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Definition 1. A t-(v, k, λ) design is a pair (X,B), where

• X is a finite set, |X| = v,

• B ⊂
(
X
k

)
= {k-element subsets of X},

• ∀T ∈
(
X
t

)
,

λ = |{B ∈ B | B ⊃ T}|.

Elements of X are called “points”, elements of B are called “blocks”.
According to [3], the existence of a 3-(16, 7, 5) design is unknown. Recently,
Nakić [4] showed that such a design cannot have an automorphism of order
3. In this talk, we give constructions of 3-(16, 8, 3µ) designs for 1 ≤ µ ≤ 5.

Definition 2. A design (X,B) is self-orthogonal if

|B ∩B′| ≡ 0 (mod 2) (∀B,B′ ∈ B).

In particular, in a self-orthogonal design, k ≡ 0 (mod 2) holds. Let M
be the block-point incidence matrix. Then

self-orthogonal ⇐⇒ MM> = 0 over F2.

We call the row space C of M the code of the design. Then C ⊂ C⊥.

Example 1. The row space of the matrix
[
I4 J4 − I4

]
over F2 = {0, 1}

contains 14 vectors of weight 4, forming a self-orthogonal 3-(8, 4, 1) design.
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More generally, if H is a Hadamard matrix of order 8n, i.e., H is a 8n×8n
matrix with entries in {±1} satisfying HH> = 8nI, then one obtains a
self-orthogonal 3-(8n, 4n, 2n− 1) design.

Fundamental problem in combinatorial design theory is:

Problem 1. Given t, v, k, λ, does there exist a t-(v, k, λ) design?

The main interest was to show that t-design exists for an arbitrary large t.
Before Teirlinck [9] showed that this is the case in 1987, only a few t-designs
with t ≥ 5 were known. We suspect that, however, self-orthogonal designs
are very restricted subclass of designs, the corresponding problem might have
an opposite answer.

Note that the 5-(24, 8, 1) design by Witt [11] is self-orthogonal, and the
Assmus-Mattson theorem [1] gives why one obtains a 5-design: every ex-
tremal binary self-dual code of length multiple of 24 gives 5-designs. In our
work we only consider orthogonality mod 2. For example, the 5-(12, 6, 1)
design of Witt [11] is not self-orthogonal. It is, however, self-orthogonal in
some other sense.

The Assmus–Mattson theorem [1] implies that every binary doubly even
self-dual [24m, 12m, 4m+ 4] code supports a 5-(24m, 4m+ 4, λ) design.

• m = 1: Witt design; related designs were characterized by Tonchev
[10].

• m = 2: Harada–Munemasa–Tonchev [7].

For m ≥ 3, existence is unknown:

• m = 3 by Harada–Munemasa–Kitazume [6], m = 4 by Harada [5],
m ≥ 5 by de la Cruz and Willems [2].

For a systematic study for a more general case, we refer Lalaude-Labayle [8].
In this talk, however, instead of considering the problem:

given a self-dual code C of length v and minimum weight k, what
is the maximum t such that

B = {supp(x) | x ∈ C, wt(x) = k}

is a t-design?
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we take a design-theoretic viewpoint and aim for a classification of designs,
not of codes. This problem is more general in the following sense. Let
C be the code of a self-orthogonal design. Identifying subsets with their
characteristic vectors, we have

B ⊂ {x ∈ C | wt(x) = k} ⊂ C ⊂ C⊥, 0 < k ≤ minimum weight of C.

In the previously considered situation of Lalaude-Labayle [8],

B = {x ∈ C = C⊥ | wt(x) = k},

which we call “saturated”.
In the unsaturated case, the situation could be different in three ways:

(i) C $ C⊥

(ii) B $ {x ∈ C | wt(x) = k}

(iii) k > min{wt(x) | x ∈ C, x 6= 0}

Out main tool for the investigation is so-called the Mendelsohn equations.
Let (X,B) be a t-(v, k, λ) design, S ⊂ X.

nj = |{B ∈ B | j = |B ∩ S|}|.

Then ∑
j≥1

(
j

i

)
nj = λi

(
|S|
i

)
(i = 1, . . . , t), (1)

is a system of t linear equations in unknowns n1, n2, . . . (at most min{k, |S|}).
The number of unknowns can be reduced if

• S ∈ C⊥, then nj = 0 for j odd.

• k = minC⊥, then nj = 0 for j > k/2.

Clearly, the dual code C⊥ of the code C of a t-design has minimum
weight at least t + 1. Moreover, if equality holds with t = 3, then we have
the following consequence.

Lemma 1. If (X,B) is a self-orthogonal 3-(v, k, λ) design, and the dual code
of its code has minimum weight 4, then v = 2k.
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Proof. There are t = 3 Mendelsohn equations (1) for 2 unknowns n2, n4.
Existence of a solution gives v = 2k.

We now consider self-orthogonal 3-(2k, k, λ) designs. Recall 3-(8, 4, 1)
design exists, since this is nothing but the unique Hadamard 3-designs.

