mathbb{R} \mathbf{1}$ $A_{1} E_{i}=(v-2 i) E_{i}$, so

A_{1}^{j} also leave $E_{i} V$ invariant. Thus

$$
\begin{aligned}
E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C} & \in E_{t}^{*} A_{1}^{j} E_{0} V+E_{t}^{*} A_{1}^{j} E_{V} V \\
& \subset E_{t}^{*} E_{0} V+E_{t}^{*} E_{V} V \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}+\mathbb{R} E^{*}{ }_{t} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}
\end{aligned}
$$

$A_{1} E_{i}=(v-2 i) E_{i}$, so $A_{1} E_{i} V \subset E_{i} V$

A_{1}^{j} also leave $E_{i} V$ invariant. Thus

$$
\begin{aligned}
E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C} & \in E_{t}^{*} A_{1}^{j} E_{0} V+E_{t}^{*} A_{1}^{j} E_{v} V \\
& \subset E_{t}^{*} E_{0} V+E_{t}^{*} E_{v} V \\
& =\mathbb{R} E_{t}^{*} 1+\mathbb{R} E^{*}{ }_{t} \sum_{i=0}^{v}(-1)^{j} E_{i}^{*} 1 \\
& =\mathbb{R} E_{t}^{*} 1 .
\end{aligned}
$$

$E_{V} V=\mathbb{R} \sum_{i=0}^{V}(-1)^{i} E_{i}^{*} \mathbf{1}, \quad E_{0} V=\mathbb{R} \mathbf{1}$ $A_{1} E_{i}=(v-2 i) E_{i}$, so $A_{1} E_{i} V \subset E_{i} V$

A_{1}^{j} also leave $E_{i} V$ invariant. Thus

$$
\begin{aligned}
E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C} & \in E_{t}^{*} A_{1}^{j} E_{0} V+E_{t}^{*} A_{1}^{j} E_{v} V \\
& \subset E_{t}^{*} E_{0} V+E_{t}^{*} E_{v} V \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}+\mathbb{R} E^{*}{ }_{t} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}
\end{aligned}
$$

$E_{V} V=\mathbb{R} \sum_{i=0}^{V}(-1)^{i} E_{i}^{*} \mathbf{1}, \quad E_{0} V=\mathbb{R} \mathbf{1}$ $A_{1} E_{i}=(v-2 i) E_{i}$, so $A_{1} E_{i} V \subset E_{i} V$

A_{1}^{j} also leave $E_{i} V$ invariant. Thus

$$
\begin{aligned}
E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C} & \in E_{t}^{*} A_{1}^{j} E_{0} V+E_{t}^{*} A_{1}^{j} E_{v} V \\
& \subset E_{t}^{*} E_{0} V+E_{t}^{*} E_{v} V \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}+\mathbb{R} E^{*}{ }_{t} \sum_{i=0}^{v}(-1)^{i} E_{i}^{*} \mathbf{1} \\
& =\mathbb{R} E_{t}^{*} \mathbf{1}
\end{aligned}
$$

Being a polynomial in A_{1}, the matrices A_{k-t} also has the same property

$$
E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}
$$

$E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C}, E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C} \in \mathbb{R} E_{t}^{*} 1$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
\Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

$E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C}$,

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
\Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

$E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C}, E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}$

Theorem (Assmus-Mattson)

$$
\begin{aligned}
& \left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
& \Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{aligned}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\begin{aligned}
& \quad\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \\
& \text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{aligned}
$$

,$E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C} \in \mathbb{R} E_{t}^{*} 1$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
\Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\begin{aligned}
& \qquad\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \\
& \text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{aligned}
$$

,$E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C} \in \mathbb{R} E_{t}^{*} 1$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
\Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\begin{aligned}
& \qquad\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \\
& \text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{aligned}
$$

$$
, E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}
$$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
\Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \times\left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

$E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C}, E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}$

Theorem (Assmus-Mattson)

$$
\begin{aligned}
& \left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
& \Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{aligned}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j}\left(E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}\right) \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}
\end{gathered}
$$

$E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C}, E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}$

Theorem (Assmus-Mattson)

$$
\begin{aligned}
& \left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
& \Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{aligned}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j}\left(E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}\right) \quad\left(\bmod \mathbb{R} E_{t}^{*} 1\right) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

$E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C}, E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}$

Theorem (Assmus-Mattson)

$$
\begin{aligned}
& \left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
& \Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{aligned}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j}\left(E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}\right) \quad\left(\bmod \mathbb{R} E_{t}^{*} 1\right) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

