Twisted symplectic polar graphs and Gordon-Mills-Welch difference sets

Akihiro Munemasa ${ }^{1}$
(joint work with Frédéric Vanhove)
${ }^{1}$ Graduate School of Information Sciences
Tohoku University
February 28, 2014
Colloquium on Galois Geometry to the memory of
Frédéric Vanhove (1984-2013)
Ghent University

The symplectic polar graph associated with the group $\operatorname{Sp}(2 n, 2)$:

$$
\begin{gathered}
X=V(2 n, 2)-\{0\} \\
u \sim v \Longleftrightarrow \text { orthogonal }
\end{gathered}
$$

$\operatorname{SRG}\left(2^{2 n}-1,2^{2 n-1}-1,2^{2 n-2}-3,2^{2 n-2}-1\right)$.
Another description:
$V=V\left(2,2^{n}\right), f: V \times V \rightarrow \mathrm{GF}\left(2^{n}\right)$: a nondegenerate alternating form.

$$
\begin{gathered}
X=V-\{0\} \\
u \sim v \Longleftrightarrow \operatorname{Tr} f(u, v)=0 .
\end{gathered}
$$

$\operatorname{SRG}\left(2^{2 n}-1,2^{2 n-1}-1,2^{2 n-2}-3,2^{2 n-2}-1\right)$.
There is a graph having these parameters but not isomorphic to the symplectic polar graph.
$W=V\left(3,2^{n}\right), Q: W \rightarrow \mathrm{GF}\left(2^{n}\right):$ a nondegenerate quadratic form.

$$
\begin{aligned}
& X=\left\{\langle x\rangle \mid x \in W, Q(x) \neq 0,\langle x\rangle \neq W^{\perp}\right\}, \\
& \langle x\rangle \sim\langle y\rangle \Longleftrightarrow\langle x, y\rangle: \text { secant or tangent. }
\end{aligned}
$$

In both graphs, there are two kinds of edges.

Note that, in $\operatorname{Sp}(2 n, 2)$-graph, given $0 \neq u \in V\left(2,2^{n}\right)$,

$$
\begin{aligned}
& \left|\left\{v \in V\left(2,2^{n}\right) \mid v \neq 0, v \neq u, f(u, v)=0\right\}\right|=2^{n}-2, \\
& \left|\left\{v \in V\left(2,2^{n}\right) \mid f(u, v) \neq 0, \operatorname{Tr} f(u, v)=0\right\}\right|=2^{2 n-1}-2^{n} .
\end{aligned}
$$

In $O\left(3,2^{n}\right)$-graph, given a point $\langle x\rangle \in X$,

$$
\begin{aligned}
& \mid\{\langle y\rangle \in X \mid\langle x, y\rangle \text { tangent }\} \mid=2^{n}-2, \\
& \mid\{\langle y\rangle \in X \mid\langle x, y\rangle \text { secant }\} \mid=2^{2 n-1}-2^{n} .
\end{aligned}
$$

$Q \rightarrow$ alternating form f on $\bar{W}=W / W^{\perp}$.
Given $\langle x\rangle,\langle y\rangle \in X$ with $Q(x)=Q(y)=1$,

$$
Q(\alpha x+\beta y)=\alpha^{2}+f(\bar{x}, \bar{y}) \alpha \beta+\beta^{2} .
$$

$\exists t \in \mathrm{GF}\left(2^{n}\right), t^{2}+b t+1=0 \Longleftrightarrow b=0$ or $\operatorname{Tr} b^{-1}=0$
$\exists t \in \operatorname{GF}\left(2^{n}\right), t^{2}+t+b=0 \Longleftrightarrow \operatorname{Tr} b=0$ So $\langle x, y\rangle$
tangent or secant if and only if

$$
\operatorname{Tr} f(\bar{x}, \bar{y})^{2^{n}-2}=0 \quad(\operatorname{not} \operatorname{Tr} f(\bar{x}, \bar{y})=0)
$$

$V=V\left(2,2^{n}\right), f: V \times V \rightarrow \operatorname{GF}\left(2^{n}\right)$: alternating. Fix a positive integer i with $\left(i, 2^{n}-1\right)=1$.

