Codes Generated by Designs, and Designs Supported by Codes Part III

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University

May, 2013
 CIMPA-UNESCO-MESR-MINECO-THAILAND research school
 Graphs, Codes, and Designs
 Ramkhamhaeng University

Contents

(1) PartI

- t-designs
- intersection numbers
- 5- $(24,8,1)$ design
- $[24,12,8]$ binary self-dual code
(2) Part II
- Assmus-Mattson theorem
- extremal binary doubly even codes
(3) Part III
- Hadamard matrices
- ternary self-dual codes

Summary of Part I and II

$\mathcal{D}: 5-(24,8,1)$ design (Witt system).

- The binary code C of \mathcal{D} is a doubly even self-dual $[24,12,8]$ code.
- $\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=8\}=\mathcal{B}$.
- There is a unique 5- $(24,8,1)$ design up to isomorphism.
- There is a unique doubly even self-dual $[24,12,8]$ code (up to isomorphism), by the Assmus-Mattson theorem.
Part III will cover
- Hadamard matrices
- Characterization of Hadamard matrices contained in the doubly even self-dual $[24,12,8]$ code, and their relationships to ternary self-dual codes

Hadamard matrices

Definition

A Hadamard matrix of order n is an $n \times n$ matrix with entries ± 1, such that rows are pairwise orthogonal:

- $H: n \times n$ matrix,
- $H_{i, j} \in\{ \pm 1\}$ for all $i, j \in\{1, \ldots, n\}$,
- $H H^{\top}=n l$.

Example

The Hadamard matrix of Sylvester type, where $n=2^{v}$:

$$
\begin{gathered}
H=\left((-1)^{x \cdot y}\right)_{x, y \in \mathbb{F}_{2}^{v}} . \\
v=1 \Longrightarrow H=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
\end{gathered}
$$

Hadamard matrices of Sylvester type, $n=2^{v}$

$$
\left.\begin{array}{c}
v=2 \Longrightarrow H=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \\
v=3 \Longrightarrow H=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 & 1 & -1 \\
-1 \\
1 & 1 & 1 & -1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 \\
1 & -1 & -1 & -1 & 1 & 1 & 1
\end{array}\right]-1
\end{array}\right] .
$$

Existence of Hadamard matrices

A Hadamard matrix of order n exists for

$$
n=1,2,4,8,12,16, \ldots(\text { multiples of } 4), \ldots, 664, \ldots
$$

Except $n=1,2$, the existence of a Hadamard matrix of order n implies $n \equiv 0(\bmod 4)$:

$$
\begin{array}{cccc}
1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 \\
1 \cdots 1 & 1 \cdots 1 & -1 \cdots-1 & -1 \cdots-1 \\
1 \cdots 1 & -1 \cdots-1 & 1 \cdots 1 & -1 \cdots-1
\end{array}
$$

But it is not known whether a Hadamard matrix of order 668 exists.

Conjecture

A Hadamard matrix of order n exists for any $n \equiv 0(\bmod 4)$.
Sylvester type: $n=2^{v}=1,2,4,8,16, \ldots$

Classification of Hadamard matrices

If H is a Hadamard matrix, then so is H^{\top}.
Two Hadamard matrices are said to be equivalent if one is obtained from the other by row or column permutations or negations:

$$
H_{1} \cong H_{2} \Longleftrightarrow \exists P, Q, P H_{1} Q=H_{2},
$$

where P and Q are matrices in which only 1 or -1 appear exactly once in every row and once in every column, all other entries are 0 . The numbers of equivalence classes of Hadamard matrices are known for orders up to 32 .

order	1	2	4	8	12	16	20	24	28	32
number	1	1	1	1	1	5	3	60	487	$13,710,027$

16, 20: Hall; 24: Ito-Leon-Longyear, Kimura; 28: Kimura, Spence; 32: Kharaghani and Tayfeh-Rezaie (2012).