$E_{t}^{*} A_{1}^{j}\left(E_{0}+E_{v}\right) \hat{C}, E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}$

Theorem (Assmus-Mattson)

$$
\begin{aligned}
& \left(E_{0}+E_{v}\right) \hat{C}+\sum_{i \in S} E_{i} \hat{C}=E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C} \text { and } t=k-|S| \\
& \Longrightarrow E_{t}^{*} A_{k-t}\left(E_{0}+E_{v}\right) \hat{C}+E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{aligned}
$$

reduces to

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j}\left(E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}\right) \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}
\end{gathered}
$$

$\left\langle I, A_{1}, A_{1}^{2}, A_{1}^{3}, \ldots\right\rangle=\left\langle I, A_{1}, A_{2}, A_{3}, \ldots\right\rangle$

Also,

$$
\begin{aligned}
E_{t}^{*} A_{j} E_{0}^{*} \hat{C} & =E_{t}^{*} A_{j} \hat{0} \\
& =E_{t}^{*} E_{j}^{*} \mathbf{1} \\
& =\delta_{t, j} E_{t}^{*} \mathbf{1} \\
& \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{aligned}
$$

$\left\langle I, A_{1}, A_{1}^{2}, A_{1}^{3}, \ldots\right\rangle=\left\langle I, A_{1}, A_{2}, A_{3}, \ldots\right\rangle$

Also,

$$
\begin{aligned}
E_{t}^{*} A_{j} E_{0}^{*} \hat{C} & =E_{t}^{*} A_{j} \hat{0} \\
& =E_{t}^{*} E_{j}^{*} \mathbf{1} \\
& =\delta_{t, j} E_{t}^{*} \mathbf{1} \\
& \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{aligned}
$$

$\left\langle I, A_{1}, A_{1}^{2}, A_{1}^{3}, \ldots\right\rangle=\left\langle I, A_{1}, A_{2}, A_{3}, \ldots\right\rangle$

Also,

$$
\begin{aligned}
E_{t}^{*} A_{j} E_{0}^{*} \hat{C} & =E_{t}^{*} A_{j} \hat{0} \\
& =E_{t}^{*} E_{j}^{*} \mathbf{1} \\
& =\delta_{t, j} E_{t}^{*} \mathbf{1} \\
& \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{aligned}
$$

$\left\langle I, A_{1}, A_{1}^{2}, A_{1}^{3}, \ldots\right\rangle=\left\langle I, A_{1}, A_{2}, A_{3}, \ldots\right\rangle$

Also,

$$
\begin{aligned}
E_{t}^{*} A_{j} E_{0}^{*} \hat{C} & =E_{t}^{*} A_{j} \hat{0} \\
& =E_{t}^{*} E_{j}^{*} \mathbf{1} \\
& =\delta_{t, j} E_{t}^{*} \mathbf{1} \\
& \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{aligned}
$$

Thus

$$
E_{t}^{*} A_{j} E_{0}^{*} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1},
$$

Also,

$$
\begin{aligned}
E_{t}^{*} A_{j} E_{0}^{*} \hat{C} & =E_{t}^{*} A_{j} \hat{0} \\
& =E_{t}^{*} E_{j}^{*} \mathbf{1} \\
& =\delta_{t, j} E_{t}^{*} \mathbf{1} \\
& \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{aligned}
$$

Thus

$$
E_{t}^{*} A_{j} E_{0}^{*} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1},
$$

$E_{t}^{*} A_{1}^{j} E_{0}^{*} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}$.

$E_{t}^{*} \hat{A}_{1}^{A} E_{0}^{*} \hat{C} \in \mathbb{R} E_{t}^{*} 1$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j}\left(E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}\right) \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}
\end{gathered}
$$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j}\left(E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}\right) \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}
\end{gathered}
$$

$E_{t}^{*} A_{1}^{A} E_{0}^{*} \hat{C} \in \mathbb{R} E_{t}^{*} 1$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j}\left(E_{0}^{*} \hat{C}+\sum_{i \geq k} E_{i}^{*} \hat{C}\right) \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1}
\end{gathered}
$$

reduces to
Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C} \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

$V=\bigoplus_{i=0}^{v} E_{i} V:$ eigenspace decomposition of A_{1}

A_{1} has $|S|$ eigenvalues on

$$
W=\bigoplus_{i \in S} E_{i} V
$$

Being a polynomial in A_{1}, the matrix A_{k-t} has at most $|S|$ eigenvalues on W, so $\exists a_{0}, \ldots, a_{|S|-1} \in \mathbb{Q}$ such that

$$
A_{k-t}=\sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \quad \text { on } W
$$

