Extremal type II \mathbb{Z}_{4}-codes of length 24 and triply even binary codes of length 48

Akihiro Munemasa ${ }^{1}$
${ }^{1}$ Graduate School of Information Sciences
Tohoku University

August 12, 2014
ICM 2014 Satellite Conference on Algebraic Coding Theory
Ewha Womans University, Korea

$L=$ Leech lattice

\{Virasoro frames of $\left.V^{\natural}\right\}$ most difficult

$$
\xrightarrow{\text { str }} \quad\left\{\begin{array}{l}
\text { triply even } D \\
\text { length }=48, \mathbf{1}_{48} \in D \\
\min D^{\perp} \geq 4
\end{array}\right.
$$

Dong	$\uparrow \mathcal{D}$(extended doubling $)$
Mason Zhu	

\{frames of L \}
$=\{$ extremal type II codes of length 24\}
$\stackrel{L / F \bmod 2}{\rightarrow}\left\{\begin{array}{l}\text { doubly even } C \\ \text { length }=24, \mathbf{1}_{24} \in C \\ \text { min } C^{\perp} \geq 4 \\ \text { easily enumerated }\end{array}\right\}$
The diagram commutes, and

Even, doubly even, and triply even codes

A binary linear code C is called

$$
\begin{aligned}
\text { even } & \Longleftrightarrow w t(x) \equiv 0(\bmod 2) \\
\text { doubly even } & \Longleftrightarrow \mathrm{wt}(x) \equiv 0(\bmod 4) \quad(\forall x \in C) \\
\text { triply even } & \Longleftrightarrow \mathrm{wt}(x) \equiv 0(\bmod 8)
\end{aligned} \quad(\forall x \in C)
$$

If C is generated by a set of vectors r_{1}, \ldots, r_{k}, then
C is triply even iff,
(i) $\mathrm{wt}\left(r_{h}\right) \equiv 0(\bmod 8)$
(ii) $\mathrm{wt}\left(r_{h} * r_{i}\right) \equiv 0(\bmod 4)$
(iii) $\mathrm{wt}\left(r_{h} * r_{i} * r_{j}\right) \equiv 0(\bmod 2)$
for all $h, i, j \in\{1, \ldots, k\}$. (denoting by $*$ the entrywise product)

Proposition

$C=\left\langle r_{1}, \ldots, r_{k}\right\rangle$ is triply even iff,
(i) $\mathrm{wt}\left(r_{h}\right) \equiv 0(\bmod 8)$
(ii) $\operatorname{wt}\left(r_{h} * r_{i}\right) \equiv 0(\bmod 4)$
(iii) $\operatorname{wt}\left(r_{h} * r_{i} * r_{j}\right) \equiv 0(\bmod 2)$
for all $h, i, j \in\{1, \ldots, n\}$.

Proof.

Use induction on k. Note

$$
\begin{aligned}
\mathrm{wt}(a+b+c)= & \mathrm{wt}(a)+\mathrm{wt}(b)+\mathrm{wt}(c) \\
& -2(\mathrm{wt}(a * b)+\mathrm{wt}(a * c)+\mathrm{wt}(b * c)) \\
& +4 \mathrm{wt}(a * b * c)
\end{aligned}
$$

Examples of triply even codes

Let C be a binary code of length n. Then the doubling $\{(x, x) \mid x \in C\}$ of C is

- even
- doubly even if C is even
- triply even if C is doubly even

Moreover, the extended doubling

$$
\mathcal{D}(C)=\text { code generated by }\left[\begin{array}{cc}
\mathbf{1}_{n} & 0 \\
C & C
\end{array}\right]
$$

is

- even if $n \equiv 0(\bmod 2)$
- doubly even if C is even and $n \equiv 0(\bmod 4)$
- triply even if C is doubly even and $n \equiv 0(\bmod 8)$

Examples of triply even codes

$$
R M(1,4)=\mathcal{D}\left(e_{8}\right)=\left[\begin{array}{ll}
\mathbf{1}_{8} & 0 \\
e_{8} & e_{8}
\end{array}\right]
$$

where e_{8} is the doubly even extended Hamming [8, 4, 4] code.

- $R M(1,4)$ is the unique maximal triply even code of length 16 up to equivalence.
- If C is an indecomposable doubly even self-dual code, then $\mathcal{D}(C)$ is a maximal triply even code.
- Betsumiya and M. (2012) classified triply even codes of length up to 48:
subcodes of direct sums of extended doublings, or the code spanned by the adjacency matrix of the triangular graph $L\left(K_{10}\right)(n=45)$

Virasoro frame of V^{\sharp}

Theorem (Harada-Lam-M., 2013)

Let C be doubly even, length $24, \ni \mathbf{1}$. TFAE:
(1) $\mathcal{D}(C)$ is the structure code of a Virasoro frame of V^{\natural}
(2) there exist vectors f_{1}, \ldots, f_{24} of the Leech lattice L with $\left(f_{i}, f_{j}\right)=4 \delta_{i j}$ (called a 4 -frame), and

$$
C=\left\{x \bmod 2 \mid x \in \mathbb{Z}^{n}, \frac{1}{4} \sum_{i=1}^{24} x_{i} f_{i} \in L\right\} .
$$

(C is the mod 2 residue of an extremal type $I I \mathbb{Z}_{4}$-code of length 24
type II \Longleftrightarrow self-dual \& all Euclidean weight $\equiv 0(\bmod 8)$ extremal \Longleftrightarrow minimum Euclidean weight 16.
We say C is realizable if C satisfies these conditions.