Normalized and binary Hadamard matrices

Every Hadamard matrix is equivalent to the one with 1 everywhere in the first row:

$$
H=\left[\begin{array}{cc}
1 & 1 \cdots 1 \\
& \cdots \\
& \pm 1 \\
& \cdots
\end{array}\right]
$$

Such a Hadamard matrix H is said to be normalized. The binary Hadamard matrix associated to H is

$$
B=\frac{1}{2}(H+J)=\left[\begin{array}{cc}
1 & 1 \cdots 1 \\
& \cdots \\
& 1 \text { or } 0
\end{array}\right]=\left[\begin{array}{c}
1 \\
b^{(1)} \\
\vdots \\
b^{(n-1)}
\end{array}\right]
$$

Hadamard 3-design

- H : a normalized Hadamard matrix of order n.
- $B=\frac{1}{2}(H+J)$: the associated binary Hadamard matrix. B has row vectors $b^{(0)}=1, b^{(1)}, \ldots, b^{(n-1)}$.

$$
\begin{aligned}
\mathcal{P} & =\{1, \ldots, n\} \\
\mathcal{B} & =\bigcup_{i=1}^{n-1}\left\{\operatorname{supp}\left(b^{(i)}\right), \operatorname{supp}\left(\mathbf{1}+b^{(i)}\right)\right\}
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $3-\left(n, \frac{n}{2}, \frac{n}{4}-1\right)$ design. Indeed, consider the transpose of

$$
\begin{array}{lccc}
1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 \\
1 \cdots 1 & 1 \cdots 1 & -1 \cdots-1 & -1 \cdots-1 \\
1 \cdots 1 & -1 \cdots-1 & 1 \cdots 1 & -1 \cdots-1 \\
\mathbf{1}^{\top} & & &
\end{array} \quad \text { in }\left[\begin{array}{c}
H \\
-H
\end{array}\right]
$$

The isomorphism class of Hadamard 3-design

Definition

Two designs $(\mathcal{P}, \mathcal{B})$ and $\left(\mathcal{P}^{\prime}, \mathcal{B}^{\prime}\right)$ are said to be isomorphic if there is a bijection from \mathcal{P} to \mathcal{P}^{\prime} which maps \mathcal{B} to \mathcal{B}^{\prime}.

$$
H \xrightarrow{\text { normalize }} B \rightarrow(\mathcal{P}, \mathcal{B})
$$

swap rows In general, $(\mathcal{P}, \mathcal{B}) \not \neq\left(\mathcal{P}, \mathcal{B}^{\prime}\right)$

$$
H^{\prime} \xrightarrow{\text { normalize }} B^{\prime} \rightarrow\left(\mathcal{P}, \mathcal{B}^{\prime}\right)
$$

Definition

The binary code of a Hadamard matrix H is defined as that of the Hadamard 3-design $(\mathcal{P}, \mathcal{B})$ obtained from the binary Hadamard matrix associated to any normalized Hadamard matrix equivalent to H.

Is it well defined?

The isomorphism class of the binary code

$$
H=\left[\begin{array}{c}
\mathbf{1} \\
h^{(1)} \\
\vdots \\
h^{(n-1)}
\end{array}\right] \longrightarrow B=\frac{1}{2}(H+J)=\left[\begin{array}{c}
\mathbf{1} \\
b^{(1)} \\
\vdots \\
b^{(n-1)}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
h^{(1)} \\
\mathbf{1} \\
\vdots \\
h^{(n-1)}
\end{array}\right] \rightarrow H^{\prime}=\left[\begin{array}{c}
\mathbf{1} \\
h^{(1)} \\
h^{(2)} * h^{(1)} \\
\vdots \\
h^{(n-1)} * h^{(1)}
\end{array}\right] \rightarrow B^{\prime}=\frac{1}{2}\left(H^{\prime}+J\right)=\left[\begin{array}{c}
\mathbf{1} \\
b^{(1)} \\
b^{(2)}+b^{(1)}+\mathbf{1} \\
\vdots \\
b^{(n-1)}+b^{(1)}+\mathbf{1}
\end{array}\right]
$$

