# Complex Hadamard matrices and 3-class association schemes 

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with Takuya Ikuta) June 26, 2013
The 30th Algebraic Combinatorics Symposium Shizuoka University

## Hadamard matrices and generalizations

- A (real) Hadamard matrix of order $n$ is an $n \times n$ matrix $H$ with entries $\pm 1$, satisfying $H H^{\top}=n I$.


## Conjecture

$\exists$ Hadamard matrix of order $n$ whenever $n \equiv 0(\bmod 4)$.

## Hadamard matrices and generalizations

- A (real) Hadamard matrix of order $n$ is an $n \times n$ matrix $H$ with entries $\pm 1$, satisfying $H H^{\top}=n I$.


## Conjecture

$\exists$ Hadamard matrix of order $n$ whenever $n \equiv 0(\bmod 4)$.

- A complex Hadamard matrix of order $n$ is an $n \times n$ matrix $H$ with entries in $\{\zeta \in \mathbb{C}||\zeta|=1\}$, satisfying $H H^{*}=n I$, where $*$ means the conjugate transpose.


## Hadamard matrices and generalizations

- A (real) Hadamard matrix of order $n$ is an $n \times n$ matrix $H$ with entries $\pm 1$, satisfying $H H^{\top}=n I$.


## Conjecture

$\exists$ Hadamard matrix of order $n$ whenever $n \equiv 0(\bmod 4)$.

- A complex Hadamard matrix of order $n$ is an $n \times n$ matrix $H$ with entries in $\{\zeta \in \mathbb{C}||\zeta|=1\}$, satisfying $H H^{*}=n I$, where $*$ means the conjugate transpose.

We propose a strategy to construct infinite families of complex Hadamard matrices using association schemes, and demonstrate a successful case.

## Circulant (complex) Hadamard matrices

$H=\left[\begin{array}{cccc}a_{0} & a_{1} & \cdots & a_{n-1} \\ a_{n-1} & a_{0} & a_{1} & \\ & \ddots & \ddots & \ddots \\ a_{1} & & & a_{0}\end{array}\right]=\sum_{i=0}^{n-1} a_{i} A^{i}, \quad A=\left[\begin{array}{lll} & 1 & \\ & & 1 \\ & & \\ 1 & & \\ & & \\ & & \end{array}\right]$
Instead of $n^{2}$ entries, there are only $n$ entries to determine.

## Circulant (complex) Hadamard matrices

$H=\left[\begin{array}{cccc}a_{0} & a_{1} & \cdots & a_{n-1} \\ a_{n-1} & a_{0} & a_{1} & \\ & \ddots & \ddots & \ddots \\ a_{1} & & & a_{0}\end{array}\right]=\sum_{i=0}^{n-1} a_{i} A^{i}, \quad A=\left[\begin{array}{lll} & 1 & \\ & & 1 \\ & & \\ 1 & & \\ & & \\ & & \end{array}\right]$
Instead of $n^{2}$ entries, there are only $n$ entries to determine.
Björck-Fröberg (1991-1992) circulant Hadamard, $n \leq 8$
Faugère (2001), (2004) circulant Hadamard, $n=9,10$

## Circulant (complex) Hadamard matrices

$H=\left[\begin{array}{cccc}a_{0} & a_{1} & \cdots & a_{n-1} \\ a_{n-1} & a_{0} & a_{1} & \\ & \ddots & \ddots & \ddots \\ a_{1} & & & a_{0}\end{array}\right]=\sum_{i=0}^{n-1} a_{i} A^{i}, \quad A=\left[\begin{array}{ccc} & 1 & \\ & & \\ & & \\ & & \\ 1 & & \\ & & \end{array}\right]$
Instead of $n^{2}$ entries, there are only $n$ entries to determine.
Björck-Fröberg (1991-1992) circulant Hadamard, $n \leq 8$
Faugère (2001), (2004) circulant Hadamard, $n=9,10$
On the other hand, it is conjectured that no circulant real Hadamard matrix of order $>4$ exists.

> Goethals-Seidel (1970) symmetric regular (real) Hadamard matrix necessarily comes from a strongly regular graph (SRG) on $4 s^{2}$ vertices
> de la Harpe-Jones (1990) SRG $n$ : prime $\equiv 1(\bmod 4) \rightarrow$ symmetric circulant complex Hadamard

> Goethals-Seidel (1970) symmetric regular (real) Hadamard matrix necessarily comes from a strongly regular graph (SRG) on $4 s^{2}$ vertices
> de la Harpe-Jones (1990) SRG $n$ : prime $\equiv 1(\bmod 4) \rightarrow$ symmetric circulant complex Hadamard
> M.-Watatani (1992) DRT $n:$ prime $\equiv 3(\bmod 4) \rightarrow$ non-symmetric circulant complex Hadamard

Goethals-Seidel (1970) symmetric regular (real) Hadamard matrix necessarily comes from a strongly regular graph (SRG) on $4 s^{2}$ vertices
de la Harpe-Jones (1990) SRG $n$ : prime $\equiv 1(\bmod 4) \rightarrow$ symmetric circulant complex Hadamard
M.-Watatani (1992) DRT $n:$ prime $\equiv 3(\bmod 4) \rightarrow$ non-symmetric circulant complex Hadamard

$$
H=\alpha_{0} A_{0}+\alpha_{1} A_{1}+\alpha_{2} A_{2}, \quad A_{0}=I
$$

Goethals-Seidel (1970) symmetric regular (real) Hadamard matrix necessarily comes from a strongly regular graph (SRG) on $4 s^{2}$ vertices
de la Harpe-Jones (1990) SRG $n$ : prime $\equiv 1(\bmod 4) \rightarrow$ symmetric circulant complex Hadamard
M.-Watatani (1992) DRT $n:$ prime $\equiv 3(\bmod 4) \rightarrow$ non-symmetric circulant complex Hadamard