Realizable codes (Harada-Lam-M., 2013)

Numbers of inequivalent doubly even codes C of length 24 such that $\mathbf{1}_{24} \in C$ and the minimum weight of C^{\perp} is ≥ 4.

Dimension	Total	Realizable	non-Realizable
12	9	$1+1+7$	0
11	21	21	0
10	49	47	2
9	60	46	14
8	32	20	12
7	7	5	2
6	1	1	0

$9=$ Pless-Sloane (1975)
$1+1+7=$ Bonnecaze-Solé-Calderbank (1995),
Calderbank-Sloane (1997), Young-Sloane (unpublished)

Realizable codes

We say a doubly even code C of length 24 is realizable if C is the $\bmod 2$ residue of an extremal type $I I \mathbb{Z}_{4}$-code of length 24 .
realizable in only one way?
There may be more than one extremal type II code over \mathbb{Z}_{4} whose residue is C.

Theorem (Rains, 1999)

If C is the $[24,12,8]$ binary Golay code, then there are exactly 13 extremal type II code over \mathbb{Z}_{4} whose residue is C.

Classification of extremal type II codes over \mathbb{Z}_{4}

Theorem (Betty and M.)

The number of extremal type II code over \mathbb{Z}_{4} with residue C is

$\operatorname{dim} C$	6	7	8	9	10	11	12
$\# C$	1	7	32	60	49	21	9
$\#$	1	5	29	171	755	1880	$1890+13$

- Computation is easy if $\operatorname{dim} C$ is small.
- Rains used special property of the Golay code.
- Computation for the other codes with $\operatorname{dim} C=12$ were hard.

For the method, visit ICM and see the Poster of Rowena Betty.

Definition

A k-frame of a lattice L of rank n is f_{1}, \ldots, f_{n} such that $\left(f_{i}, f_{j}\right)=k \delta_{i j}$.

For a self-dual code C over \mathbb{Z}_{k}, and unimodular lattice L,

$$
C \rightarrow \frac{1}{\sqrt{k}} A(C) \quad \text { Construction } A
$$

$C \leftarrow L$ together with k-frame
Classification of extremal type II codes over \mathbb{Z}_{4} is equivalent to classification of 4-frames in the Leech lattice.

- Harada-M. (2009) $\nexists[24,12,10]$ code over \mathbb{F}_{5}
- $\exists![20,10,9]$ code over \mathbb{F}_{7} ?

Hadamard matrices

Definition

A Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 such that $H H^{\top}=n l$.

- n must be 1,2 or $\equiv 0(\bmod 4)$.
- conjectured to exist for all $n \equiv 0(\bmod 4)$
- classified up to $n=32$
- 60 for $n=24$

Assmus-Key 1992

Theorem (M. and Tamura, 2012)

For a normalized Hadamard matrix H of order 24, TFAE:
(1) the binary code generated by the binary $(-1 \mapsto 0)$ Hadamard matrix associated to H is extremal doubly even self-dual [24, 12, 8] (Golay) code
(2) the ternary code generated by H^{\top} is extremal $[24,12,9]$ code
(3) "the common neighbor" of the two lattices obtained from the two codes above is the Leech lattice

Theorem (M. and Tamura, 2012)

For a normalized Hadamard matrix H of order 48, TFAE:
(1) the \mathbb{Z}_{4}-code generated by the binary $(-1 \mapsto 0)$ Hadamard matrix associated to H is extremal type II [48, 24, 24] code
(2) the ternary code generated by H^{\top} is extremal self-dual [48, 24, 15] code
(3) "the common neighbor" of the two lattices obtained from the two codes above is an extremal even unimodular lattice (of minimum norm 6)

- Hadamard matrices of order 48: hopeless to classify
- extremal type II $[48,24,24] \mathbb{Z}_{4}$-code: not well-understood
- extremal ternary self-dual $[48,24,15]$ code: not classified
- extremal even unimodular lattice of rank 48: not classified, two well-known for a long time, Nebe found the 3rd (1998) and 4th (2013). $\exists 6$-frame in Nebe's lattices?

Concluding Remarks

- All codes in my talks were of fixed length, 24, 48, etc. (no general theory).
- These are "testing ground" for general theory to be developed.
- The problems are computationally difficult.
- We need to develop real theory (which is very often applicable to arbitrary lengths).

Thank you very much for your attention.