$h^{(1)}$	$h^{(2)}$	$h^{(1)} * h^{(2)}$	$b^{(1)}$	$b^{(2)}$	$b^{(1)}+b^{(2)}+\mathbf{1}$	B and B^{\prime}
1	1	1	1	1	1	
1	-1	-1	1	0	0	same binary
-1	1	-1	0	1	0	code
-1	-1	1	0	0	1	

Normalized and binary Hadamard matrices

$$
H=\left[\begin{array}{c}
\mathbf{1} \\
h^{(1)} \\
\vdots \\
h^{(n-1)}
\end{array}\right] \longrightarrow B=\frac{1}{2}(H+J)=\left[\begin{array}{c}
\mathbf{1} \\
b^{(1)} \\
\vdots \\
b^{(n-1)}
\end{array}\right]
$$

Then

- B has first row 1, the vector with weight n.
- All the other rows have weight $\frac{n}{2}$.
- Two distinct rows of weight $\frac{n}{2}$ have $\frac{n}{4}$ coordinates in common in their supports.
- $n \equiv 0(\bmod 8) \Longrightarrow$ the binary code of H is self-orthogonal.

The binary code of a Hadamard matrix

Lemma

Let C be the binary code of a Hadamard matrix of order n.

- If $n \equiv 0(\bmod 8)$, then C is doubly even self-orthogonal.
- If $n \equiv 8(\bmod 16)$, then C is doubly even self-dual.

In particular, for $n=24, C$ is doubly even self-dual.

- One can ask: which of the 60 Hadamard matrices of order 24 give the extended binary Golay code?
- Among the 60 Hadamard matrices of order 24, only two give the extended binary Golay code.

Ternary codes

A (linear) ternary code of length n is a subspace of the vector space \mathbb{F}_{3}^{n}. If C is a ternary code and $\operatorname{dim} C=k$, we say C is an ternary [$n, k]$ code. The dual code of a ternary code C is defined as

$$
C^{\perp}=\left\{x \in \mathbb{F}_{3}^{n} \mid x \cdot y=0(\forall y \in C)\right\} .
$$

where

$$
x \cdot y=\sum_{i=1}^{n} x_{i} y_{i} .
$$

Then $\operatorname{dim} C^{\perp}=n-\operatorname{dim} C$. The code C is said to be self-orthogonal if $C \subset C^{\perp}$ and self-dual if $C=C^{\perp}$.
Two ternary codes are said to be isomorphic if one is obtained from the other by permutation and negation of coordinates.

Generator matrix of a ternary code

If a ternary code C of length n is generated by row vectors $x^{(1)}, \ldots, x^{(m)}$, then the matrix

$$
\left[\begin{array}{c}
x^{(1)} \\
\vdots \\
x^{(m)}
\end{array}\right]
$$

is called a generator matrix of C. This means

$$
C=\left\{\sum_{i=1}^{m} \epsilon_{i} x^{(i)} \mid \epsilon_{1}, \ldots, \epsilon_{m} \in \mathbb{F}_{3}\right\} \subset \mathbb{F}_{3}^{n}
$$

Definition

The ternary code of a Hadamard matrix H is the ternary code with generator matrix H.

Weight

For $x \in \mathbb{F}_{3}^{v}$, we write

$$
\begin{aligned}
\operatorname{supp}(x) & =\left\{i \mid 1 \leq i \leq v, x_{i} \neq 0\right\} \\
\operatorname{wt}(x) & =|\operatorname{supp}(x)|
\end{aligned}
$$

For a ternary code C, its minimum weight is

$$
\min \{w t(x) \mid 0 \neq x \in C\}
$$

If an $[v, k]$ ternary code C has minimum weight d, we call C an $[v, k, d]$ code.

Ternary self-dual codes of length 24

Lemma

Let n be an integer divisible by 4 . If $3 \mid n$ and $9 \nmid n$, then the ternary code of a Hadamard matrix of order n is self-dual.

In particular, the ternary code of a Hadamard matrix of order 24 is self-dual.