$$
H=\alpha_{0} A_{0}+\alpha_{1} A_{1}+\alpha_{2} A_{2}, \quad A_{0}=I
$$

$$
A_{1}^{\top}=A_{1}, A_{2}^{\top}=A_{2} \quad(\text { G.-J., de la H.-J. })
$$

$$
A_{1}^{\top}=A_{2}, \quad(\mathrm{M} .-\mathrm{W} .)
$$

Goethals-Seidel (1970) symmetric regular (real) Hadamard matrix necessarily comes from a strongly regular graph (SRG) on $4 s^{2}$ vertices
de la Harpe-Jones (1990) SRG $n$ : prime $\equiv 1(\bmod 4) \rightarrow$ symmetric circulant complex Hadamard
M.-Watatani (1992) DRT $n:$ prime $\equiv 3(\bmod 4) \rightarrow$ non-symmetric circulant complex Hadamard

$$
\begin{gathered}
H=\alpha_{0} A_{0}+\alpha_{1} A_{1}+\alpha_{2} A_{2}, \quad A_{0}=I \\
A_{1}^{\top}=A_{1}, A_{2}^{\top}=A_{2} \quad(\text { G.-J., de la H.-J. }) \\
A_{1}^{\top}=A_{2}, \quad(\mathrm{M} .-\mathrm{W} .)
\end{gathered}
$$

Unifying principle: association schemes.
(strongly regular graphs is a special case)

Godsil-Chan (2010), and Chan (2011) classified complex Hadamard matrices of the form:

$$
H=\alpha_{0} I+\alpha_{1} A_{1}+\alpha_{2} A_{2} \quad\left(\text { we may assume } \alpha_{0}=1\right)
$$

where $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=1$, and

$$
\begin{aligned}
& A_{1}=\text { adjacency matrix of a } \operatorname{SRG} \Gamma, \\
& A_{2}=\text { adjacency matrix of } \bar{\Gamma} .
\end{aligned}
$$

Godsil-Chan (2010), and Chan (2011) classified complex Hadamard matrices of the form:

$$
H=\alpha_{0} I+\alpha_{1} A_{1}+\alpha_{2} A_{2} \quad\left(\text { we may assume } \alpha_{0}=1\right)
$$

where $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=1$, and

$$
\begin{aligned}
& A_{1}=\text { adjacency matrix of a } \operatorname{SRG} \Gamma, \\
& A_{2}=\text { adjacency matrix of } \bar{\Gamma} .
\end{aligned}
$$

Godsil-Chan (2010), and Chan (2011) classified complex Hadamard matrices of the form:

$$
H=\alpha_{0} I+\alpha_{1} A_{1}+\alpha_{2} A_{2} \quad\left(\text { we may assume } \alpha_{0}=1\right)
$$

where $\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=1$, and

$$
\begin{aligned}
& A_{1}=\text { adjacency matrix of a } \operatorname{SRG} \Gamma, \\
& A_{2}=\text { adjacency matrix of } \bar{\Gamma} .
\end{aligned}
$$

also found a complex Hadamard matrix of the form

$$
H=I+\alpha_{1} A_{1}+\alpha_{2} A_{2}+\alpha_{3} A_{3}
$$

of order 15 from the line graph $L\left(O_{3}\right)$ of the Petersen graph $O_{3}$.

The Bose-Mesner algebra of a symmetric association scheme of class $d$

$$
\left\langle A_{0}, A_{1}, \ldots, A_{d}\right\rangle=\left\langle E_{0}, E_{1}, \ldots, E_{d}\right\rangle
$$

is a commutative semisimple algebra with primitive idempotents $E_{0}, E_{1}, \ldots, E_{d}$.

$$
\begin{gathered}
\sum_{i=0}^{d} A_{i}=J, \quad \sum_{i=0}^{d} E_{i}=I, \quad A_{0}=I, n E_{0}=J \\
A_{j} \circ A_{k}=\delta_{j k} A_{j}, \quad E_{j} E_{k}=\delta_{j k} E_{j}
\end{gathered}
$$

The Bose-Mesner algebra of a symmetric association scheme of class $d$

$$
\left\langle A_{0}, A_{1}, \ldots, A_{d}\right\rangle=\left\langle E_{0}, E_{1}, \ldots, E_{d}\right\rangle
$$

is a commutative semisimple algebra with primitive idempotents $E_{0}, E_{1}, \ldots, E_{d}$.

$$
\begin{gathered}
\sum_{i=0}^{d} A_{i}=J, \quad \sum_{i=0}^{d} E_{i}=I, \quad A_{0}=I, n E_{0}=J \\
A_{j} \circ A_{k}=\delta_{j k} A_{j}, \quad E_{j} E_{k}=\delta_{j k} E_{j} \\
A_{j}=\sum_{i=0}^{d} p_{i j} E_{i}, \quad A_{i}^{\top}=A_{i} \quad(\forall i), \Longrightarrow p_{j i} \in \mathbb{R}
\end{gathered}
$$

The Bose-Mesner algebra of a symmetric association scheme of class $d$

$$
\left\langle A_{0}, A_{1}, \ldots, A_{d}\right\rangle=\left\langle E_{0}, E_{1}, \ldots, E_{d}\right\rangle
$$

is a commutative semisimple algebra with primitive idempotents $E_{0}, E_{1}, \ldots, E_{d}$.

$$
\begin{gathered}
\sum_{i=0}^{d} A_{i}=J, \quad \sum_{i=0}^{d} E_{i}=I, \quad A_{0}=I, n E_{0}=J . \\
A_{j} \circ A_{k}=\delta_{j k} A_{j}, \quad E_{j} E_{k}=\delta_{j k} E_{j} \\
A_{j}=\sum_{i=0}^{d} p_{i j} E_{i}, \quad A_{i}^{\top}=A_{i} \quad(\forall i), \Longrightarrow p_{j i} \in \mathbb{R}
\end{gathered}
$$

$$
A_{i}=\sum_{k=0}^{d} p_{k i} E_{k}, \quad E_{j} E_{k}=\delta_{j k} E_{j}, \quad p_{k i} \in \mathbb{R}
$$

When is $H=\sum_{i=0}^{d} \alpha_{i} A_{i}$ with $\left|\alpha_{i}\right|=1$ a complex Hadamard matrix?

