
Codes Generated by Designs, and

Designs Supported by Codes

Part III

Akihiro Munemasa1

1Graduate School of Information Sciences
Tohoku University

May, 2013
CIMPA-UNESCO-MESR-MINECO-THAILAND

research school
Graphs, Codes, and Designs
Ramkhamhaeng University

Akihiro Munemasa (Tohoku University) Codes and Designs 1 / 39



Contents

1 Part I

t-designs
intersection numbers
5-(24, 8, 1) design
[24, 12, 8] binary self-dual code

2 Part II

Assmus–Mattson theorem
extremal binary doubly even codes

3 Part III

Hadamard matrices
ternary self-dual codes

Akihiro Munemasa (Tohoku University) Codes and Designs 2 / 39



Summary of Part I and II

D: 5-(24, 8, 1) design (Witt system).

The binary code C of D is a doubly even self-dual [24, 12, 8]
code.

{supp(x) | x ∈ C , wt(x) = 8} = B.

There is a unique 5-(24, 8, 1) design up to isomorphism.

There is a unique doubly even self-dual [24, 12, 8] code (up to
isomorphism), by the Assmus–Mattson theorem.

Part III will cover

Hadamard matrices

Characterization of (binary) Hadamard matrices “contained” in
the doubly even self-dual [24, 12, 8] code, and their relationships
to ternary self-dual codes
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Hadamard matrices

Definition
A Hadamard matrix of order n is an n × n matrix with entries ±1,
such that rows are pairwise orthogonal:

H : n × n matrix,

Hi ,j ∈ {±1} for all i , j ∈ {1, . . . , n},
HH> = nI .

Example
The Hadamard matrix of Sylvester type, where n = 2v :

H = ((−1)x ·y)x ,y∈Fv
2
.

v = 1 =⇒ H =

[
1 1
1 −1

]
.
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Hadamard matrices of Sylvester type, n = 2v

v = 2 =⇒ H =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



v = 3 =⇒ H =



1 1 1 1 1 1 1 1
1 −1 1 1 −1 −1 1 −1
1 1 −1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1
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Existence of Hadamard matrices

A Hadamard matrix of order n exists for

n = 1, 2, 4, 8, 12, 16, . . . (multiples of 4), . . . , 664, . . .

Except n = 1, 2, the existence of a Hadamard matrix of order n
implies n ≡ 0 (mod 4):

1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1
1 · · · 1 1 · · · 1 −1 · · · − 1 −1 · · · − 1
1 · · · 1 −1 · · · − 1 1 · · · 1 −1 · · · − 1

But it is not known whether a Hadamard matrix of order 668 exists.

Conjecture

A Hadamard matrix of order n exists for any n ≡ 0 (mod 4).

Sylvester type: n = 2v = 1, 2, 4, 8, 16, . . . .
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Classification of Hadamard matrices

If H is a Hadamard matrix, then so is H>.
Two Hadamard matrices are said to be equivalent if one is obtained
from the other by row or column permutations or negations:

H1
∼= H2 ⇐⇒ ∃P , Q, PH1Q = H2,

where P and Q are matrices in which only 1 or −1 appear exactly
once in every row and once in every column, all other entries are 0.

The numbers of equivalence classes of Hadamard matrices are known
for orders up to 32.

order 1 2 4 8 12 16 20 24 28 32
number 1 1 1 1 1 5 3 60 487 13,710,027

16, 20: Hall; 24: Ito–Leon–Longyear, Kimura; 28: Kimura, Spence;
32: Kharaghani and Tayfeh-Rezaie (2012).
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Normalized and binary Hadamard matrices

Every Hadamard matrix is equivalent to the one with 1 everywhere in
the first row:

H =


1 1 · · · 1

· · ·
±1
· · ·


Such a Hadamard matrix H is said to be normalized.

The binary
Hadamard matrix associated to H is

B =
1

2
(H + J) =


1 1 · · · 1

· · ·
1 or 0
· · ·

 =


1

b(1)

...
b(n−1)


where J = all one matrix.
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Hadamard 3-design

H : a normalized Hadamard matrix of order n.

B = 1
2
(H + J): the associated binary Hadamard matrix. B has

row vectors b(0) = 1, b(1), . . . , b(n−1).

P = {1, . . . , n},

B =
n−1⋃
i=1

{supp(b(i)), supp(1 + b(i))}.

