Extremal type II \mathbb{Z}_4 -codes of length 24 and triply even binary codes of length 48

Akihiro Munemasa¹

¹Graduate School of Information Sciences Tohoku University

August 12, 2014 ICM 2014 Satellite Conference on Algebraic Coding Theory Ewha Womans University, Korea

L = Leech lattice

The diagram commutes, and

$$\mathsf{DMZ}(\{\mathsf{frames of } L\}) \stackrel{(\subseteq)}{=} \mathsf{str}^{-1}(\mathfrak{D}(\{\mathsf{doubly even}\})).$$

Even, doubly even, and triply even codes

A binary linear code C is called

even
$$\iff \operatorname{wt}(x) \equiv 0 \pmod{2} \quad (\forall x \in C)$$

doubly even $\iff \operatorname{wt}(x) \equiv 0 \pmod{4} \quad (\forall x \in C)$
triply even $\iff \operatorname{wt}(x) \equiv 0 \pmod{8} \quad (\forall x \in C)$

If C is generated by a set of vectors r_1, \ldots, r_k , then C is triply even iff,

(i) wt
$$(r_h) \equiv 0 \pmod{8}$$

(ii) wt $(r_h * r_i) \equiv 0 \pmod{4}$
(iii) wt $(r_h * r_i * r_j) \equiv 0 \pmod{2}$
for all $h, i, j \in \{1, \dots, k\}$. (denoting by * the entrywise
product)

Proposition

$$C = \langle r_1, \dots, r_k \rangle \text{ is triply even iff,}$$
(i) wt(r_h) $\equiv 0 \pmod{8}$
(ii) wt($r_h * r_i$) $\equiv 0 \pmod{4}$
(iii) wt($r_h * r_i * r_j$) $\equiv 0 \pmod{2}$
for all $h, i, j \in \{1, \dots, n\}$.

Proof.

Use induction on k. Note

$$\operatorname{wt}(a+b+c) = \operatorname{wt}(a) + \operatorname{wt}(b) + \operatorname{wt}(c)$$

- 2(wt(a * b) + wt(a * c) + wt(b * c))
+ 4 wt(a * b * c).

Examples of triply even codes

Let C be a binary code of length n. Then the doubling $\{(x, x) \mid x \in C\}$ of C is

even

• doubly even if C is even

• triply even if C is doubly even

Moreover, the extended doubling

$$\mathcal{D}(C) = \text{ code generated by } \begin{bmatrix} \mathbf{1}_n & \mathbf{0} \\ C & C \end{bmatrix}$$

is

- even if $n \equiv 0 \pmod{2}$
- doubly even if C is even and $n \equiv 0 \pmod{4}$
- triply even if C is doubly even and $n \equiv 0 \pmod{8}$

Examples of triply even codes

$$\mathit{RM}(1,4) = \mathcal{D}(e_8) = egin{bmatrix} \mathbf{1}_8 & \mathbf{0} \\ e_8 & e_8 \end{bmatrix}$$

where e_8 is the doubly even extended Hamming [8, 4, 4] code.

- *RM*(1, 4) is the unique maximal triply even code of length 16 up to equivalence.
- If C is an indecomposable doubly even self-dual code, then D(C) is a maximal triply even code.
- Betsumiya and M. (2012) classified triply even codes of length up to 48: subcodes of direct sums of extended doublings, or the code spanned by the adjacency matrix of the triangular graph L(K₁₀) (n = 45)

Virasoro frame of V^{\natural}

Theorem (Harada–Lam–M., 2013)

Let C be doubly even, length 24, \ni **1**. TFAE:

- $\mathfrak{D}(C)$ is the structure code of a Virasoro frame of V^{\natural}
- ② there exist vectors f_1, \ldots, f_{24} of the Leech lattice *L* with $(f_i, f_j) = 4\delta_{ij}$ (called a 4-frame), and

$$C = \{ \boldsymbol{x} \bmod 2 \mid \boldsymbol{x} \in \mathbb{Z}^n, \ \frac{1}{4} \sum_{i=1}^{24} x_i f_i \in L \}.$$

Solution C is the mod 2 residue of an extremal type II Z₄-code of length 24

type II \iff self-dual & all Euclidean weight $\equiv 0 \pmod{8}$ extremal \iff minimum Euclidean weight 16.

