Binary codes of t-designs and Hadamard matrices

Akihiro Munemasa ${ }^{1}$
${ }^{1}$ Graduate School of Information Sciences
Tohoku University

November 8, 2013
JSPS-DST Asian Academic Seminar 2013 Discrete Mathematics and Its Applications The University of Tokyo

Overview

R. C. Bose (1901-1987)

- Combinatorial design theory association schemes, symmetric (square) designs, Hadamard designs
- Algebraic coding theory BCH code

Dijen Ray-Chaudhuri (1933-)

- Finite geometries

In this talk, I will connect codes and Hadamard matrices directly, present an answer to a question of Assmus-Key (1992), and try to reveal the theory behind (integral lattices).

Analytic characterization of Hadamard matrices

The function

$$
f: \operatorname{det}\left(x_{i j}\right):[-1,1]^{n^{2}} \rightarrow \mathbb{R} .
$$

satisfies Hadamard's inequality,

$$
f(x) \leq n^{n / 2}
$$

equality is achieved (if? and) only if $n=1,2$ or $n \equiv 0(\bmod 4)$.
Conjecture: "if and only if."
Amounts to finding a square matrix H of order n with entries in $\{ \pm 1\}$ such that $H H^{\top}=n I$. The smallest unsettled case is $n=668$.

Hadamard matrices

Definition

A Hadamard matrix of order n is an $n \times n$ matrix with entries in $\{ \pm 1\}$, such that rows are pairwise orthogonal:

$$
H H^{\top}=n I .
$$

Example

The Hadamard matrix of Sylvester type, where $n=2^{v}$:

$$
H \otimes \cdots \otimes H
$$

where

$$
H=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Existence of Hadamard matrices

A Hadamard matrix of order n exists for

$$
n=1,2,4,8,12,16, \ldots \text { (multiples of } 4), \ldots, 664,672, \ldots
$$

Except $n=1,2$, the existence of a Hadamard matrix of order n implies $n \equiv 0(\bmod 4)$:

$$
\begin{array}{cccc}
1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 \\
1 \cdots 1 & 1 \cdots 1 & -1 \cdots-1 & -1 \cdots-1 \\
1 \cdots 1 & -1 \cdots-1 & 1 \cdots 1 & -1 \cdots-1
\end{array}
$$

Conjecture

A Hadamard matrix of order n exists for any $n \equiv 0(\bmod 4)$.

Classification of Hadamard matrices

If H is a Hadamard matrix, then so is H^{\top}.

Definition

Two Hadamard matrices H_{1}, H_{2} are said to be equivalent if

$$
\exists P, Q, P H_{1} Q=H_{2},
$$

where P and Q are signed permutation matrices.
The numbers of equivalence classes of Hadamard matrices are known for orders up to 32 .

order	1	2	4	8	12	16	20	24	28	32
number	1	1	1	1	1	5	3	60	487	$13,710,027$

16, 20: Hall; 24: Ito-Leon-Longyear, Kimura; 28: Kimura, Spence; 32: Kharaghani and Tayfeh-Rezaie (2012).

Invariants of Hadamard matrices

- Combinatorial invariants by counting
- Algebraic invariants (linear algebra over finite fields)

Given a Hadamard matrix H, consider the linear span of its row vectors.
\rightarrow nonsense for \mathbb{Q} or any field \mathbb{F} of characteristic 0 , or characteristic p with $(p, n)=1$.
Otherwise, it is a proper subspace of \mathbb{F}^{n}.

Definition

If \mathbb{F} is a finite field, then a vector subspace of \mathbb{F}^{n} is called a (linear) code of length n.
For $\mathbb{F}=\mathbb{F}_{2}$, binary code. For $\mathbb{F}=\mathbb{F}_{3}$, ternary code.
But in $\mathbb{F}_{2}, 1=-1$, so the linear span is again a nonsense....

Normalized and binary Hadamard matrices

Every Hadamard matrix is equivalent to the one with 1 everywhere in the first row:

$$
H=\left[\begin{array}{cc}
1 & 1 \cdots 1 \\
& \cdots \\
& \pm 1 \\
& \cdots
\end{array}\right]
$$

Such a Hadamard matrix H is said to be normalized (we assume always in what follows). The binary Hadamard matrix associated to H is

$$
B=\frac{1}{2}(H+J)=\left[\begin{array}{cc}
1 & 1 \cdots 1 \\
& \cdots \\
& 1 \text { or } 0 \\
& \cdots
\end{array}\right]
$$

where J is the all-one matrix.

The code of a Hadamard matrix

Definition

The binary code of a Hadamard matrix H is defined as the linear span over \mathbb{F}_{2} of any binary Hadamard matrix associated to H.

It is non-trivial to check that this is well-defined.

Definition

The ternary code of a Hadamard matrix H is defined as the linear span over \mathbb{F}_{3} of H.