$$
H H^{*}=n I \Longleftrightarrow
$$



$$
A_{i}=\sum_{k=0}^{d} p_{k i} E_{k}, \quad E_{j} E_{k}=\delta_{j k} E_{j}, \quad p_{k i} \in \mathbb{R}
$$

When is $H=\sum_{i=0}^{d} \alpha_{i} A_{i}$ with $\left|\alpha_{i}\right|=1$ a complex Hadamard matrix?

$$
\begin{aligned}
& \text { matrıx? } \\
& \left.H \bar{H}=n I \Longleftrightarrow\left(\sum_{i=0}^{d} \alpha_{i} \sum_{k=0}^{d} p_{k i} E_{k}\right) \overline{\left(\sum_{j=0}^{d} \alpha_{j} \sum_{k=0}^{d} p_{k j} E_{k}\right.}\right)=n I
\end{aligned}
$$

$$
A_{i}=\sum_{k=0}^{d} p_{k i} E_{k}, \quad E_{j} E_{k}=\delta_{j k} E_{j}, \quad p_{k i} \in \mathbb{R}
$$

When is $H=\sum_{i=0}^{d} \alpha_{i} A_{i}$ with $\left|\alpha_{i}\right|=1$ a complex Hadamard matrix?

$$
\begin{aligned}
& \text { matrıx? } \\
& \left.H \bar{H}=n I \Longleftrightarrow\left(\sum_{i=0}^{d} \alpha_{i} \sum_{k=0}^{d} p_{k i} E_{k}\right) \overline{\left(\sum_{j=0}^{d} \alpha_{j} \sum_{k=0}^{d} p_{k j} E_{k}\right.}\right)=n I
\end{aligned}
$$

$$
A_{i}=\sum_{k=0}^{d} p_{k i} E_{k}, \quad E_{j} E_{k}=\delta_{j k} E_{j}, \quad p_{k i} \in \mathbb{R}
$$

When is $H=\sum_{i=0}^{d} \alpha_{i} A_{i}$ with $\left|\alpha_{i}\right|=1$ a complex Hadamard matrix?

$$
H=n I \Longleftrightarrow\left(\sum_{i=0}^{d} \alpha_{i} \sum_{k=0}^{d} p_{k i} E_{k}\right)\left(\sum_{j=0}^{d} \overline{\alpha_{j}} \sum_{k=0}^{d} p_{k j} E_{k}\right)=n I
$$

$$
A_{i}=\sum_{k=0}^{d} p_{k i} E_{k}, \quad E_{j} E_{k}=\delta_{j k} E_{j}, \quad p_{k i} \in \mathbb{R}
$$

When is $H=\sum_{i=0}^{d} \alpha_{i} A_{i}$ with $\left|\alpha_{i}\right|=1$ a complex Hadamard matrix?

$$
\begin{aligned}
H=n I & \Longleftrightarrow\left(\sum_{i=0}^{d} \alpha_{i} \sum_{k=0}^{d} p_{k i} E_{k}\right)\left(\sum_{j=0}^{d} \overline{\alpha_{j}} \sum_{k=0}^{d} p_{k j} E_{k}\right)=n I \\
& \Longleftrightarrow \sum_{k=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_{i} \overline{\alpha_{j}} p_{k i} p_{k j} E_{k}=n I
\end{aligned}
$$

$$
A_{i}=\sum_{k=0}^{d} p_{k i} E_{k}, \quad E_{j} E_{k}=\delta_{j k} E_{j}, \quad p_{k i} \in \mathbb{R}
$$

When is $H=\sum_{i=0}^{d} \alpha_{i} A_{i}$ with $\left|\alpha_{i}\right|=1$ a complex Hadamard matrix?

$$
\begin{aligned}
\text { matrıx! } & \begin{aligned}
H=n I & \Longleftrightarrow\left(\sum_{i=0}^{d} \alpha_{i} \sum_{k=0}^{d} p_{k i} E_{k}\right)\left(\sum_{j=0}^{d} \overline{\alpha_{j}} \sum_{k=0}^{d} p_{k j} E_{k}\right)=n I \\
& \Longleftrightarrow \sum_{k=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_{i} \overline{\alpha_{j}} p_{k i} p_{k j} E_{k}=n I=n \sum_{k=0}^{d} E_{k}
\end{aligned}
\end{aligned}
$$

$$
A_{i}=\sum_{k=0}^{d} p_{k i} E_{k}, \quad E_{j} E_{k}=\delta_{j k} E_{j}, \quad p_{k i} \in \mathbb{R}
$$

When is $H=\sum_{i=0}^{d} \alpha_{i} A_{i}$ with $\left|\alpha_{i}\right|=1$ a complex Hadamard matrix?

$$
\begin{aligned}
& H=n I \Longleftrightarrow\left(\sum_{i=0}^{d} \alpha_{i} \sum_{k=0}^{d} p_{k i} E_{k}\right)\left(\sum_{j=0}^{d} \overline{\alpha_{j}} \sum_{k=0}^{d} p_{k j} E_{k}\right)=n I \\
& \Longleftrightarrow \sum_{k=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_{i} \overline{\alpha_{j}} p_{k i} p_{k j} E_{k}=n I=n \sum_{k=0}^{d} E_{k} \\
& \Longleftrightarrow \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_{i} \overline{\alpha_{j}} p_{k i} p_{k j}=n \quad(\forall k)
\end{aligned}
$$

$$
A_{i}=\sum_{k=0}^{d} p_{k i} E_{k}, \quad E_{j} E_{k}=\delta_{j k} E_{j}, \quad p_{k i} \in \mathbb{R}
$$

When is $H=\sum_{i=0}^{d} \alpha_{i} A_{i}$ with $\left|\alpha_{i}\right|=1$ a complex Hadamard matrix?