Then (P ,B) is a 3-(n, n
2
, n

4
− 1) design. Indeed, consider the

transpose of

1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1
1 1 · · · 1 1 · · · 1 −1 · · · − 1 −1 · · · − 1
1 1 · · · 1︸ ︷︷ ︸

4
n
−1

−1 · · · − 1︸ ︷︷ ︸
4
n

1 · · · 1︸ ︷︷ ︸
4
n

−1 · · · − 1︸ ︷︷ ︸
4
n

in

[
H
−H

]
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The isomorphism class of Hadamard 3-design

Definition
Two designs (P ,B) and (P ′,B′) are said to be isomorphic if there is
a bijection from P to P ′ which maps B to B′.

H
normalize−−−−−→ B → (P ,B)

swap rows ↓
H ′ normalize−−−−−→ B ′ → (P ,B′)

In general, (P ,B) 6∼= (P ,B′)

Definition
The binary code of a Hadamard matrix H is defined as that of the
Hadamard 3-design (P ,B) obtained from the binary Hadamard
matrix associated to any normalized Hadamard matrix equivalent to
H .

Is it well defined?
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The isomorphism class of the binary code

H =


1

h(1)

...

h(n−1)

 −→ B =
1

2
(H + J) =


1

b(1)

...

b(n−1)




h(1)

1
...

h(n−1)

 → H ′ =


1

h(1)

h(2) ∗ h(1)

...

h(n−1) ∗ h(1)

 → B ′ =
1

2
(H ′+J) =


1

b(1)

b(2) + b(1) + 1
...

b(n−1) + b(1) + 1



h(1) h(2) h(1) ∗ h(2) b(1) b(2) b(1) + b(2) + 1
1 1 1 1 1 1
1 − 1 − 1 1 0 0
− 1 1 − 1 0 1 0
− 1 − 1 1 0 0 1

B and B ′

generate the
same binary
code
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Normalized and binary Hadamard matrices

H =


1

h(1)

...

h(n−1)

 −→ B =
1

2
(H + J) =


1

b(1)

...

b(n−1)


Then

The binary code of H is generated by B .

B has first row 1, the vector with weight n.

All the other rows have weight
n

2
.

Two distinct rows of weight
n

2
have

n

4
coordinates in common in

their supports.

n ≡ 0 (mod 8) =⇒ the binary code of H is self-orthogonal.
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The binary code of a Hadamard matrix

Lemma
Let C be the binary code of a Hadamard matrix of order n.

If n ≡ 0 (mod 8), then C is doubly even self-orthogonal.

If n ≡ 8 (mod 16), then C is doubly even self-dual.

In particular, for n = 24, C is doubly even self-dual.

One can ask: which of the 60 Hadamard matrices of order 24
give the extended binary Golay code?

Among the 60 Hadamard matrices of order 24, only two give the
extended binary Golay code.
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Ternary codes

A (linear) ternary code of length n is a subspace of the vector space
Fn

3. If C is a ternary code and dim C = k , we say C is an ternary
[n, k] code. The dual code of a ternary code C is defined as

C⊥ = {x ∈ Fn
3 | x · y = 0 (∀y ∈ C )}.

where

x · y =
n∑

i=1

xiyi .

Then dim C⊥ = n − dim C . The code C is said to be self-orthogonal
if C ⊂ C⊥ and self-dual if C = C⊥.

Two ternary codes are said to be
isomorphic if one is obtained from the other by permutation and
negation of coordinates.

Akihiro Munemasa (Tohoku University) Codes and Designs 14 / 39



Ternary codes

A (linear) ternary code of length n is a subspace of the vector space
Fn

3. If C is a ternary code and dim C = k , we say C is an ternary
[n, k] code. The dual code of a ternary code C is defined as

C⊥ = {x ∈ Fn
3 | x · y = 0 (∀y ∈ C )}.

where

x · y =
n∑

i=1

xiyi .

Then dim C⊥ = n − dim C . The code C is said to be self-orthogonal
if C ⊂ C⊥ and self-dual if C = C⊥. Two ternary codes are said to be
isomorphic if one is obtained from the other by permutation and
negation of coordinates.

Akihiro Munemasa (Tohoku University) Codes and Designs 14 / 39



Generator matrix of a ternary code

If a ternary code C of length n is generated by row vectors
x (1), . . . , x (m), then the matrix x (1)

...
x (m)


is called a generator matrix of C . This means

C = {
m∑

i=1

εix
(i) | ε1, . . . , εm ∈ F3} ⊂ Fn

3.

