A parametric family of complex Hadamard matrices

Akihiro Munemasa ${ }^{1}$

 joint work with Takuya Ikuta and Ferenc Szöllősi${ }^{1}$ Graduate School of Information Sciences Tohoku University

December 15, 2014
Workshop on Statistical Designs and Related Combinatorics 2014
Kinosaki International Arts Center

Hadamard matrices and generalizations

- A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1, satisfying $H H^{\top}=n l$.
- A complex Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\left\{\xi \in \mathbb{C}||\xi|=1\}\right.$, satisfying $H H^{*}=n l$, where * means the conjugate transpose.

Hadamard matrices and generalizations

$$
H=\left[\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right]
$$

$$
H H^{\top}=4 I
$$

$$
H=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right]
$$

$H H^{*}=3 I$

Existence and classification

Conjecture

For any $n \equiv 0(\bmod 4)$, a Hadamard matrix of order n exists.

Known for $n \leq 664$. Classified for $n \leq 32$.
For any n, a complex Hadamard matrix of order n exists.
An example is given by the character table of an abelian group of order n.

Complex Hadamard matrices

Classified up to order 5 (unique by Haagerup 1996). Open for order ≥ 6.

Definition

Two complex Hadamard matrices H_{1}, H_{2} are equivalent if $H_{1}=P H_{2} Q$ for some monomial matrices P, Q whose nonzero entries are complex numbers with absolute value 1.

If n is not a prime, then there are uncountably many inequivalent complex Hadamard matrices, up to equivalence.

Strongly regular graphs

Goethals and Seidel (1970):
symmetric regular Hadamard matrix \Longleftrightarrow certain strongly regular graph:

$$
H=I+A_{1}-A_{2}, \quad J=I+A_{1}+A_{2}
$$

$A_{1}=$ adjacency matrix
Chan and Godsil (2010): complex Hadamard matrices \Longleftarrow certain strongly regular graph

$$
H=I+w_{1} A_{1}+w_{2} A_{2}, \quad J=I+A_{1}+A_{2}
$$

$A_{1}=$ adjacency matrix

Chan (2011):
$H=I+w_{1} A_{1}+w_{2} A_{2}+w_{3} A_{3}, \quad J=I+A_{1}+A_{2}+A_{3}$.
complex Hadamard matrices ψ certain distance-regular graphs of diameter 3

Ikuta and Munemasa (2014+):
complex Hadamard matrices \Longleftarrow certain symmetric association scheme of class 3 .
A_{i} are pairwise commutative symmetric disjoint $(0,1)$-matrices, such that $\left\langle I, A_{1}, A_{2}, A_{3}\right\rangle$ is closed under multiplication (Bose-Menser algebra).

Bose-Mesner algebra

Let A_{1}, A_{2}, A_{3} be pairwise commutative symmetric disjoint (0,1)-matrices satisfying $I+A_{1}+A_{2}+A_{3}=J$, such that $\mathcal{A}=\left\langle I, A_{1}, A_{2}, A_{3}\right\rangle$ is closed under multiplication (Bose-Menser algebra). Then A_{i} are simultaneously diagonalizable.

Example

Example: Cubic residues in finite fields (Cyclotomic schemes)

$$
\begin{aligned}
& V_{0}=\operatorname{Ker}\left(A_{1}-f l\right)=\operatorname{Ker}\left(A_{2}-f I\right)=\operatorname{Ker}\left(A_{3}-f l\right) \\
& V_{1}=\operatorname{Ker}\left(A_{1}-\theta_{1} I\right)=\operatorname{Ker}\left(A_{2}-\theta_{3} I\right)=\operatorname{Ker}\left(A_{3}-\theta_{2} I\right) \\
& V_{2}=\operatorname{Ker}\left(A_{1}-\theta_{2} I\right)=\operatorname{Ker}\left(A_{2}-\theta_{1} I\right)=\operatorname{Ker}\left(A_{3}-\theta_{3} I\right) \\
& V_{3}=\operatorname{Ker}\left(A_{1}-\theta_{3} I\right)=\operatorname{Ker}\left(A_{2}-\theta_{2} I\right)=\operatorname{Ker}\left(A_{3}-\theta_{1} l\right)
\end{aligned}
$$

Bose-Mesner algebra

Let A_{1}, A_{2}, A_{3} be pairwise commutative symmetric disjoint $(0,1)$-matrices satisfying $I+A_{1}+A_{2}+A_{3}=J$, such that $\mathcal{A}=\left\langle I, A_{1}, A_{2}, A_{3}\right\rangle$ is closed under multiplication (Bose-Menser algebra). Then A_{i} are simultaneously diagonalizable.