$$
\begin{aligned}
\text { matrıx! } & \begin{aligned}
H=n I & \Longleftrightarrow\left(\sum_{i=0}^{d} \alpha_{i} \sum_{k=0}^{d} p_{k i} E_{k}\right)\left(\sum_{j=0}^{d} \overline{\alpha_{j}} \sum_{k=0}^{d} p_{k j} E_{k}\right)=n I \\
& \Longleftrightarrow \sum_{k=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_{i} \overline{\alpha_{j}} p_{k i} p_{k j} E_{k}=n I=n \sum_{k=0}^{d} E_{k} \\
& \Longleftrightarrow \sum_{i=0}^{d} \sum_{j=0}^{d} \frac{\alpha_{i}}{\alpha_{j}} p_{k i} p_{k j}=n \quad(\forall k)
\end{aligned},
\end{aligned}
$$

$$
A_{i}=\sum_{k=0}^{d} p_{k i} E_{k}, \quad E_{j} E_{k}=\delta_{j k} E_{j}, \quad p_{k i} \in \mathbb{R}
$$

When is $H=\sum_{i=0}^{d} \alpha_{i} A_{i}$ with $\left|\alpha_{i}\right|=1$ a complex Hadamard

$$
\begin{align*}
\text { matrix? } & \begin{aligned}
H=n I & \Longleftrightarrow\left(\sum_{i=0}^{d} \alpha_{i} \sum_{k=0}^{d} p_{k i} E_{k}\right)\left(\sum_{j=0}^{d} \overline{\alpha_{j}} \sum_{k=0}^{d} p_{k j} E_{k}\right)=n I \\
& \Longleftrightarrow \sum_{k=0}^{d} \sum_{i=0}^{d} \sum_{j=0}^{d} \alpha_{i} \overline{\alpha_{j}} p_{k i} p_{k j} E_{k}=n I=n \sum_{k=0}^{d} E_{k} \\
& \Longleftrightarrow \sum_{i=0}^{d} \sum_{j=0}^{d} \frac{\alpha_{i}}{\alpha_{j}} p_{k i} p_{k j}=n \quad(\forall k) \\
& \Longleftrightarrow \sum_{0 \leq i<j \leq d}\left(\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right) p_{k i} p_{k j}=n-\sum_{i=0}^{d} p_{k i}^{2}
\end{aligned} .
\end{align*}
$$

$$
\begin{align*}
& a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d)  \tag{1}\\
& \sum_{0 \leq i<j \leq d} a_{i j} p_{k i} p_{k j}=n-\sum_{i=0}^{d} p_{k i}^{2} \quad(\forall k) \tag{2}
\end{align*}
$$

$$
\begin{align*}
& a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d)  \tag{1}\\
& \sum_{0 \leq i<j \leq d} a_{i j} p_{k i} p_{k j}=n-\sum_{i=0}^{d} p_{k i}^{2} \quad(\forall k) \tag{2}
\end{align*}
$$

Step 1 Solve the system of linear equations (2) in $\left\{a_{i j}\right\}$ Step 2 Find $\left\{\alpha_{i}\right\}$ from $\left\{a_{i j}\right\}$ by (1).

$$
\begin{align*}
& a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d)  \tag{1}\\
& \sum_{0 \leq i<j \leq d} a_{i j} p_{k i} p_{k j}=n-\sum_{i=0}^{d} p_{k i}^{2} \quad(\forall k) \tag{2}
\end{align*}
$$

Step 1 Solve the system of linear equations (2) in $\left\{a_{i j}\right\}$ Step 2 Find $\left\{\alpha_{i}\right\}$ from $\left\{a_{i j}\right\}$ by (1).
Problem: Given $\left\{a_{i j}\right\}$, when $\exists\left\{\alpha_{i}\right\}$ satisfying (1)?

$$
\begin{align*}
& a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d)  \tag{1}\\
& \sum_{0 \leq i<j \leq d} a_{i j} p_{k i} p_{k j}=n-\sum_{i=0}^{d} p_{k i}^{2} \quad(\forall k) \tag{2}
\end{align*}
$$

Step 1 Solve the system of linear equations (2) in $\left\{a_{i j}\right\}$ Step 2 Find $\left\{\alpha_{i}\right\}$ from $\left\{a_{i j}\right\}$ by (1).
Problem: Given $\left\{a_{i j}\right\}$, when $\exists\left\{\alpha_{i}\right\}$ satisfying (1)?

$$
\begin{aligned}
f:\left(S^{1}\right)^{d+1} & \rightarrow \mathbb{R}^{d(d+1) / 2} \\
\left\{\alpha_{i}\right\}_{i=0}^{d} & \mapsto\left\{\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right\}_{0 \leq i<j<d} .
\end{aligned}
$$

where $S^{1}=\{\zeta \in \mathbb{C}| | \zeta \mid=1\}$.

$$
\begin{align*}
& a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d)  \tag{1}\\
& \sum_{0 \leq i<j \leq d} a_{i j} p_{k i} p_{k j}=n-\sum_{i=0}^{d} p_{k i}^{2} \quad(\forall k) \tag{2}
\end{align*}
$$

Step 1 Solve the system of linear equations (2) in $\left\{a_{i j}\right\}$ Step 2 Find $\left\{\alpha_{i}\right\}$ from $\left\{a_{i j}\right\}$ by (1).
Problem: Given $\left\{a_{i j}\right\}$, when $\exists\left\{\alpha_{i}\right\}$ satisfying (1)?

$$
\begin{aligned}
f:\left(S^{1}\right)^{d+1} & \rightarrow \mathbb{R}^{d(d+1) / 2} \\
\left\{\alpha_{i}\right\}_{i=0}^{d} & \mapsto\left\{\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right\}_{0 \leq i<j<d} .
\end{aligned}
$$

where $S^{1}=\{\zeta \in \mathbb{C}| | \zeta \mid=1\}$. Describe image of $f$

Instead of considering $f:\left(S^{1}\right)^{d+1} \rightarrow \mathbb{R}^{d(d+1) / 2}$, consider

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{d+1} & \rightarrow \mathbb{C}^{d(d+1) / 2} \\
\left\{\alpha_{i}\right\}_{i=0}^{d} & \mapsto\left\{\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right\}_{0 \leq i<j<d} .
\end{aligned}
$$

Describe the image of $f$. For example, for $d=2$ :