$$
\begin{gathered}
X=V-\{0\} \\
x \sim y \Longleftrightarrow \operatorname{Tr}\left(f(x, y)^{i}\right)=0
\end{gathered}
$$

Then $\operatorname{SRG}\left(2^{2 n}-1,2^{2 n-1}-1,2^{2 n-2}-3,2^{2 n-2}-1\right)$.
$i=1$: ordinary symplectic polar graph
$i=-1$: graph obtained from $O\left(3,2^{n}\right)$.
BCN=Brouwer-Cohen-Neumaier, Distance-Regular Graphs, 1989
BCN gives a 3-class association scheme based on $O\left(3,2^{n}\right)$. Relations are 'secant', 'external', 'tangent'. secant \cup tangent gives a SRG.
$X=\{$ external points, \neq nucleus $\}$ in $O\left(3,2^{n}\right)$-space.

$$
\begin{aligned}
R_{1} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle \text { secant }\}, \\
R_{2} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle \text { external }\}, \\
R_{3} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle \text { tangent }\} .
\end{aligned}
$$

BCN: these relations define an association scheme.
Since there is no group having R_{i} 's as orbitals, the proof has to be a geometric one. One needs to show that

$$
p_{i j}^{k}=\left|\left\{\langle z\rangle \mid(\langle x\rangle,\langle z\rangle) \in R_{i},(\langle z\rangle,\langle y\rangle) \in R_{j}\right\}\right|
$$

depends only on k and is independent of $(\langle x\rangle,\langle y\rangle) \in R_{k}$.

The reason why I was interested in this association scheme was:

Ikuta and I found a family of complex Hadamard matrices, this was one of the few in E. van Dam's list (1999) of 3-class association schemes which admits complex Hadamard matrices.

I wanted make sure that
■ these association schemes exist,

- extend our results to obvious larger family.
$O\left(3,2^{n}\right) \Longrightarrow O\left(2 n+1,2^{n}\right)$.
BCN went on to claim $\exists 3$-class association scheme for $O\left(2 m+1,2^{n}\right)$ without proof, without $p_{i j}^{h}$.

BCN went on to claim $\exists 3$-class association scheme: $W=V(2 m+1, q)$ with quadratic form,

$$
\begin{aligned}
X & =\{\text { external points, } \neq \text { nucleus }\}, \\
R_{1} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle \text { secant }\}, \\
R_{2} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle \text { external }\}, \\
R_{3} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle \text { tangent }\} .
\end{aligned}
$$

Frédéric Vanhove: this is incorrect for $m>1$.

$$
\begin{aligned}
& R_{3}=\{(\langle x\rangle,\langle y\rangle) \mid \text { nucleus } \in\langle x, y\rangle \text { tangent }\}, \\
& R_{4}=\{(\langle x\rangle,\langle y\rangle) \mid \text { nucleus } \notin\langle x, y\rangle \text { tangent }\},
\end{aligned}
$$

If $m=1$, then $R_{4}=\emptyset . R_{1} \cup R_{3} \cup R_{4}$: SRG.

BCN went on to claim $\exists 3$-class association scheme: $W=V(2 m+1, q)$ with quadratic form,

$$
\begin{aligned}
X & =\{\text { external points, } \neq \text { nucleus }\}, \\
R_{1} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle \text { secant }\}, \\
R_{2} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle \text { external }\}, \\
R_{3} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle \text { tangent }\} .
\end{aligned}
$$

Frédéric Vanhove: this is incorrect for $m>1$.

$$
\begin{aligned}
& R_{3}=\{(\langle x\rangle,\langle y\rangle) \mid \text { nucleus } \in\langle x, y\rangle \text { tangent }\}, \\
& R_{4}=\{(\langle x\rangle,\langle y\rangle) \mid \text { nucleus } \notin\langle x, y\rangle \text { tangent }\},
\end{aligned}
$$

If $m=1$, then $R_{4}=\emptyset . R_{1} \cup R_{3} \cup R_{4}$: SRG.
It admits 'twisted' symplectic description.
$V=V\left(2 m, 2^{n}\right), f: V \times V \rightarrow \mathrm{GF}\left(2^{n}\right)$: alternating. Fix a positive integer i with $\left(i, 2^{n}-1\right)=1$.