We say C is realizable if C satisfies these conditions.

Realizable codes (Harada–Lam–M., 2013)

Numbers of inequivalent doubly even codes C of length 24 such that $\mathbf{1}_{24} \in C$ and the minimum weight of C^{\perp} is ≥ 4 .

Dimension	Total	Realizable	non-Realizable	
12	9	1+1+7	0	
11	21	21	0	
10	49	47	2	
9	60	46	14	
8	32	20	12	
7	7	5	2	
6	1	1	0	

 $\begin{array}{l} 9 = {\sf Pless-Sloane} \ (1975) \\ 1+1+7 = {\sf Bonnecaze-Solé-Calderbank} \ (1995), \\ {\sf Calderbank-Sloane} \ (1997), \ {\sf Young-Sloane} \ ({\sf unpublished}) \end{array}$

We say a doubly even code *C* of length 24 is realizable if *C* is the mod 2 residue of an extremal type II \mathbb{Z}_4 -code of length 24.

realizable in only one way ?

There may be more than one extremal type II code over \mathbb{Z}_4 whose residue is *C*.

Theorem (Rains, 1999)

If C is the [24, 12, 8] binary Golay code, then there are exactly 13 extremal type II code over \mathbb{Z}_4 whose residue is C.

Theorem (Betty and M.)

The number of extremal type II code over \mathbb{Z}_4 with residue *C* is

dim C	6	7	8	9	10	11	12
#C	1	7	32	60	49	21	9
#	1	5	29	171	755	1880	1890+13

- Computation is easy if dim C is small.
- Rains used special property of the Golay code.
- Computation for the other codes with dim C = 12 were hard.

For the method, visit ICM and see the Poster of Rowena Betty.

Definition

A k-frame of a lattice L of rank n is f_1, \ldots, f_n such that $(f_i, f_j) = k \delta_{ij}$.

For a self-dual code C over \mathbb{Z}_k , and unimodular lattice L,

$$egin{aligned} C & o rac{1}{\sqrt{k}} A(C) & ext{Construction A} \ C &\leftarrow L ext{ together with } k ext{-frame} \end{aligned}$$

Classification of extremal type II codes over \mathbb{Z}_4 is equivalent to classification of 4-frames in the Leech lattice.

- Harada–M. (2009) $\not\exists$ [24, 12, 10] code over \mathbb{F}_5
- $\exists ! [20, 10, 9]$ code over \mathbb{F}_7 ?

Definition

A Hadamard matrix of order *n* is an $n \times n$ matrix *H* with entries ± 1 such that $HH^{\top} = nI$.

- $n \mod 1, 2 \text{ or } \equiv 0 \pmod{4}$.
- conjectured to exist for all $n \equiv 0 \pmod{4}$
- classified up to n = 32
- 60 for *n* = 24

Theorem (M. and Tamura, 2012)

For a normalized Hadamard matrix H of order 24, TFAE:

- the binary code generated by the binary (-1 → 0) Hadamard matrix associated to *H* is extremal doubly even self-dual [24, 12, 8] (Golay) code
- It the ternary code generated by H^T is extremal [24, 12, 9] code
- If the common neighbor of the two lattices obtained from the two codes above is the Leech lattice

Theorem (M. and Tamura, 2012)

For a normalized Hadamard matrix H of order 48, TFAE:

- Ithe Z₄-code generated by the binary (-1 → 0) Hadamard matrix associated to H is extremal type II [48, 24, 24] code
- If ternary code generated by H^T is extremal self-dual [48, 24, 15] code
- "the common neighbor" of the two lattices obtained from the two codes above is an extremal even unimodular lattice (of minimum norm 6)
 - Hadamard matrices of order 48: hopeless to classify
 - extremal type II [48, 24, 24] \mathbb{Z}_4 -code: not well-understood
 - extremal ternary self-dual [48, 24, 15] code: not classified
 - extremal even unimodular lattice of rank 48: not classified, two well-known for a long time, Nebe found the 3rd (1998) and 4th (2013). ∃6-frame in Nebe's lattices?

- All codes in my talks were of fixed length, 24, 48, etc. (no general theory).
- These are "testing ground" for general theory to be developed.
- The problems are computationally difficult.
- We need to develop real theory (which is very often applicable to arbitrary lengths).

Thank you very much for your attention.