This is simply \mathbb{F}_{3}^{n} if H has order n and $3 \nmid n$.

Weight

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$, we write

$$
\begin{aligned}
\operatorname{supp}(x) & =\left\{i \mid 1 \leq i \leq n, x_{i} \neq 0\right\} \\
\operatorname{wt}(x) & =|\operatorname{supp}(x)|
\end{aligned}
$$

For a code $C \subset \mathbb{F}^{n}$, its minimum weight is

$$
\min \{\mathrm{wt}(x) \mid 0 \neq x \in C\}
$$

The minimum weight of the binary (ternary) code is an invariant of a Hadamard matrix.

Assmus and Key (1992)

Fact

Let H be a Hadamard matrix of order 24. The following are equivalent.

- The binary code of H has minimum weight 8 (largest).
- The ternary code of H^{\top} has minimum weight 9 (largest).
- The binary code of H has dimension 12, and the minimum weight is 4 or 8 .
- The ternary code of H^{\top} has dimension 12, and the minimum weight is 6 or 9 .
- There are two (up to equivalence) Hadamard matrices H satisfying the above equivalent conditions.

Verification using MAGMA

There are 60 Hadamard matrices of order 24 up to equivalence. Database is available in MAGMA computer algebra system.

DB:=HadamardDatabase();
NumberOfMatrices (DB, 24) eq 60;
H24s:=[Matrix(DB,24,i):i in [1..60]];
normalize:=func $<H \mid H * D i a g o n a l M a t r i x(E l t s e q(H[1]))>$;
J:=Matrix(Integers(),24,24,[1:i in [1..24^2]]);
$\mathrm{bH}:=$ func<H|Parent (H) ! [x div 2:x in Eltseq(normalize (H) +J)] bC: =func<H|LinearCode (ChangeRing (bH (H) , GF (2))) >;
tCT:=func<H|LinearCode (ChangeRing (Transpose (H) , GF (3))) >;
[i:i in [1..60]|MinimumWeight(bC(H24s[i])) eq 8] eq [3,9];
[i:i in [1..60]|MinimumWeight(tCT(H24s[i])) eq 9] eq [3,9];

Total time: 0.290 seconds, Total memory usage: 32.09MB

Assmus and Key (1992)

Fact

Let H be a Hadamard matrix of order 24. The following are equivalent.

- The binary code of H has minimum weight 8 (largest).
- The ternary code of H^{\top} has minimum weight 9 (largest).
- Why are the behavior modulo 2 and modulo 3 related? (Intuitively speaking, this is unusual. cf. Chinese Remainder Theorem).
- Why transpose?

Ternary codes of H

If C is a code of length n over \mathbb{F}, then the dual code of C is defined as

$$
C^{\perp}=\left\{x \in \mathbb{F}^{n} \mid x \cdot y=0(\forall y \in C)\right\} .
$$

where

$$
x \cdot y=\sum_{i=1}^{n} x_{i} y_{i} .
$$

Then $\operatorname{dim} C^{\perp}=n-\operatorname{dim} C$. The code C is said to be self-orthogonal if $C \subset C^{\perp}$ and self-dual if $C=C^{\perp}$.
$C=$ the ternary code of a Hadamard matrix H.

$$
H H^{\top}=n I \text { and } 3 \mid n \Longrightarrow H H^{\top} \equiv 0(\bmod 3) \Longrightarrow C \subset C^{\perp} .
$$

The ternary code of H is self-dual

Lemma

Let n be an integer divisible by 4 . If $3 \mid n$ and $9 \nmid n$, then the ternary code of a Hadamard matrix of order n is self-dual.

In particular, for $n=24$, the ternary code C_{3} of $H^{\top},(H$: a Hadamard matrix of order 24) is self-dual.

$$
\begin{aligned}
C_{3} & =\text { span of rows of } H^{\top}=\text { span of columns of } H \\
C_{3}^{\perp} & =(\text { span of columns of } H)^{\perp}=\text { left kernel of } H
\end{aligned}
$$

$$
\begin{aligned}
C_{3}=C_{3}^{\perp} & =\text { left kernel of } H \\
& =\{v \mid v H=0\} .
\end{aligned}
$$

The binary code of H is doubly even self-dual

A binary code C is said to be doubly even if

$$
\mathrm{wt}(x) \equiv 0 \quad(\bmod 4) \quad(\forall x \in C) .
$$

Lemma

Let C be the binary code of a Hadamard matrix of order n.

- If $n \equiv 8(\bmod 16)$, then C is doubly even self-dual.

In particular, for $n=24$, the binary code C_{2} of H, (H : a Hadamard matrix of order 24) is doubly even self-dual.

H : a Hadamard matrix of order 24

- C_{3} : the ternary code of H^{\top}.
- $C_{3}=C_{3}^{\perp}, C_{3}$ has only weights divisible by 3 .
- C_{2} : the binary code of H.
- $C_{2}=C_{2}^{\perp}, C_{2}$ has only weights divisible by 4 (doubly even).