Definition
The ternary code of a Hadamard matrix H is the ternary code with
generator matrix H .
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Weight

For x ∈ Fn
3, we write

supp(x) = {i | 1 ≤ i ≤ n, xi 6= 0},
wt(x) = | supp(x)|.

For a ternary code C , its minimum weight is

min{wt(x) | 0 6= x ∈ C}.

If an [n, k] ternary code C has minimum weight d , we call C an
[n, k , d ] code.
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Ternary self-dual codes of length 24

Lemma
Let n be an integer divisible by 4. If 3|n and 9 - n, then the ternary
code of a Hadamard matrix of order n is self-dual.

In particular, the ternary code of a Hadamard matrix of order 24 is
self-dual.

Leon–Pless–Sloane (1981): there are two self-dual codes of
length 24 with minimum weight 9 (largest possible), up to
isomorphism.

One can ask: which of the 60 Hadamard matrices of order 24
give the codes with minimum weight 9?

Among the 60 Hadamard matrices of order 24, only two give
codes with minimum weight 9.
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Verification using MAGMA

Assmus and Key in their 1992 book observed:

DB:=HadamardDatabase();
NumberOfMatrices(DB,24) eq 60;
H24s:=[Matrix(DB,24,i):i in [1..60]];
normalize:=func<H|H*DiagonalMatrix(Eltseq(H[1]))>;
J:=Matrix(Integers(),24,24,[1:i in [1..24^2]]);
bH:=func<H|Parent(H)![x div 2:x in Eltseq(normalize(H)+J)]>;
bC:=func<H|LinearCode(ChangeRing(bH(H),GF(2)))>;
tCT:=func<H|LinearCode(ChangeRing(Transpose(H),GF(3)))>;
[i:i in [1..60]|MinimumWeight(bC(H24s[i])) eq 8] eq [3,9];

[i:i in [1..60]|MinimumWeight(tCT(H24s[i])) eq 9] eq [3,9];
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normalize:=func<H|H*DiagonalMatrix(Eltseq(H[1]))>;
J:=Matrix(Integers(),24,24,[1:i in [1..24^2]]);
bH:=func<H|Parent(H)![x div 2:x in Eltseq(normalize(H)+J)]>;
bC:=func<H|LinearCode(ChangeRing(bH(H),GF(2)))>;
tCT:=func<H|LinearCode(ChangeRing(Transpose(H),GF(3)))>;
[i:i in [1..60]|MinimumWeight(bC(H24s[i])) eq 8] eq [3,9];
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Assmus and Key, 1992

Fact
Let H be a Hadamard matrix of order 24. The following are
equivalent.

The binary code of H has minimum weight 8 (largest).

The ternary code of H> has minimum weight 9 (largest).

The binary code of H is doubly even self-dual, and the minimum
weight is 4 or 8.

The ternary code of H> is self-dual, and the minimum weight is
6 or 9. (A ternary self-dual code may have minimum weight 3,
but no ternary code of a Hadamard matrix has minimum weight
3).

There are two (up to equivalence) Hadamard matrices H
satisfying the above equivalent conditions.
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H : a normalized Hadamard matrix of order 24

C2: the binary code of H = the binary code with generator
matrix B = 1

2
(H + J).

C3: the ternary code of H>.

C2 is doubly even self-dual, and C3 is self-dual.

C2 has only weights divisible by 4, C3 has only weights divisible
by 3.

Fact
The following are equivalent:

C2 has minimum weight 8 (largest).

C3 has minimum weight 9 (largest).

We first show: C3 = C⊥
3 has no vectors of weight 3.
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C3: the ternary code of H> (n is arbitrary)

Suppose

C⊥
3 = {v ∈ Fn

3 | H>v> = 0}
= {v mod 3 | v ∈ Zn, vH ≡ 0 (mod 3)}

contains a vector v of weight 3:

v = (0, . . . , 0, εi , 0, . . . , 0, εj , 0, . . . , 0, εk , 0, . . . , 0)

where εi , εj , εk ∈ {±1}.

vH ≡ 0 (mod 3)

=⇒ εiHi ,` + εjHj ,` + εkHk,` ≡ 0 (mod 3) (∀` ∈ {1, . . . , n})
=⇒ εiHi ,` = εjHj ,` = εkHk,` (∀` ∈ {1, . . . , n})
=⇒ εjεiHi ,` = Hj ,` (∀` ∈ {1, . . . , n})
=⇒ row i of H = row j of H , up to sign

This is impossible for a Hadamard matrix H .
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C⊥
3 does not have weight 3

H : a normalized Hadamard matrix of order 24

C2: the binary code of H = the binary code with generator
matrix B = 1

2
(H + J).