- Leon-Pless-Sloane (1981): there are two self-dual codes of length 24 with minimum weight 9 (largest possible), up to isomorphism.
- One can ask: which of the 60 Hadamard matrices of order 24 give the codes with minimum weight 9 ?
- Among the 60 Hadamard matrices of order 24, only two give codes with minimum weight 9 .

Verification using MAGMA

Assmus and Key in their 1992 book observed:
DB:=HadamardDatabase();
NumberOfMatrices (DB,24) eq 60; H24s:=[Matrix(DB,24,i):i in [1..60]]; normalize:=func<H|H*DiagonalMatrix(Eltseq(H[1]))>;
J:=Matrix(Integers(),24,24,[1:i in [1..24^2]]);
bH:=func<H|Parent(H)! [x div 2:x in Eltseq(normalize(H)+J)]>;
bC: =func<H|LinearCode(ChangeRing(bH(H), GF (2))) >;
tCT:=func<H|LinearCode(ChangeRing(Transpose(H), GF (3)))>;
[i:i in [1..60]|MinimumWeight(bC(H24s[i])) eq 8] eq [3,9];
[i:i in [1..60]|MinimumWeight(tCT(H24s[i])) eq 9] eq [3,9];

Assmus and Key, 1992

Fact

Let H be a Hadamard matrix of order 24. The following are equivalent.

- The binary code of H has minimum weight 8 (largest).
- The ternary code of H^{\top} has minimum weight 9 (largest).
- The binary code of H is doubly even self-dual, and the minimum weight is 4 or 8 .
- The ternary code of H^{\top} is self-dual, and the minimum weight is 6 or 9 . (A ternary self-dual code may have minimum weight 3 , but no ternary code of a Hadamard matrix has minimum weight $3)$.
- There are two (up to equivalence) Hadamard matrices H satisfying the above equivalent conditions.

H : a normalized Hadamard matrix of order 24

- C_{2} : the binary code of $H=$ the binary code with generator matrix $B=\frac{1}{2}(H+J)$.
- C_{3} : the ternary code of H^{\top}.
- C_{2} is doubly even self-dual, and C_{3} is self-dual.
- C_{2} has only weights divisible by $4, C_{3}$ has only weights divisible by 3 .

Fact

The following are equivalent:

- C_{2} has minimum weight 8 (largest).
- C_{3} has minimum weight 9 (largest).

We first show: $C_{3}=C_{3}^{\perp}$ has no vectors of weight 3 .

C_{3} : the ternary code of H^{\top} (n is arbitrary)

Suppose

$$
\begin{aligned}
C_{3}^{\perp} & =\left\{v \in \mathbb{F}_{3}^{n} \mid H^{\top} v^{\top}=0\right\} \\
& =\left\{v \bmod 3 \mid v \in \mathbb{Z}^{n}, v H \equiv 0(\bmod 3)\right\}
\end{aligned}
$$

contains a vector v of weight 3 :

$$
v=\left(0, \ldots, 0, \epsilon_{i}, 0, \ldots, 0, \epsilon_{j}, 0, \ldots, 0, \epsilon_{k}, 0, \ldots, 0\right)
$$

where $\epsilon_{i}, \epsilon_{j}, \epsilon_{k} \in\{ \pm 1\}$.

$$
\begin{aligned}
& v H \equiv 0(\bmod 3) \\
& \Longrightarrow \epsilon_{i} H_{i, \ell}+\epsilon_{j} H_{j, \ell}+\epsilon_{k} H_{k, \ell} \equiv 0(\bmod 3) \quad(\forall \ell \in\{1, \ldots, n\}) \\
& \Longrightarrow \epsilon_{i} H_{i, \ell}=\epsilon_{j} H_{j, \ell}=\epsilon_{k} H_{k, \ell} \quad(\forall \ell \in\{1, \ldots, n\}) \\
& \Longrightarrow \epsilon_{j} \epsilon_{i} H_{i, \ell}=H_{j, \ell} \quad(\forall \ell \in\{1, \ldots, n\}) \\
& \Longrightarrow \text { row } i \text { of } H=\text { row } j \text { of } H, \text { up to sign }
\end{aligned}
$$

This is impossible for a Hadamard matrix H.