Instead of considering $f:\left(S^{1}\right)^{d+1} \rightarrow \mathbb{R}^{d(d+1) / 2}$, consider

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{d+1} & \rightarrow \mathbb{C}^{d(d+1) / 2} \\
\left\{\alpha_{i}\right\}_{i=0}^{d} & \mapsto\left\{\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right\}_{0 \leq i<j<d} .
\end{aligned}
$$

Describe the image of $f$. For example, for $d=2$ :

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{3} & \rightarrow \mathbb{C}^{3} \\
(x, y, z) & \mapsto\left(\frac{x}{y}+\frac{y}{x}, \frac{x}{z}+\frac{z}{x}, \frac{y}{z}+\frac{z}{y}\right)
\end{aligned}
$$

Instead of considering $f:\left(S^{1}\right)^{d+1} \rightarrow \mathbb{R}^{d(d+1) / 2}$, consider

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{d+1} & \rightarrow \mathbb{C}^{d(d+1) / 2} \\
\left\{\alpha_{i}\right\}_{i=0}^{d} & \mapsto\left\{\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right\}_{0 \leq i<j<d} .
\end{aligned}
$$

Describe the image of $f$. For example, for $d=2$ :

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{3} & \rightarrow \mathbb{C}^{3} \\
(x, y, z) & \mapsto\left(\frac{x}{y}+\frac{y}{x}, \frac{x}{z}+\frac{z}{x}, \frac{y}{z}+\frac{z}{y}\right)
\end{aligned}
$$

Not surjective.

Instead of considering $f:\left(S^{1}\right)^{d+1} \rightarrow \mathbb{R}^{d(d+1) / 2}$, consider

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{d+1} & \rightarrow \mathbb{C}^{d(d+1) / 2} \\
\left\{\alpha_{i}\right\}_{i=0}^{d} & \mapsto\left\{\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right\}_{0 \leq i<j<d} .
\end{aligned}
$$

Describe the image of $f$. For example, for $d=2$ :

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{3} & \rightarrow \mathbb{C}^{3} \\
(x, y, z) & \mapsto\left(\frac{x}{y}+\frac{y}{x}, \frac{x}{z}+\frac{z}{x}, \frac{y}{z}+\frac{z}{y}\right)
\end{aligned}
$$

Not surjective. $g(X, Y, Z)=X^{2}+Y^{2}+Z^{2}-X Y Z-4$.

$$
g\left(\frac{x}{y}+\frac{y}{x}, \frac{x}{z}+\frac{z}{x}, \frac{y}{z}+\frac{z}{y}\right)=0
$$

Instead of considering $f:\left(S^{1}\right)^{d+1} \rightarrow \mathbb{R}^{d(d+1) / 2}$, consider

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{d+1} & \rightarrow \mathbb{C}^{d(d+1) / 2} \\
\left\{\alpha_{i}\right\}_{i=0}^{d} & \mapsto\left\{\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right\}_{0 \leq i<j<d} .
\end{aligned}
$$

Describe the image of $f$. For example, for $d=2$ :

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{3} & \rightarrow \mathbb{C}^{3} \\
(x, y, z) & \mapsto\left(\frac{x}{y}+\frac{y}{x}, \frac{x}{z}+\frac{z}{x}, \frac{y}{z}+\frac{z}{y}\right)
\end{aligned}
$$

Not surjective. $g(X, Y, Z)=X^{2}+Y^{2}+Z^{2}-X Y Z-4$.

$$
g\left(\frac{x}{y}+\frac{y}{x}, \frac{x}{z}+\frac{z}{x}, \frac{y}{z}+\frac{z}{y}\right)=0
$$

Indeed, image of $f=$ zeros of $g$.

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{4} & \rightarrow \mathbb{C}^{6} \\
\left(x_{0}, x_{1}, x_{2}, x_{3}\right) & \mapsto\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)_{0 \leq i<j \leq 3}
\end{aligned}
$$

$$
\begin{aligned}
& f:\left(\mathbb{C}^{\times}\right)^{4} \rightarrow \mathbb{C}^{6}, \\
&\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)_{0 \leq i<j \leq 3} \\
& g(X, Y, Z)=X^{2}+Y^{2}+Z^{2}-X Y Z-4 .
\end{aligned}
$$

$$
g_{i, j, k}=g\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}, \frac{x_{i}}{x_{k}}+\frac{x_{k}}{x_{i}}, \frac{x_{j}}{x_{k}}+\frac{x_{k}}{x_{j}}\right)=0
$$

$$
\begin{aligned}
& f:\left(\mathbb{C}^{\times}\right)^{4} \rightarrow \mathbb{C}^{6} \\
&\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)_{0 \leq i<j \leq 3} \\
& g(X, Y, Z)=X^{2}+Y^{2}+Z^{2}-X Y Z-4 . \\
& g_{i, j, k}=g\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}, \frac{x_{i}}{x_{k}}+\frac{x_{k}}{x_{i}}, \frac{x_{j}}{x_{k}}+\frac{x_{k}}{x_{j}}\right)=0
\end{aligned}
$$

image of $f \stackrel{?}{=}$ zeros of $\left\{g_{i, j, k}\right\}$.

$$
\begin{aligned}
& f:\left(\mathbb{C}^{\times}\right)^{4} \rightarrow \mathbb{C}^{6}, \\
&\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)_{0 \leq i<j \leq 3} \\
& g(X, Y, Z)=X^{2}+Y^{2}+Z^{2}-X Y Z-4 .
\end{aligned}
$$

$$
g_{i, j, k}=g\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}, \frac{x_{i}}{x_{k}}+\frac{x_{k}}{x_{i}}, \frac{x_{j}}{x_{k}}+\frac{x_{k}}{x_{j}}\right)=0
$$

image of $f \neq$ zeros of $\left\{g_{i, j, k}\right\}$.