C3: the ternary code of H>.

C2 is doubly even self-dual, and C3 is self-dual.

C2 has only weights divisible by 4, C3 has only weights divisible
by 3.

C3 = C⊥
3 does not have weight 3

Fact
The following are equivalent:

C2 has minimum weight 8 (i.e., C2 doesn’t have weight 4)

C3 has minimum weight 9 (i.e., C3 doesn’t have weight 6)

Akihiro Munemasa (Tohoku University) Codes and Designs 29 / 39



C⊥
3 does not have weight 3

H : a normalized Hadamard matrix of order 24

C2: the binary code of H = the binary code with generator
matrix B = 1

2
(H + J).

C3: the ternary code of H>.

C2 is doubly even self-dual, and C3 is self-dual.

C2 has only weights divisible by 4, C3 has only weights divisible
by 3.

C3 = C⊥
3 does not have weight 3

Fact
The following are equivalent:

C2 has minimum weight 8 (i.e., C2 doesn’t have weight 4)

C3 has minimum weight 9 (i.e., C3 doesn’t have weight 6)

Akihiro Munemasa (Tohoku University) Codes and Designs 29 / 39



H : a normalized Hadamard matrix of order 24

C2: the binary code of H = the binary code with generator
matrix B = 1

2
(H + J).

C3: the ternary code of H>.

Theorem
The following are equivalent.

C2 has weight 4.

C3 has weight 6.
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H : a normalized Hadamard matrix of order 24

C2 = {vB mod 2 | v ∈ Z24}: the binary code of H ,
B = 1

2
(H + J).

C3 = C⊥
3 = {v mod 3 | v ∈ Z24, vH ≡ 0 (mod 3)}: the ternary

code of H>.

Theorem
The following are equivalent.

1 C2 has weight 4.

2 C3 has weight 6.

Proof of (2 =⇒ 1). v ∈ {0,±1}24 ⊂ Z24, wt(v) = 6, vH ≡ 0
(mod 3). Set

u =
1

6
vH .

Then u ∈ Z24, u mod 2 ∈ C2, wt(u mod 2) = 4.

Akihiro Munemasa (Tohoku University) Codes and Designs 31 / 39



H : a normalized Hadamard matrix of order 24

C2 = {vB mod 2 | v ∈ Z24}: the binary code of H ,
B = 1

2
(H + J).

C3 = C⊥
3 = {v mod 3 | v ∈ Z24, vH ≡ 0 (mod 3)}: the ternary

code of H>.

Theorem
The following are equivalent.

1 C2 has weight 4.

2 C3 has weight 6.

Proof of (2 =⇒ 1). v ∈ {0,±1}24 ⊂ Z24, wt(v) = 6, vH ≡ 0
(mod 3). Set

u =
1

6
vH .

Then u ∈ Z24, u mod 2 ∈ C2, wt(u mod 2) = 4.
Akihiro Munemasa (Tohoku University) Codes and Designs 31 / 39



H : a normalized Hadamard matrix of order 24

C2 = {vB mod 2 | v ∈ Z24}: the binary code of H ,
B = 1

2
(H + J).

C3 = C⊥
3 = {v mod 3 | v ∈ Z24, vH ≡ 0 (mod 3)}: the ternary

code of H>.

Theorem
The following are equivalent.

1 C2 has weight 4.

2 C3 has weight 6.

Proof of (2 =⇒ 1). v ∈ {0,±1}24 ⊂ Z24, wt(v) = 6, vH ≡ 0
(mod 3). Set

u =
1

6
vH .

Then u ∈ Z24, u mod 2 ∈ C2, wt(u mod 2) = 4.
Akihiro Munemasa (Tohoku University) Codes and Designs 31 / 39



Hadamard matrices and norms

Lemma
Let H be a Hadamard matrix of order n, v a vector in Zn. Then

vH ≡ ‖v‖21 (mod 2),

‖vH‖2 = n‖v‖2.

Proof.

vH ≡ vJ = (
n∑

i=1

vi)1 ≡ (
n∑

i=1

v 2
i )1 = ‖v‖21 (mod 2).