$$
\begin{aligned}
X & =V-\{0\} \\
u \sim v & \Longleftrightarrow \operatorname{Tr}\left(f(u, v)^{i}\right)=0
\end{aligned}
$$

Then SRG $\left(2^{2 m n}-1,2^{2 m n-1}-1,2^{2 m n-2}-3,2^{2 m n-2}-1\right)$.
$i=1$: ordinary symplectic polar graph
$i=-1$: graph obtained from $O\left(2 m+1,2^{n}\right)$.

$$
\begin{aligned}
& R_{1}=\left\{(u, v) \mid f(u, v) \neq 0, \operatorname{Tr}\left(f(u, v)^{i}\right)=0\right\}, \\
& R_{2}=\left\{(u, v) \mid \operatorname{Tr}\left(f(u, v)^{i}\right)=1\right\}, \\
& R_{3}=\left\{(u, v) \mid\langle u\rangle_{\mathrm{GF}\left(2^{n}\right)}=\langle v\rangle_{\operatorname{GF}\left(2^{n}\right)}\right\}, \\
& R_{4}=\left\{(u, v) \mid f(u, v)=0,\langle u\rangle_{\mathrm{GF}\left(2^{n}\right)} \neq\langle v\rangle_{\mathrm{GF}\left(2^{n}\right)}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{SRG}\left(2^{2 m n}-1,2^{2 m n-1}-1,2^{2 m n-2}-3,2^{2 m n-2}-1\right) \\
& \lambda+2=\mu
\end{aligned}
$$

3 - or 4-class $\xrightarrow{\text { secantutangent }} \quad$ SRG
association scheme

GMW difference set \longrightarrow Hadamard design
(Bill Kantor, Nov. 16, 2013)
$V=V\left(2 m, 2^{n}\right), f$: alternating form on V.

$$
\begin{aligned}
& R_{1}=\{(x, y) \mid f(x, y) \neq 0, \operatorname{Tr} f(x, y)=0\} \\
& R_{2}=\{(x, y) \mid \operatorname{Tr} f(x, y) \neq 0\} \\
& R_{3}=\left\{(x, y) \mid\langle x\rangle_{\mathrm{GF}\left(2^{n}\right)}=\langle y\rangle_{\mathrm{GF}\left(2^{n}\right)}\right\} \\
& R_{4}=\left\{(x, y) \mid f(x, y)=0,\langle x\rangle_{\mathrm{GF}\left(2^{n}\right)} \neq\langle y\rangle_{\mathrm{GF}\left(2^{n}\right)}\right\} .
\end{aligned}
$$

$D=\operatorname{Tr}^{-1}(0)-\{0\} \subset \mathrm{GF}\left(2^{n}\right)^{\times}:$difference set.

$$
R_{1} \cup R_{3} \cup R_{4}=\{(x, y) \mid x \neq y, f(x, y) \in D \cup\{0\}\}
$$

Gordon-Mills-Welch (1969): $R_{1} \cup R_{3} \cup R_{4}$: SRG.
Its isomorphism type depends on the choice of D. Determined by Jackson-Wild (1997), Kantor (2001).

If $D=\operatorname{Tr}^{-1}(0)-\{0\} \subset \mathrm{GF}\left(2^{n}\right)^{\times}$: difference set, then $\mu_{i}(D)=\left\{\alpha^{i} \mid \alpha \in D\right\}$ is also a difference set if
$\left(i, 2^{n}-1\right)=1$ (equivalent).
SRG from D has edges $\{(x, y) \mid f(x, y) \in D \cup\{0\}\}$, SRG from $\mu_{i}(D)$ has edges $\left\{(x, y) \mid f(x, y) \in \mu_{i}(D) \cup\{0\}\right\}$. Jackson-Wild (1997), Kantor (2001):

> SRG from $D \cong$ SRG from $\mu_{i}(D)$ $\Longleftrightarrow i$ is a power of 2 modulo $2^{n}-1$.

In particular for $i=-1$, one obtains non-isomorphic SRG.