$$
\begin{aligned}
& f:\left(\mathbb{C}^{\times}\right)^{4} \rightarrow \mathbb{C}^{6} \\
&\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)_{0 \leq i<j \leq 3} \\
& g(X, Y, Z)=X^{2}+Y^{2}+Z^{2}-X Y Z-4 . \\
& g_{i, j, k}=g\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}, \frac{x_{i}}{x_{k}}+\frac{x_{k}}{x_{i}}, \frac{x_{j}}{x_{k}}+\frac{x_{k}}{x_{j}}\right)=0
\end{aligned}
$$

image of $f \neq$ zeros of $\left\{g_{i, j, k}\right\}$. Need

$$
\begin{aligned}
h= & \left(X_{03}^{2}-4\right) X_{12}-X_{03}\left(X_{01} X_{23}+X_{02} X_{13}\right) \\
& +2\left(X_{01} X_{02}+X_{13} X_{23}\right) \quad\left(X_{i j}=\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)
\end{aligned}
$$

(and similar polynomials obtained by permuting indices)

$$
\begin{aligned}
& f:\left(\mathbb{C}^{\times}\right)^{4} \rightarrow \mathbb{C}^{6} \\
&\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)_{0 \leq i<j \leq 3} \\
& g(X, Y, Z)=X^{2}+Y^{2}+Z^{2}-X Y Z-4 . \\
& g_{i, j, k}=g\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}, \frac{x_{i}}{x_{k}}+\frac{x_{k}}{x_{i}}, \frac{x_{j}}{x_{k}}+\frac{x_{k}}{x_{j}}\right)=0
\end{aligned}
$$

image of $f \neq$ zeros of $\left\{g_{i, j, k}\right\}$. Need

$$
\begin{aligned}
h= & \left(X_{03}^{2}-4\right) X_{12}-X_{03}\left(X_{01} X_{23}+X_{02} X_{13}\right) \\
& +2\left(X_{01} X_{02}+X_{13} X_{23}\right) \quad\left(X_{i j}=\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)
\end{aligned}
$$

(and similar polynomials obtained by permuting indices) image of $f=$ zeros of $g, h$.

$$
\begin{aligned}
& f:\left(\mathbb{C}^{\times}\right)^{4} \rightarrow \mathbb{C}^{6} \\
&\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)_{0 \leq i<j \leq 3} \\
& g(X, Y, Z)=X^{2}+Y^{2}+Z^{2}-X Y Z-4 . \\
& g_{i, j, k}=g\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}, \frac{x_{i}}{x_{k}}+\frac{x_{k}}{x_{i}}, \frac{x_{j}}{x_{k}}+\frac{x_{k}}{x_{j}}\right)=0
\end{aligned}
$$

image of $f \neq$ zeros of $\left\{g_{i, j, k}\right\}$. Need

$$
\begin{aligned}
h= & \left(X_{03}^{2}-4\right) X_{12}-X_{03}\left(X_{01} X_{23}+X_{02} X_{13}\right) \\
& +2\left(X_{01} X_{02}+X_{13} X_{23}\right) \quad\left(X_{i j}=\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right)
\end{aligned}
$$

(and similar polynomials obtained by permuting indices) image of $f=$ zeros of $g, h$.
The same is true for $\forall m \geq 4$.

## Theorem

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{d+1} & \rightarrow \mathbb{C}^{d(d+1) / 2} \\
\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}\right) & \mapsto\left(\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right)_{0 \leq i<j \leq d}
\end{aligned}
$$

The image of $f$ coincides with the set of zeros of the ideal $I$ in the polynomial ring $\mathbb{C}\left[X_{i j}: 0 \leq i<j \leq d\right]$ generated by

$$
\begin{aligned}
& g\left(X_{i j}, X_{i k}, X_{j k}\right) \\
& h\left(X_{i j}, X_{i k}, X_{i l}, X_{j k}, X_{j l}, X_{k l}\right)
\end{aligned}
$$

where $i, j, k, l$ are distinct, $X_{i j}=X_{j i}$, and

$$
\begin{aligned}
& g=X^{2}+Y^{2}+Z^{2}-X Y Z-4 \\
& h=\left(Z^{2}-4\right) U-Z(X W+Y V)+2(X Y+V W)
\end{aligned}
$$

Given a zero $\left(a_{i j}\right)$ of the ideal $I$, we know that there exists $\left(\alpha_{i}\right) \in\left(\mathbb{C}^{\times}\right)^{d+1}$ such that

$$
\begin{equation*}
a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d) \tag{1}
\end{equation*}
$$

Given a zero ( $a_{i j}$ ) of the ideal $I$, we know that there exists $\left(\alpha_{i}\right) \in\left(\mathbb{C}^{\times}\right)^{d+1}$ such that

$$
\begin{equation*}
a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d) . \tag{1}
\end{equation*}
$$

How do we find $\left(\alpha_{i}\right)$, and when does $\left(\alpha_{i}\right) \in\left(S^{1}\right)^{d+1}$ hold?

Given a zero ( $a_{i j}$ ) of the ideal $I$, we know that there exists $\left(\alpha_{i}\right) \in\left(\mathbb{C}^{\times}\right)^{d+1}$ such that

$$
\begin{equation*}
a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d) . \tag{1}
\end{equation*}
$$

How do we find $\left(\alpha_{i}\right)$, and when does $\left(\alpha_{i}\right) \in\left(S^{1}\right)^{d+1}$ hold? Observe, for $\alpha \in \mathbb{C}^{\times}$,

$$
|\alpha|=1 \Longleftrightarrow-2 \leq \alpha+\frac{1}{\alpha} \leq 2
$$

Given a zero ( $a_{i j}$ ) of the ideal $I$, we know that there exists $\left(\alpha_{i}\right) \in\left(\mathbb{C}^{\times}\right)^{d+1}$ such that

$$
\begin{equation*}
a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d) . \tag{1}
\end{equation*}
$$

How do we find $\left(\alpha_{i}\right)$, and when does $\left(\alpha_{i}\right) \in\left(S^{1}\right)^{d+1}$ hold? Observe, for $\alpha \in \mathbb{C}^{\times}$,

$$
|\alpha|=1 \Longleftrightarrow-2 \leq \alpha+\frac{1}{\alpha} \leq 2
$$

Given a zero ( $a_{i j}$ ) of the ideal $I$, we know that there exists $\left(\alpha_{i}\right) \in\left(\mathbb{C}^{\times}\right)^{d+1}$ such that

$$
\begin{equation*}
a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d) . \tag{1}
\end{equation*}
$$

How do we find $\left(\alpha_{i}\right)$, and when does $\left(\alpha_{i}\right) \in\left(S^{1}\right)^{d+1}$ hold? Observe, for $\alpha \in \mathbb{C}^{\times}$,

$$
|\alpha|=1 \Longleftrightarrow-2 \leq \alpha+\frac{1}{\alpha} \leq 2
$$

So we need $-2 \leq a_{i j} \leq 2$.