$V=\bigoplus_{i=0}^{v} E_{i} V:$ eigenspace decomposition of A_{1}

A_{1} has $|S|$ eigenvalues on

$$
W=\bigoplus_{i \in S} E_{i} V
$$

Being a polynomial in A_{1}, the matrix A_{k-t} has at most $|S|$ eigenvalues on W, so $\exists a_{0}, \ldots, a_{|S|-1} \in \mathbb{Q}$ such that

$$
A_{k-t}=\sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \quad \text { on } W
$$

So

$$
A_{k-t} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}
$$

$A_{k-t} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C} \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

Proof:

$$
\begin{aligned}
& E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C}=E_{t}^{*} \sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \\
& \equiv \sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C}=\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C} .
\end{aligned}
$$

$A_{k-t} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C} \quad\left(\bmod \mathbb{R} E_{t}^{*} 1\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} 1 .
\end{gathered}
$$

Proof:

$$
\begin{aligned}
& E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C}=E_{t}^{*} \sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \\
& \equiv \sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C}=\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C} .
\end{aligned}
$$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C} \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

Proof:

$$
\begin{aligned}
& E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C}=E_{t}^{*} \sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \\
& \equiv \sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C}=\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C} .
\end{aligned}
$$

$A_{k-t} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C} \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

Proof:

$$
\begin{aligned}
& E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C}=E_{t}^{*} \sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \\
& \equiv \sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C}=\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C} .
\end{aligned}
$$

$A_{k-t} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C} \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

Proof:

$$
\begin{aligned}
& E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C}=E_{t}^{*} \sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \\
& \equiv \sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C}=\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C} .
\end{aligned}
$$

$A_{k-t} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}$

Theorem (Assmus-Mattson)

$$
\begin{gathered}
E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \equiv E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C} \quad\left(\bmod \mathbb{R} E_{t}^{*} \mathbf{1}\right) \quad(\forall j) \\
\text { and } t=k-|S| \Longrightarrow E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C} \in \mathbb{R} E_{t}^{*} \mathbf{1} .
\end{gathered}
$$

Proof:

$$
\begin{aligned}
& E_{t}^{*} A_{k-t} \sum_{i \in S} E_{i} \hat{C}=E_{t}^{*} \sum_{j=0}^{|S|-1} a_{j} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C}=\sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \in S} E_{i} \hat{C} \\
& \equiv \sum_{j=0}^{|S|-1} a_{j} E_{t}^{*} A_{1}^{j} \sum_{i \geq k} E_{i}^{*} \hat{C}=\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C} .
\end{aligned}
$$

End of proof.

Need to show:

$$
\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C}=0
$$

End of proof.

Need to show:

$$
\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C}=0
$$

Since

- $t=k-|S|$,
- $0 \leq j<|S|$,
- $k \leq i$.
we have $t+j<k \leq i$, and hence $E_{t}^{*} A_{1}^{j} E_{i}^{*}=0$ by the triangle inequality for the Hamming distance. Indeed,

$$
\begin{aligned}
\left(A_{1}^{j}\right)_{x, y} & =\#(\text { paths of length } j \text { from } x \text { to } y) \\
& =0 \text { if } \operatorname{wt}(x)=t \text { and } \operatorname{wt}(y)=i .
\end{aligned}
$$

End of proof.

Need to show:

$$
\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C}=0
$$

Since

- $t=k-|S|$,
- $0 \leq j<|S|$,
- $k \leq i$.
we have $t+j<k \leq i$, and hence $E_{t}^{*} A_{1}^{j} E_{i}^{*}=0$ by the triangle inequality for the Hamming distance. Indeed,

$$
\begin{aligned}
\left(A_{1}^{j}\right)_{x, y} & =\#(\text { paths of length } j \text { from } x \text { to } y) \\
& =0 \text { if } \operatorname{wt}(x)=t \text { and } \operatorname{wt}(y)=i .
\end{aligned}
$$

End of proof.

Need to show:

$$
\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C}=0
$$

Since

- $t=k-|S|$,
- $0 \leq j<|S|$,
- $k \leq i$.
we have $t+j<k \leq i$, and hence $E_{t}^{*} A_{1}^{j} E_{i}^{*}=0$ by the triangle inequality for the Hamming distance. Indeed,

$$
\begin{aligned}
\left(A_{1}^{j}\right)_{x, y} & =\#(\text { paths of length } j \text { from } x \text { to } y) \\
& =0 \text { if } \operatorname{wt}(x)=t \text { and } \operatorname{wt}(y)=i .
\end{aligned}
$$

End of proof.