More generally, Gordon-Mills-Welch (GMW) difference set Ingredients:
■ q : prime power

- $n \geq 2$
- D : difference set whose development is a design with the same parameters as $\operatorname{PG}(n-1, q)$
- $k \geq 2$

Output: difference set whose development is a design with the same parameters as $\operatorname{PG}(k n-1, q)$

Isomorphism determined by Jackson-Wild, Kantor. Setting $k=2 m$, we have ...

■ $D \subset \mathrm{PG}(n-1, q)=\mathrm{GF}\left(q^{n}\right)^{\times} / \mathrm{GF}(q)^{\times}$a difference set with parameters

$$
\left(\frac{q^{n}-1}{q-1}, \frac{q^{n-1}-1}{q-1}, \frac{q^{n-2}-1}{q-1}\right),
$$

$\tilde{D} \subset \mathrm{GF}\left(q^{n}\right)^{\times}$denote the preimage of D.
■ X the points of $\mathrm{PG}(2 m n-1, q)$ based on the vector space $V=V\left(2 m, q^{n}\right)$, regarded as a vector space over GF (q).
■ $f: V \times V \rightarrow \mathrm{GF}\left(q^{n}\right)$: alternating.
Since \tilde{D} is invariant under $\mathrm{GF}(q)^{\times}$, for $[x],[y] \in X$, the condition $f(x, y) \in \tilde{D}$ and $f(x, y)=0$ are independent of the choice of representatives.
X : the points of $\operatorname{PG}(2 m n-1, q)$ based on the vector space $V=V\left(2 m, q^{n}\right)$, regarded as a vector space over $\mathrm{GF}(q)$.

$$
\begin{aligned}
& R_{0}=\{([x],[x]) \mid[x] \in X\}, \\
& R_{1}=\{([x],[y]) \mid[x],[y] \in X, f(x, y) \in \tilde{D}\}, \\
& R_{2}=\{([x],[y]) \mid[x],[y] \in X, f(x, y) \neq 0, f(x, y) \notin \tilde{D}\}, \\
& R_{3}=\left\{([x],[y]) \mid[x],[y] \in X,\langle x\rangle_{\mathrm{GF}\left(q^{n}\right)}=\langle y\rangle_{\mathrm{GF}\left(q^{n}\right)}\right\}, \\
& R_{4}=\left\{([x],[y]) \mid[x],[y] \in X, f(x, y)=0,\langle x\rangle_{\mathrm{GF}\left(q^{n}\right)} \neq\langle y\rangle_{\mathrm{GF}\left(q^{n}\right)}\right\} .
\end{aligned}
$$

Note that, if $m=1$, then $V=V\left(2, q^{n}\right)$, so

$$
f(x, y)=0 \Longleftrightarrow\langle x\rangle_{\mathrm{GF}\left(q^{n}\right)}=\langle y\rangle_{\mathrm{GF}\left(q^{n}\right)} .
$$

Thus $R_{4}=\emptyset$.

Theorem

X : the points of $\mathrm{PG}(2 m n-1, q)$ based on the vector space $V=V\left(2 m, q^{n}\right)$, regarded as a vector space over $\mathrm{GF}(q)$.

$$
\begin{aligned}
& R_{0}=\{([x],[x]) \mid[x] \in X\}, \\
& R_{1}=\{([x],[y]) \mid[x],[y] \in X, f(x, y) \in \tilde{D}\}, \\
& R_{2}=\{([x],[y]) \mid[x],[y] \in X, f(x, y) \neq 0, f(x, y) \notin \tilde{D}\}, \\
& R_{3}=\left\{([x],[y]) \mid[x],[y] \in X,\langle x\rangle_{\operatorname{GF}\left(q^{n}\right)}=\langle y\rangle_{\operatorname{GF}\left(q^{n}\right)}\right\}, \\
& R_{4}=\left\{([x],[y]) \mid[x],[y] \in X, f(x, y)=0,\langle x\rangle_{\operatorname{GF}\left(q^{n}\right)} \neq\langle y\rangle_{\operatorname{GF}\left(q^{n}\right)}\right\} .
\end{aligned}
$$

($X,\left\{R_{i}\right\}_{i=0}^{4}$) is an association scheme.
In particular, one obtains a 3-class association scheme from $O\left(3,2^{n}\right)$.