‖vH‖2 = vHH>v> = v(nI )v> = n‖v‖2.
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H : a normalized Hadamard matrix of order 24

C2 = {wB mod 2 | w ∈ Z24}: the binary code of H ,
B = 1

2
(H + J).

v ∈ {0,±1}24 ⊂ Z24, wt(v) = 6, vH ≡ 0 (mod 3).

u =
1

6
vH =⇒ u ∈ Z24, wt(u mod 2) = 4, u mod 2 ∈ C2.

Lemma
vH ≡ ‖v‖21 (mod 2),

‖vH‖2 = n‖v‖2 = 24‖v‖2.

Since ‖v‖2 = wt(v) = 6, vH ≡ ‖v‖21 ≡ 0 (mod 2). Thus vH ≡ 0
(mod 6), and u ∈ Z24.

‖u‖2 =
1

62
24‖v‖2 =

24 · 6
62

= 4 =⇒ wt(u mod 2) = 4.
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H : a normalized Hadamard matrix of order 24
C2 = {wB mod 2 | w ∈ Z24}: the binary code of H ,
B = 1

2
(H + J).

v ∈ {0,±1}24 ⊂ Z24, wt(v) = 6, vH ≡ 0 (mod 3).

u =
1

6
vH =⇒ u ∈ Z24, wt(u mod 2) = 4, u mod 2 ∈ C2.

u ≡ 3u (mod 2)

=
3

6
vH

=
1

2
v(2B − J) = vB − 1

2
vJ

≡ vB + ε1 (mod 2) (ε ∈ {0, 1})
= (v + εe1)B ∈ C2 (after reducing mod 2).
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v(2B − J) = vB − 1

2
vJ

≡ vB + ε1 (mod 2) (ε ∈ {0, 1})
= (v + εe1)B ∈ C2 (after reducing mod 2).
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H : a normalized Hadamard matrix of order 24

C2: the binary code of H = the binary code with generator
matrix B = 1

2
(H + J).

C3: the ternary code of H>.

Then C2 is doubly even self-dual, and C3 is self-dual.

Theorem (Munemasa–Tamura, 2012)

The following are equivalent:

1 C2 has minimum weight 8 (largest).

2 C3 has minimum weight 9 (largest).

We have proved 1 =⇒ 2 by showing its contrapositive assertion.
The other implication can be proved similarly.
u = 1

6
vH ⇐⇒ v = 1

4
uH>
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H : a normalized Hadamard matrix of order 48

Similarly, one can consider a code over Z/4Z, the ring of integers
modulo 4. The Euclidean weight of a vector v ∈ (Z/4Z)n is

wt(v) =
n∑

i=1

v 2
i ,

where we regard vi ∈ {0,±1, 2} ⊂ Z.

Theorem
C4: the code over Z/4Z with generator matrix B = 1

2
(H + J).

C3: the ternary code of H>.

Then both C4 and C3 are self-dual. Moreover, the following are
equivalent:

C4 has minimum Euclidean weight 24 (largest).

C3 has minimum weight 15 (largest).
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Hadamard matrices of order 48 and ternary codes

Theorem
If C is a ternary self-dual code of length 48 and minimum weight 15,
then C is generated by a Hadamard matrix.

Unlike the case n = 24, the following problem is still open.

Problem
Classify ternary self-dual codes of length 48 with minimum weight 15,
or classify Hadamard matrices of order 48 which generate such a
code.
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Extremal ternary self-dual codes

Theorem (Mallows–Sloane, 1973)

For m ≥ 1, a ternary self-dual [12m, 6m] code has minimum weight
at most 3m + 3.

Definition
A ternary self-dual [12m, 6m] code with minimum weight 3m + 3 is
called extremal.

m = 1: the extended ternary Golay code and the 5-(12, 6, 1)
design,
m = 2: exactly two codes,
m = 3: at least one code,
m = 4: at least two codes,
m = 5: at least two codes.

All these codes are generated by a Hadamard matrix.
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Extremal ternary self-dual codes

Definition
A ternary self-dual [12m, 6m] code with minimum weight 3m + 3 is
called extremal.

For m ≥ 6, no code is known. In fact, for m even and m ≥ 6, an
extremal ternary self-dual [12m, 6m, 3m + 3] code does not exist.

Theorem (Shengyuan Zhang, 1999)

There does not exist an extremal [12m, 6m, 3m + 3] ternary self-dual
code for m ≥ 70.
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