C_{3}^{\perp} does not have weight 3

- H : a normalized Hadamard matrix of order 24
- C_{2} : the binary code of $H=$ the binary code with generator matrix $B=\frac{1}{2}(H+J)$.
- C_{3} : the ternary code of H^{\top}.
- C_{2} is doubly even self-dual, and C_{3} is self-dual.
- C_{2} has only weights divisible by $4, C_{3}$ has only weights divisible by 3 .
- $C_{3}=C_{3}^{\perp}$ does not have weight 3

Fact

The following are equivalent:

- C_{2} has minimum weight 8 (i.e., C_{2} doesn't have weight 4)
- C_{3} has minimum weight 9 (i.e., C_{2} doesn't have weight 6)

H : a normalized Hadamard matrix of order 24

- C_{2} : the binary code of $H=$ the binary code with generator matrix $B=\frac{1}{2}(H+J)$.
- C_{3} : the ternary code of H^{\top}.

Theorem

The following are equivalent.

- C_{2} has weight 4 .
- C_{3} has weight 6.

H : a normalized Hadamard matrix of order 24

- $C_{2}=\left\{v B \bmod 2 \mid v \in \mathbb{Z}^{24}\right\}:$ the binary code of H, $B=\frac{1}{2}(H+J)$.
- $C_{3}=\left\{v \bmod 3 \mid v \in \mathbb{Z}^{24}, v H \equiv 0(\bmod 3)\right\}$: the ternary code of H^{\top}.

Theorem

The following are equivalent.
(1) C_{2} has weight 4 .
(2) C_{3} has weight 6 .

Proof of $(2 \Longrightarrow 1) . v \in\{0, \pm 1\}^{24} \subset \mathbb{Z}^{24}, w t(v)=6, v H \equiv 0$ $(\bmod 3)$. Set

$$
u=\frac{1}{6} v H .
$$

Then $u \in \mathbb{Z}^{24}, u \bmod 2 \in C_{2}, \operatorname{wt}(u \bmod 2)=4$.

Hadamard matrices and norms

Lemma

Let H be a Hadamard matrix of order n, v a vector in \mathbb{Z}^{n}. Then

- $v H \equiv\|v\|^{2} \mathbf{1}(\bmod 2)$,
- $\|v H\|^{2}=n\|v\|^{2}$.

Proof.

$$
\begin{aligned}
& v H \equiv v J=\left(\sum_{i=1}^{n} v_{i}\right) \mathbf{1} \equiv\left(\sum_{i=1}^{n} v_{i}^{2}\right) \mathbf{1}=\|v\|^{2} \mathbf{1}(\bmod 2) \\
& \|v H\|^{2}=v H H^{\top} v^{\top}=v(n l) v^{\top}=n\|v\|^{2}
\end{aligned}
$$

H : a normalized Hadamard matrix of order 24

- $C_{2}=\left\{v B \bmod 2 \mid v \in \mathbb{Z}^{24}\right\}:$ the binary code of H, $B=\frac{1}{2}(H+J)$.
- $v \in\{0, \pm 1\}^{24} \subset \mathbb{Z}^{24}, w t(v)=6, v H \equiv 0(\bmod 3)$.
$u=\frac{1}{6} v H \Longrightarrow u \in \mathbb{Z}^{24}, \operatorname{wt}(u \bmod 2)=4, u \bmod 2 \in C_{2}$.

Lemma

- $v H \equiv\|v\|^{2} \mathbf{1}(\bmod 2)$,
- $\|v H\|^{2}=n\|v\|^{2}=24\|v\|^{2}$.