Fact (Assmus-Key, 1992)

The following are equivalent:

- C_{2} has minimum weight 8 (largest).
- C_{3} has minimum weight 9 (largest).

It turns out C_{3} has no vectors of weight 3 for any H.

$H:$ a Hadamard matrix of order 24

Theorem

The following are equivalent.
(1) C_{2} has weight 4 .
(2) C_{3} has weight 6 .

Proof.

$$
\begin{gathered}
\frac{1}{\sqrt{3}} v \in \frac{1}{\sqrt{3}} \mathbb{Z}^{24} \xrightarrow{\text { isometry } \frac{1}{\sqrt{24} H}} \frac{1}{\sqrt{2}} u=\frac{1}{\sqrt{2}} \frac{1}{6} v H \in \frac{1}{\sqrt{2}} \mathbb{Z}^{24} \\
v \in C_{3}, \mathrm{wt}=6 \\
\bmod 2 \downarrow \\
u \in C_{2}, \text { wt }=4
\end{gathered}
$$

$v \in C_{3}=$ left kernel of $H \Longrightarrow v H \equiv 0(\bmod 3)($ In fact, $v H \equiv 0$ $(\bmod 6))$. Moreover, $2=\left\|\frac{1}{\sqrt{3}} v\right\|^{2}=\left\|\frac{1}{\sqrt{2}} u\right\|^{2}$.

Unimodular lattices

$$
\frac{1}{\sqrt{3}} v \in \frac{1}{\sqrt{3}} \mathbb{Z}^{24} \xrightarrow{\text { isometry } \frac{1}{\sqrt{24} H}} \frac{1}{\sqrt{2}} u=\frac{1}{\sqrt{2}} \frac{1}{6} v H \in \frac{1}{\sqrt{2}} \mathbb{Z}^{24}
$$

The idea behind this is that, the isometry $\frac{1}{\sqrt{24}} H$ maps the unimodular lattice

$$
\frac{1}{\sqrt{3}} C_{3}+\sqrt{3} \mathbb{Z}^{24}
$$

to a "neighbor" of the unimodular lattice

$$
\frac{1}{\sqrt{2}} C_{2}+\sqrt{2} \mathbb{Z}^{24}
$$

and $\frac{1}{\sqrt{3}} v, \frac{1}{\sqrt{2}} u$ are "roots" of these.

H: a Hadamard matrix of order 48

Similarly, one can consider a code over $\mathbb{Z} / 4 \mathbb{Z}$, the ring of integers modulo 4. The Euclidean weight of a vector $v \in(\mathbb{Z} / 4 \mathbb{Z})^{n}$ is

$$
\mathrm{wt}(v)=\sum_{i=1}^{n} v_{i}^{2},
$$

where we regard $v_{i} \in\{0, \pm 1,2\} \subset \mathbb{Z}$.

Theorem (Munemasa-Tamura, 2012)

- C_{4} : the code over $\mathbb{Z} / 4 \mathbb{Z}$ with generator matrix $B=\frac{1}{2}(H+J)$.
- C_{3} : the ternary code of H^{\top}.

Then both C_{4} and C_{3} are self-dual. Moreover, the following are equivalent:

- C_{4} has minimum Euclidean weight 24 (largest).
- C_{3} has minimum weight 15 (largest).

H: a Hadamard matrix of order 48

Theorem (Munemasa-Tamura, 2012)

- C_{4} : the code over $\mathbb{Z} / 4 \mathbb{Z}$ with generator matrix $B=\frac{1}{2}(H+J)$.
- C_{3} : the ternary code of H^{\top}.

Then both C_{4} and C_{3} are self-dual. Moreover, the following are equivalent:

- C_{4} has minimum Euclidean weight 24 (largest).
- C_{3} has minimum weight 15 (largest).

$$
\begin{array}{cc}
\frac{1}{\sqrt{3}} v \in \frac{1}{\sqrt{3}} \mathbb{Z}^{24} & \xrightarrow{\text { isometry } \frac{1}{\sqrt{48}} H} \frac{1}{2} u=\frac{1}{2} \frac{1}{6} v H \in \frac{1}{2} \mathbb{Z}^{24} \\
\text { lift } \uparrow & \bmod 4 \downarrow \\
v \in C_{3}, ~ \mathrm{wt}=12 & u \in C_{2}, \text { wt }=16
\end{array}
$$

This is not sufficient; one must also consider smaller weights.

Hadamard matrices of order 48 and ternary codes

Theorem

If C is a ternary self-dual code of length 48 and minimum weight 15 (largest possible), then C is the ternary code of a Hadamard matrix.

Unlike the case $n=24$, the following problem is still open.

Problem

- classify ternary self-dual codes of length 48 with minimum weight 15 , or
- classify Hadamard matrices of order 48 whose ternary code has minimum weight 15.