Need to show:

$$
\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C}=0
$$

Since

- $t=k-|S|$,
- $0 \leq j<|S|$,
- $k \leq i$.
we have $t+j<k \leq i$, and hence $E_{t}^{*} A_{1}^{j} E_{i}^{*}=0$ by the triangle inequality for the Hamming distance. Indeed,

$$
\begin{aligned}
\left(A_{1}^{j}\right)_{x, y} & =\#(\text { paths of length } j \text { from } x \text { to } y) \\
& =0 \text { if } \operatorname{wt}(x)=t \text { and } \operatorname{wt}(y)=i .
\end{aligned}
$$

End of proof.

Need to show:

$$
\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C}=0
$$

Since

- $t=k-|S|$,
- $0 \leq j<|S|$,
- $k \leq i$.
we have $t+j<k \leq i$, and hence $E_{t}^{*} A_{1}^{j} E_{i}^{*}=0$ by the triangle inequality for the Hamming distance. Indeed,

$$
\begin{aligned}
\left(A_{1}^{j}\right)_{x, y} & =\#(\text { paths of length } j \text { from } x \text { to } y) \\
& =0 \text { if } \operatorname{wt}(x)=t \text { and } \operatorname{wt}(y)=i
\end{aligned}
$$

End of proof.

Need to show:

$$
\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C}=0
$$

Since

- $t=k-|S|$,
- $0 \leq j<|S|$,
- $k \leq i$.
we have $t+j<k \leq i$, and hence $E_{t}^{*} A_{1}^{j} E_{i}^{*}=0$ by the triangle inequality for the Hamming distance. Indeed,

$$
\begin{aligned}
\left(A_{1}^{j}\right)_{x, y} & =\#(\text { paths of length } j \text { from } x \text { to } y) \\
& =0 \text { if } \operatorname{wt}(x)=t \text { and } \operatorname{wt}(y)=i
\end{aligned}
$$

End of proof.

Need to show:

$$
\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C}=0
$$

Since

- $t=k-|S|$,
- $0 \leq j<|S|$,
- $k \leq i$.
we have $t+j<k \leq i$, and hence $E_{t}^{*} A_{1}^{j} E_{i}^{*}=0$ by the triangle inequality for the Hamming distance. Indeed,

$$
\begin{aligned}
\left(A_{1}^{j}\right)_{x, y} & =\#(\text { paths of length } j \text { from } x \text { to } y) \\
& =0 \text { if } \operatorname{wt}(x)=t \text { and } \operatorname{wt}(y)=i
\end{aligned}
$$

End of proof.

Need to show:

$$
\sum_{j=0}^{|S|-1} \sum_{i \geq k} a_{j}\left(E_{t}^{*} A_{1}^{j} E_{i}^{*}\right) \hat{C}=0
$$

Since

- $t=k-|S|$,
- $0 \leq j<|S|$,
- $k \leq i$.
we have $t+j<k \leq i$, and hence $E_{t}^{*} A_{1}^{j} E_{i}^{*}=0$ by the triangle inequality for the Hamming distance. Indeed,

$$
\begin{aligned}
\left(A_{1}^{j}\right)_{x, y} & =\#(\text { paths of length } j \text { from } x \text { to } y) \\
& =0 \text { if } \operatorname{wt}(x)=t \text { and } \operatorname{wt}(y)=i .
\end{aligned}
$$

The Assmus-Mattson theorem

Theorem

Let C be a binary code of length v, minimum weight k.

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\} \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}, \\
S & =\left\{\operatorname{wt}(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
t & =k-|S|
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.

The Assmus-Mattson theorem

Theorem

Let C be a binary code of length v, minimum weight k.

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\} \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\} \\
S & =\left\{\operatorname{wt}(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\} \\
t & =k-|S|
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.

- C : $[24,12,8]$ binary doubly even self-dual $\left(C=C^{\perp}\right)$ code, so $k=8$ and C has only weights $0,8,12,16,24$.

$$
\begin{aligned}
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<w t(x)<24\right\}=\{8,12,16\} \\
t & =k-|S|=8-3=5
\end{aligned}
$$

Uniqueness of the extended binary Golay code

$C:[24,12,8]$ binary doubly even self-dual $\left(C=C^{\perp}\right)$ code.