Since $\|v\|^{2}=\operatorname{wt}(v)=6, v H \equiv\|v\|^{2} \mathbf{1} \equiv 0(\bmod 2)$. Thus $v H \equiv 0$ $(\bmod 6)$, and $u \in \mathbb{Z}^{24}$.

$$
\|u\|^{2}=\frac{1}{6^{2}} 24\|v\|^{2}=\frac{24 \cdot 6}{6^{2}}=4 \Longrightarrow \operatorname{wt}(u \bmod 2)=4 .
$$

H : a normalized Hadamard matrix of order 24

- $C_{2}=\left\{v B \bmod 2 \mid v \in \mathbb{Z}^{24}\right\}:$ the binary code of H,

$$
B=\frac{1}{2}(H+J) .
$$

- $v \in\{0, \pm 1\}^{24} \subset \mathbb{Z}^{24}, w t(v)=6, v H \equiv 0(\bmod 3)$.

$$
u=\frac{1}{6} v H \Longrightarrow u \in \mathbb{Z}^{24}, \operatorname{wt}(u \bmod 2)=4, u \bmod 2 \in C_{2}
$$

$$
\begin{aligned}
u & \equiv \frac{3}{6} v H(\bmod 2) \\
& =\frac{1}{2} v(2 B-J)=v B-\frac{1}{2} v J \\
& \equiv v B+\epsilon \mathbf{1}(\bmod 2) \quad(\epsilon \in\{0,1\}) \\
& =\left(v+\epsilon e_{1}\right) B \in C_{2} \quad(\text { after reducing mod } 2) .
\end{aligned}
$$

H : a normalized Hadamard matrix of order 24

- C_{2} : the binary code of $H=$ the binary code with generator matrix $B=\frac{1}{2}(H+J)$.
- C_{3} : the ternary code of H^{\top}.

Then C_{2} is doubly even self-dual, and C_{3} is self-dual.

Theorem (Munemasa-Tamura, 2012)

The following are equivalent:
(1) C_{2} has minimum weight 8 (largest).
(2) C_{3} has minimum weight 9 (largest).

We have proved $1 \Longrightarrow 2$ by showing its contrapositive assertion. The other implication can be proved similarly.

$H:$ a normalized Hadamard matrix of order 48

Similarly, one can consider a code over $\mathbb{Z} / 4 \mathbb{Z}$, the ring of integers modulo 4. The Euclidean weight of a vector $v \in(\mathbb{Z} / 4 \mathbb{Z})^{n}$ is

$$
w t(v)=\sum_{i=1}^{n} v_{i}^{2}
$$

where we regard $v_{i} \in\{0, \pm 1,2\} \subset \mathbb{Z}$.

Theorem

- C_{4} : the code over $\mathbb{Z} / 4 \mathbb{Z}$ with generator matrix $B=\frac{1}{2}(H+J)$.
- C_{3} : the ternary code of H^{\top}.

Then both C_{4} and C_{3} are self-dual. Moreover, the following are equivalent:

- C_{4} has minimum Euclidean weight 24 (largest).
- C_{3} has minimum weight 15 (largest).

Hadamard matrices of order 48 and ternary codes

Theorem

If C is a ternary self-dual code of length 48 and minimum weight 15 , then C is generated by a Hadamard matrix.

Unlike the case $n=24$, the following problem is still open.

Problem

Classify ternary self-dual codes of length 48 with minimum weight 15 , or classify Hadamard matrices of order 48 which generate such a code.

Extremal ternary self-dual codes

Theorem (Mallows-Sloane, 1973)

For $m \geq 1$, a ternary self-dual $[12 m, 6 m$] code has minimum weight at most $3 m+3$.

Definition

A ternary self-dual $[12 m, 6 m$] code with minimum weight $3 m+3$ is called extremal.

- $m=1$: the extended ternary Golay code and the $5-(12,6,1)$ design,
- $m=2$: exactly two codes,
- $m=3$: at least one code,
- $m=4$: at least two codes,
- $m=5$: at least two codes.

All these codes are generated by a Hadamard matrix.

Extremal ternary self-dual codes

Definition

A ternary self-dual $[12 m, 6 m$] code with minimum weight $3 m+3$ is called extremal.

For $m \geq 6$, no code is known. In fact, for m even and $m \geq 6$, an extremal ternary self-dual [$12 m, 6 m, 3 m+3$] code does not exist.

Theorem (Zhang, 1999)

There does not exist an extremal [$12 m, 6 m, 3 m+3$] ternary self-dual code for $m \geq 70$.