Definition

\mathcal{A} is called pseudocyclic if the $\mathbb{R}^{n}=V_{0} \oplus V_{1} \oplus V_{2} \oplus V_{3}$: common eigenspace decomposition, such that \downarrow

$$
\begin{aligned}
& V_{0}=\operatorname{Ker}\left(A_{1}-f I\right)=\operatorname{Ker}\left(A_{2}-f I\right)=\operatorname{Ker}\left(A_{3}-f I\right) \\
& V_{1}=\operatorname{Ker}\left(A_{1}-\theta_{1} I\right)=\operatorname{Ker}\left(A_{2}-\theta_{3} I\right)=\operatorname{Ker}\left(A_{3}-\theta_{2} I\right) \\
& V_{2}=\operatorname{Ker}\left(A_{1}-\theta_{2} I\right)=\operatorname{Ker}\left(A_{2}-\theta_{1} I\right)=\operatorname{Ker}\left(A_{3}-\theta_{3} I\right) \\
& V_{3}=\operatorname{Ker}\left(A_{1}-\theta_{3} I\right)=\operatorname{Ker}\left(A_{2}-\theta_{2} I\right)=\operatorname{Ker}\left(A_{3}-\theta_{1} I\right)
\end{aligned}
$$

Pseudocyclic Bose-Mesner algebra

Conjecture

Given a pseudocyclic Bose-Mesner algebra $\left\langle I, A_{1}, A_{2}, A_{3}\right\rangle$ of order $n=3 f+1$ with eigenvalues $f, \theta_{1}, \theta_{2}, \theta_{3}$, TFAE:
(i) there are infinitely many complex Hadamard matrices of the form $I+w_{1} A_{1}+w_{2} A_{2}+w_{3} A_{3}$,
(ii) $\theta_{1}, \theta_{2}, \theta_{3}$ are not distinct.
(ii) \Longleftrightarrow amorphic. We show (ii) \Longrightarrow (i).

$$
\begin{aligned}
& V_{0}=\operatorname{Ker}\left(A_{1}-f l\right)=\operatorname{Ker}\left(A_{2}-f I\right)=\operatorname{Ker}\left(A_{3}-f I\right) \\
& V_{1}=\operatorname{Ker}\left(A_{1}-\theta_{1} I\right)=\operatorname{Ker}\left(A_{2}-\theta_{3} I\right)=\operatorname{Ker}\left(A_{3}-\theta_{2} I\right) \\
& V_{2}=\operatorname{Ker}\left(A_{1}-\theta_{2} I\right)=\operatorname{Ker}\left(A_{2}-\theta_{1} I\right)=\operatorname{Ker}\left(A_{3}-\theta_{3} I\right) \\
& V_{3}=\operatorname{Ker}\left(A_{1}-\theta_{3} I\right)=\operatorname{Ker}\left(A_{2}-\theta_{2} I\right)=\operatorname{Ker}\left(A_{3}-\theta_{1} I\right)
\end{aligned}
$$

Amorphic Bose-Mesner algebra

$$
\begin{aligned}
H & =I+w_{1} A_{1}+w_{2} A_{2}+w_{3} A_{3}: \text { order } n=q^{2}, \\
H^{*} & =I+\overline{w_{1}} A_{1}+\overline{w_{2}} A_{2}+\overline{w_{3}} A_{3}, \\
H^{(-)} & =I+\frac{1}{w_{1}} A_{1}+\frac{1}{w_{2}} A_{2}+\frac{1}{w_{3}} A_{3}, \\
e_{1} & =w_{1}+w_{2}+w_{3}, e_{2}=w_{1} w_{2}+w_{2} w_{3}+w_{3} w_{1}, \\
e_{3} & =w_{1} w_{2} w_{3} .
\end{aligned}
$$

Proposition

Assume $q \geq 4$.
$H H^{(-)}=n l \Longleftrightarrow e_{1}=-3 /(q-1), e_{2}=e_{1} e_{3}$.

$e_{1}=-3 /(q-1), e_{2}=e_{1} e_{3}$

$$
\begin{aligned}
& \left(x-w_{1}\right)\left(x-w_{2}\right)\left(x-w_{3}\right)=x^{3}-e_{1} x^{2}+e_{2} x-e_{3} . \\
& \left|w_{1}\right|=\left|w_{2}\right|=\left|w_{3}\right|=1 \Longleftrightarrow\left|e_{3}\right|=1 .
\end{aligned}
$$

Cohn 1922 gave a general condition for a polynomial equation to have all of its roots on the unit circle (a simpler one by Lakatos and Losoncz, 2009).
For any e_{3} with absolute value 1 , the complex numbers w_{1}, w_{2}, w_{3} defined by the cubic equation above, gives a complex Hadamard matrix

$$
I+w_{1} A_{1}+w_{2} A_{2}+w_{3} A_{3}
$$

of order $n=q^{2}$, where A_{1}, A_{2}, A_{3} are the adjacency matrices in an amorphic pseudocyclic Bose-Mesner alqebra.