- The Assmus-Mattson theorem implies $(\mathcal{P}, \mathcal{B})$ is a $5-(24,8, \lambda)$ design, where $\mathcal{P}=\{1,2, \ldots, 24\}$,

$$
\mathcal{B}=\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=8\},
$$

for some λ.

Uniqueness of the extended binary Golay code

$C:[24,12,8]$ binary doubly even self-dual $\left(C=C^{\perp}\right)$ code.

- The Assmus-Mattson theorem implies $(\mathcal{P}, \mathcal{B})$ is a $5-(24,8, \lambda)$ design, where $\mathcal{P}=\{1,2, \ldots, 24\}$,

$$
\mathcal{B}=\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=8\}
$$

for some λ.

- If $\lambda>1$, then there are two distinct blocks in \mathcal{B} sharing at least 5 (hence 6) points. Their symmetric difference would make a vector of weight 4 in C, contradicting the fact that C has minimum weight 8 . Thus $\lambda=1$.

Uniqueness of the extended binary Golay code

$C:[24,12,8]$ binary doubly even self-dual $\left(C=C^{\perp}\right)$ code.

- The Assmus-Mattson theorem implies $(\mathcal{P}, \mathcal{B})$ is a $5-(24,8, \lambda)$ design, where $\mathcal{P}=\{1,2, \ldots, 24\}$,

$$
\mathcal{B}=\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=8\}
$$

for some λ.

- If $\lambda>1$, then there are two distinct blocks in \mathcal{B} sharing at least 5 (hence 6) points. Their symmetric difference would make a vector of weight 4 in C, contradicting the fact that C has minimum weight 8 . Thus $\lambda=1$.
- So C is the binary code of a $5-(24,8,1)$ design which was already shown to be unqiue.
This proves the uniqueness of the extended binary Golay code.

Applicability of the Assmus-Mattson theorem

Theorem

Let C be a binary code of length v, minimum weight k.

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\}, \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}, \\
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<w t(x)<v\right\}, \\
t & =k-|S| .
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.

Applicability of the Assmus-Mattson theorem

Theorem

Let C be a binary code of length v, minimum weight k.

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\}, \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}, \\
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
t & =k-|S| .
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.
The conclusion is stronger if k is large and $|S|$ is small. These are conflicting requirments:

Applicability of the Assmus-Mattson theorem

Theorem

Let C be a binary code of length v, minimum weight k.

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\}, \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}, \\
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
t & =k-|S| .
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.
The conclusion is stronger if k is large and $|S|$ is small. These are conflicting requirments:
larger $k \Longrightarrow$ smaller $C \Longrightarrow$ larger $C^{\perp} \Longrightarrow$ larger S

Applicability of the Assmus-Mattson theorem

Theorem

Let C be a binary code of length v, minimum weight k.

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\}, \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}, \\
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
t & =k-|S| .
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.
The conclusion is stronger if k is large and $|S|$ is small. These are conflicting requirments:
larger $k \Longrightarrow$ smaller $C \Longrightarrow$ larger $C^{\perp} \Longrightarrow$ larger S

Applicability of the Assmus-Mattson theorem

Theorem

Let C be a binary code of length v, minimum weight k.

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\}, \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}, \\
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
t & =k-|S| .
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ.
The conclusion is stronger if k is large and $|S|$ is small. These are conflicting requirments:
larger $k \Longrightarrow$ smaller $C \Longrightarrow$ larger $C^{\perp} \Longrightarrow$ larger S suppose $C=C^{\perp}$, doubly even $\Longrightarrow S$ not too large

Binary doubly even self-dual codes

Under what circumstance can one obtain a 5 -design from a doubly even self-dual code? Let k be the minimum weight.

$$
\begin{aligned}
S & =\{w t(x) \mid x \in C, 0<w t(x)<v\}, \\
5 & =k-|S| .
\end{aligned}
$$

Binary doubly even self-dual codes

Under what circumstance can one obtain a 5 -design from a doubly even self-dual code? Let k be the minimum weight.

$$
\begin{aligned}
S & =\{w t(x) \mid x \in C, 0<w t(x)<v\}, \\
5 & =k-|S| .
\end{aligned}
$$

- $k=8,|S|=3, S=\{8,12,16\}, v=24$.