Given a zero $\left(a_{i j}\right)$ of the ideal $I$, we know that there exists $\left(\alpha_{i}\right) \in\left(\mathbb{C}^{\times}\right)^{d+1}$ such that

$$
\begin{equation*}
a_{i j}=\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}} \quad(0 \leq i<j \leq d) \tag{1}
\end{equation*}
$$

How do we find $\left(\alpha_{i}\right)$, and when does $\left(\alpha_{i}\right) \in\left(S^{1}\right)^{d+1}$ hold?
Observe, for $\alpha \in \mathbb{C}^{\times}$,

$$
|\alpha|=1 \Longleftrightarrow-2 \leq \alpha+\frac{1}{\alpha} \leq 2
$$

So we need $-2 \leq a_{i j} \leq 2$.
Moreover, if $a_{i j} \in\{ \pm 2\}$ for all $i, j$, then $\alpha_{i}= \pm \alpha_{j}$ so the resulting matrix is a scalar multiple of a real Hadamard matrix $\rightarrow$ Goethals-Seidel (1970).

Theorem

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{d+1} & \rightarrow \mathbb{C}^{d(d+1) / 2} \\
\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}\right) & \mapsto\left(\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right)_{0 \leq i<j \leq d}
\end{aligned}
$$

Suppose $\left(a_{i j}\right) \in$ the image of $f, a_{i j} \in \mathbb{R}$, and there exists $0 \leq i_{0}<i_{1} \leq d$ such that $-2<a_{i_{0}, i_{1}}<2$. Let $\alpha_{i_{0}}, \alpha_{i_{1}}$ be

$$
a_{i_{0}, i_{1}}=\frac{\alpha_{i_{0}}}{\alpha_{i_{1}}}+\frac{\alpha_{i_{1}}}{\alpha_{i_{0}}}
$$

Define $\alpha_{i}\left(0 \leq i \leq n, i \neq i_{0}, i_{1}\right)$ by

$$
\alpha_{i}=\frac{\alpha_{i_{0}}\left(a_{i_{0}, i_{1}} \alpha_{i_{1}}-2 \alpha_{i_{0}}\right)}{a_{i_{1}, i} \alpha_{i_{1}}-a_{i_{0}, i} \alpha_{i_{0}}}
$$

Then $\left|\alpha_{i}\right|=\left|\alpha_{j}\right|$ and

$$
\begin{equation*}
\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}=a_{i j} \quad(0 \leq i<j \leq d) \tag{1}
\end{equation*}
$$

and every $\left(\alpha_{i}\right)$ satisfying $(1)$ is obtained in this way.

Theorem

$$
\begin{aligned}
f:\left(\mathbb{C}^{\times}\right)^{d+1} & \rightarrow \mathbb{C}^{d(d+1) / 2} \\
\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}\right) & \mapsto\left(\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}\right)_{0 \leq i<j \leq d}
\end{aligned}
$$

Suppose $\left(a_{i j}\right) \in$ the image of $f, a_{i j} \in \mathbb{R}$, and there exists $0 \leq i_{0}<i_{1} \leq d$ such that $-2<a_{i_{0}, i_{1}}<2$. Let $\alpha_{i_{0}}, \alpha_{i_{1}}$ be

$$
a_{i_{0}, i_{1}}=\frac{\alpha_{i_{0}}}{\alpha_{i_{1}}}+\frac{\alpha_{i_{1}}}{\alpha_{i_{0}}}=\frac{\alpha_{i_{0}}}{\alpha_{i_{1}}}+\left(\frac{\alpha_{i_{0}}}{\alpha_{i_{1}}}\right)^{-1}
$$

Define $\alpha_{i}\left(0 \leq i \leq n, i \neq i_{0}, i_{1}\right)$ by

$$
\alpha_{i}=\frac{\alpha_{i_{0}}\left(a_{i_{0}, i_{1}} \alpha_{i_{1}}-2 \alpha_{i_{0}}\right)}{a_{i_{1}, i} \alpha_{i_{1}}-a_{i_{0}, i} \alpha_{i_{0}}}
$$

Then $\left|\alpha_{i}\right|=\left|\alpha_{j}\right|$ and

$$
\begin{equation*}
\frac{\alpha_{i}}{\alpha_{j}}+\frac{\alpha_{j}}{\alpha_{i}}=a_{i j} \quad(0 \leq i<j \leq d) \tag{1}
\end{equation*}
$$

and every $\left(\alpha_{i}\right)$ satisfying $(1)$ is obtained in this way.

Step 1 Solve the system of equations

$$
\begin{aligned}
& g\left(X_{i j}, X_{i k}, X_{j k}\right)=0 \\
& h\left(X_{i j}, X_{i k}, X_{i l}, X_{j k}, X_{j l}, X_{k l}\right)=0 \\
& \quad \sum_{0 \leq i<j \leq d} X_{i j} p_{k i} p_{k j}=n-\sum_{i=0}^{d} p_{k i}^{2}
\end{aligned}
$$

Step 2 List all solutions $a_{i j}$ with $-2 \leq a_{i j} \leq 2$.
Step 3 Find $\left(\alpha_{i}\right)$ by

$$
\alpha_{i}=\frac{\alpha_{i_{0}}\left(a_{i_{0}, i_{1}} \alpha_{i_{1}}-2 \alpha_{i_{0}}\right)}{a_{i_{1}, i} \alpha_{i_{1}}-a_{i_{0}, i} \alpha_{i_{0}}}
$$

where $a_{i_{0}, i_{1}} \neq \pm 2$,

$$
\frac{\alpha_{i_{0}}}{\alpha_{i_{1}}}+\frac{\alpha_{i_{1}}}{\alpha_{i_{0}}}=a_{i_{0}, i_{1}}
$$

Step 1 Solve the system of equations
Step 2 List all solutions $a_{i j}$ with $-2 \leq a_{i j} \leq 2$, Step 3 Find $\left(\alpha_{i}\right)$

Step 1 Solve the system of equations
Step 2 List all solutions $a_{i j}$ with $-2 \leq a_{i j} \leq 2$, Step 3 Find $\left(\alpha_{i}\right)$
In many known examples of association schemes with $d=3$, Step 2 failed.