Note that the 5-(12, 6, 1) design of Witt [11] which is 3-(12, 6, 12) design
is not self-orthogonal. Let (X,B) be a 3-(12, 6, λ) design. Divisibility implies
λ ≡ 0 (mod 2), and |B| = 11λ. Moreover, if (X,B) is self-orthogonal, then
its code C is contained in the unique self-dual [12, 6, 4] code which has 32
vectors of weight 6, so λ ≤ 2, hence λ = 2. Since a 3-(12, 6, 2) design is
an extension of a symmetric 2-(11, 5, 2) design, it cannot be self-orthogonal.
Alternatively, Mendelsohn equations (1) with respect to a block leads to a
contradiction for all λ.

Now let (X,B) be a self-orthogonal 3-(16, 8, λ) design. Divisibility implies
λ ≡ 0 (mod 3). The largest number of vectors of weight 8 in a self-orthogonal
codes of length 16 gives an upper bound λ ≤ 18.

For λ = 3, we have Hadamard 3-designs, so (X,B) comes from the known
classification of Hadamard matrices of order 16.

Theorem 1. Let λ = 3µ ≥ 6, where µ is an integer. The following are
equivalent:

(i) there exists a self-orthogonal 3-(16, 8, λ) design,

(ii) there exists an equitable partition of the folded halved 8-cube with
quotient matrix [

4(µ− 1) 4(8− µ)
4µ 4(7− µ)

]
,

(iii) µ ∈ {2, 3, 4, 5}.

In particular, there is no self-orthogonal 3-(16, 8, 18) design.

Proof. Let (X,B) be a self-orthogonal 3-(16, 8, λ) design, where λ = 3µ ≥ 6.
Then there exists a doubly even self-dual code C containing the code of
(X,B). From the classification of doubly even self-dual codes of length 16,
C has minimum weight 4. Let S be a codeword of C with weight 8. Then
the Mendelsohn equations (1) give

(n0, n2, n4, n6, n8) = (1, 4(µ− 1), 22µ+ 6, 4(µ− 1), 1) or (0, 4µ, 22µ, 4µ, 0).
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In particular, n2 ≥ 4(µ − 1) > 0. One of the doubly even self-dual [16, 8, 4]
code, i.e., e8 ⊕ e8 cannot be C, since there exists a codeword x of weight 8
in C such that | supp(x)∩ supp(y)| 6= 2 for any codeword y of weight 8 in C.
This is impossible since n2 > 0 as shown above.

Now we conclude that C is isomorphic to the other doubly even self-dual
[16, 8, 4] code, d16. The following gives a construction of a 3-(16, 8, 12) design.
Let P = {1, . . . , 16}, and

X = {{supp(x),P \ supp(x)} | x ∈ C, wt(x) = 8}.

Then |X| = 99. Let O1 and O2 be the orbits of length 35 and 64, respectively,
on X under AutC. Suppose that (P ,B) is a 3-(16, 8, 3µ) design. Set

B = {{B,P \B} | B ∈ B},
Bi = B ∩ Oi (i = 1, 2).

We define a graph Γ = (X,E), where E consists of pairs {{B1,P\B1}, {B2,P\
B2}} such that |B1∩B2| ∈ {2, 6}. Then Γ has two connected components O1

and O2. The induced subgraphs on O1 and O2 are regular of valency 16 and
28, respectively. From the solution of the Mendelsohn equations, we see that
Oi admits an equitable partition Bi ∪ (Oi \ Bi) whose collapsed adjacency
matrices are [

4(µ− 1) 4(5− µ)
4µ 4(4− µ)

]
, (2)[

4(µ− 1) 4(8− µ)
4µ 4(7− µ)

]
, (3)

respectively. Moreover, we have

4(5− µ)|B1| = 4µ(|O1| − |B1|),
4(8− µ)|B2| = 4µ(|O2| − |B2|).

Thus

|B1| = 7µ,

|B2| = 8µ.

The induced subgraph on O1 is isomorphic to the Grassmann graph J2(4, 2),
and an equitable partition with quotient matrix (2) exists. Indeed, for µ = 1,
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it is simply the set of all lines through a point in PG(3, 2). For µ = 2, it is the
set of all lines through a point p and all lines on an plane π 63 p. For µ = 3 and
4, we simply take the complementary set for µ = 2 and 1, respectively. For
µ = 5, the partition is trivial. Therefore, the existence of a self-orthogonal
3-(16, 8, 3µ) design for µ ∈ {2, 3, 4, 5} is equivalent to the existence of an
equitable partition of the subgraph induced by O2 with quotient matrix (3).
It turns out that the subgraph induced by O2 is isomorphic to the folded
halved 8-cube, and the existence of an appropriate equitable partition can
be verified easily by computer.

Comparing the solution of the Mendelsohn equations with the weight
distribution of the self-dual codes of length 20 whose classification is already
known, we obtain the following theorem.

Theorem 2. There is no self-orthogonal 3-(20, 10, λ) design.

Regarding a self-orthogonal 3-(24, 12, λ) design, the Assmus-Mattson the-
orem implies that there is a 5-(24, 12, 48) design which is 3-(24, 12, 280) de-
sign. Does there exist other self-orthogonal 3-(24, 12, λ) designs?
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