Binary doubly even self-dual codes

Under what circumstance can one obtain a 5 -design from a doubly even self-dual code? Let k be the minimum weight.

$$
\begin{aligned}
S & =\{w t(x) \mid x \in C, 0<w t(x)<v\}, \\
5 & =k-|S| .
\end{aligned}
$$

- $k=8,|S|=3, S=\{8,12,16\}, v=24$.
- $k=12,|S|=7, S=\{12,16,20,24,28,32,36\}, v=48$.

Binary doubly even self-dual codes

Under what circumstance can one obtain a 5 -design from a doubly even self-dual code? Let k be the minimum weight.

$$
\begin{aligned}
S & =\{w t(x) \mid x \in C, 0<w t(x)<v\}, \\
5 & =k-|S| .
\end{aligned}
$$

- $k=8,|S|=3, S=\{8,12,16\}, v=24$.
- $k=12,|S|=7, S=\{12,16,20,24,28,32,36\}, v=48$.
- $k=16,|S|=11, S=\{16,20,24,28,32,36,40,44,48,52,56\}$, $v=72$.

Binary doubly even self-dual codes

Under what circumstance can one obtain a 5 -design from a doubly even self-dual code? Let k be the minimum weight.

$$
\begin{aligned}
S & =\{w t(x) \mid x \in C, 0<w t(x)<v\}, \\
5 & =k-|S| .
\end{aligned}
$$

- $k=8,|S|=3, S=\{8,12,16\}, v=24$.
- $k=12,|S|=7, S=\{12,16,20,24,28,32,36\}, v=48$.
- $k=16,|S|=11, S=\{16,20,24,28,32,36,40,44,48,52,56\}$, $v=72$.
In general, $\forall k$: a multiple of $4,|S|=k-5$,

$$
S=\{k, k+4, k+8, \ldots, 5 k-24=v-k\}
$$

$v=6 k-24=24 m$, where $k=4 m+4$.

Binary doubly even self-dual codes

Under what circumstance can one obtain a 5 -design from a doubly even self-dual code? Let k be the minimum weight.

$$
\begin{aligned}
S & =\{w t(x) \mid x \in C, 0<w t(x)<v\}, \\
5 & =k-|S| .
\end{aligned}
$$

- $k=8,|S|=3, S=\{8,12,16\}, v=24$.
- $k=12,|S|=7, S=\{12,16,20,24,28,32,36\}, v=48$.
- $k=16,|S|=11, S=\{16,20,24,28,32,36,40,44,48,52,56\}$, $v=72$.
In general, $\forall k$: a multiple of $4,|S|=k-5$,

$$
S=\{k, k+4, k+8, \ldots, 5 k-24=v-k\}
$$

$v=6 k-24=24 m$, where $k=4 m+4$.

Extremal binary doubly even self-dual codes

Theorem (Mallows-Sloane, 1973)

For $m \geq 1$, a binary doubly even self-dual $[24 m, 12 m$] code has minimum weight at most $4 m+4$.

Extremal binary doubly even self-dual codes

Theorem (Mallows-Sloane, 1973)

For $m \geq 1$, a binary doubly even self-dual $[24 m, 12 m$] code has minimum weight at most $4 m+4$.

Definition

A binary doubly even self-dual $[24 m, 12 m$] code with minimum weight $4 m+4$ is called extremal.

Extremal binary doubly even self-dual codes

Theorem (Mallows-Sloane, 1973)

For $m \geq 1$, a binary doubly even self-dual [$24 m, 12 m$] code has minimum weight at most $4 m+4$.

Definition

A binary doubly even self-dual [$24 m, 12 m$] code with minimum weight $4 m+4$ is called extremal.

For $m \geq 1$, an extremal binary doubly even self-dual code gives a $5-(24 m, 4 m+4, \lambda)$ design by the Assmus-Mattson theorem.

- $m=1$: the extended binary Golay code and the $5-(24,8,1)$ design
- $m=2$: Houghten-Lam-Thiel-Parker (2003): unique $[48,24,12]$ code and a $5-(48,12,8)$ design which is unique under self-orthogonality.

Extremal binary doubly even self-dual codes

Definition

A binary doubly even self-dual $[24 m, 12 m$] code with minimum weight $4 m+4$ is called extremal.

- For $m \geq 1$, an extremal binary doubly even self-dual code gives a $5-(24 m, 4 m+4, \lambda)$ design by the Assmus-Mattson theorem.
- For $m \geq 3$, neither a code nor a design is known.

Theorem (Zhang, 1999)

There does not exist an extremal [24m, 12m,4m+4] binary doubly even self-dual code for $m \geq 154$.