Step 1 Solve the system of equations
Step 2 List all solutions $a_{i j}$ with $-2 \leq a_{i j} \leq 2$,
Step 3 Find $\left(\alpha_{i}\right)$
In many known examples of association schemes with $d=3$, Step 2 failed.

## Theorem (Chan, arXiv:1102.5601v1)

There are only finitely many antipodal distance-regular graphs of diameter 3 whose Bose-Mesner algebra contains a complex Hadamard matrix.

Step 1 Solve the system of equations
Step 2 List all solutions $a_{i j}$ with $-2 \leq a_{i j} \leq 2$,
Step 3 Find $\left(\alpha_{i}\right)$
In many known examples of association schemes with $d=3$, Step 2 failed.

## Theorem (Chan, arXiv:1102.5601v1)

There are only finitely many antipodal distance-regular graphs of diameter 3 whose Bose-Mesner algebra contains a complex Hadamard matrix.

But Chan did find an example. $L\left(O_{3}\right)$ : the line graph of the Petersen graph.

- $q$ : a power of $2, q \geq 4$,
- $\Omega=\mathrm{PG}(2, q)$ : the projective plane over $\mathbb{F}_{q}$,
- $Q=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \mid a_{0}^{2}+a_{1} a_{2}=0\right\}$ : quadric,
- $X=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \backslash Q \mid\left[a_{0}, a_{1}, a_{2}\right] \neq[1,0,0]\right\}$,
- $|X|=q^{2}-1$.
- $q$ : a power of $2, q \geq 4$,
- $\Omega=\mathrm{PG}(2, q)$ : the projective plane over $\mathbb{F}_{q}$,
- $Q=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \mid a_{0}^{2}+a_{1} a_{2}=0\right\}$ : quadric,
- $X=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \backslash Q \mid\left[a_{0}, a_{1}, a_{2}\right] \neq[1,0,0]\right\}$,
- $|X|=q^{2}-1$.

For $x, y \in X$, denote by $x+y$ the line through $x, y$.

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if } i=0, x=y, \\ 1 & \text { if } i=1,|(x+y) \cap Q|=2, \\ 1 & \text { if } i=2,|(x+y) \cap Q|=0, \\ 1 & \text { if } i=3,|(x+y) \cap Q|=1, \\ 0 & \text { otherwise. }\end{cases}
$$

$\exists$ a complex Hadamard matrix in its Bose-Mesner algebra.

- $q$ : a power of $2, q \geq 4$,
- $\Omega=\mathrm{PG}(2, q)$ : the projective plane over $\mathbb{F}_{q}$,
- $Q=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \mid a_{0}^{2}+a_{1} a_{2}=0\right\}$ : quadric,
- $X=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \backslash Q \mid\left[a_{0}, a_{1}, a_{2}\right] \neq[1,0,0]\right\}$,
- $|X|=q^{2}-1$.

For $x, y \in X$, denote by $x+y$ the line through $x, y$.

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if } i=0, x=y, \\ 1 & \text { if } i=1,|(x+y) \cap Q|=2, \\ 1 & \text { if } i=2,|(x+y) \cap Q|=0, \\ 1 & \text { if } i=3,|(x+y) \cap Q|=1, \\ 0 & \text { otherwise. }\end{cases}
$$

$\exists$ a complex Hadamard matrix in its Bose-Mesner algebra.

- $q$ : a power of $2, q \geq 4 \rightarrow q=4$,
- $\Omega=\mathrm{PG}(2, q)$ : the projective plane over $\mathbb{F}_{q}$,
- $Q=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \mid a_{0}^{2}+a_{1} a_{2}=0\right\}$ : quadric,
- $X=\left\{\left[a_{0}, a_{1}, a_{2}\right] \in \Omega \backslash Q \mid\left[a_{0}, a_{1}, a_{2}\right] \neq[1,0,0]\right\}$,
- $|X|=q^{2}-1 \rightarrow 15$.

For $x, y \in X$, denote by $x+y$ the line through $x, y$.

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if } i=0, x=y, \\ 1 & \text { if } i=1,|(x+y) \cap Q|=2, \\ 1 & \text { if } i=2,|(x+y) \cap Q|=0, \\ 1 & \text { if } i=3,|(x+y) \cap Q|=1, \\ 0 & \text { otherwise. }\end{cases}
$$

$\exists$ a complex Hadamard matrix in $L\left(O_{3}\right)$.

## Theorem

The matrix $H=I+\alpha_{1} A_{1}+\alpha_{2} A_{2}+\alpha_{3} A_{3}$ is a complex Hadamard matrix if and only if
(i) $H$ belongs to the subalgebra forming the Bose-Mesner algebra of a strongly regular graph (precise description omitted, already done by Chan-Godsil),
(ii)

$$
\alpha_{1}+\frac{1}{\alpha_{1}}=-\frac{2}{q}, \quad \alpha_{2}=\frac{1}{\alpha_{1}}, \quad \alpha_{3}=1
$$

(iii)

$$
\alpha_{1}+\frac{1}{\alpha_{1}}=\frac{(q-1)(q-2)-(q+2) r}{q}
$$

$$
\text { where } r=\sqrt{(q-1)(17 q-1)}>0 \text {. }
$$

The case (ii) with $q=4$ was found by Chan.

