Self-orthogonal designs

Akihiro Munemasa
(joint work with Masaaki Harada and Tsuyoshi Miezaki)

June 22, 2015

The 32nd Algebraic Combinatorics Symposium Kanazawa

Definition 1. A $t-(v, k, \lambda)$ design is a pair (X, \mathcal{B}), where

- X is a finite set, $|X|=v$,
- $\mathcal{B} \subset\binom{X}{k}=\{k$-element subsets of $X\}$,
- $\forall T \in\binom{X}{t}$,

$$
\lambda=|\{B \in \mathcal{B} \mid B \supset T\}| .
$$

Elements of X are called "points", elements of \mathcal{B} are called "blocks". According to [3], the existence of a $3-(16,7,5)$ design is unknown. Recently, Nakić [4] showed that such a design cannot have an automorphism of order 3. In this talk, we give constructions of $3-(16,8,3 \mu)$ designs for $1 \leq \mu \leq 5$.

Definition 2. A design (X, \mathcal{B}) is self-orthogonal if

$$
\left|B \cap B^{\prime}\right| \equiv 0 \quad(\bmod 2) \quad\left(\forall B, B^{\prime} \in \mathcal{B}\right) .
$$

In particular, in a self-orthogonal design, $k \equiv 0(\bmod 2)$ holds. Let M be the block-point incidence matrix. Then

$$
\text { self-orthogonal } \Longleftrightarrow M M^{\top}=0 \text { over } \mathbb{F}_{2}
$$

We call the row space C of M the code of the design. Then $C \subset C^{\perp}$.
Example 1. The row space of the matrix $\left[\begin{array}{ll}I_{4} & J_{4}-I_{4}\end{array}\right]$ over $\mathbb{F}_{2}=\{0,1\}$ contains 14 vectors of weight 4 , forming a self-orthogonal $3-(8,4,1)$ design.

More generally, if H is a Hadamard matrix of order $8 n$, i.e., H is a $8 n \times 8 n$ matrix with entries in $\{ \pm 1\}$ satisfying $H H^{\top}=8 n I$, then one obtains a self-orthogonal $3-(8 n, 4 n, 2 n-1)$ design.

Fundamental problem in combinatorial design theory is:
Problem 1. Given t, v, k, λ, does there exist a $t-(v, k, \lambda)$ design?
The main interest was to show that t-design exists for an arbitrary large t. Before Teirlinck [9] showed that this is the case in 1987, only a few t-designs with $t \geq 5$ were known. We suspect that, however, self-orthogonal designs are very restricted subclass of designs, the corresponding problem might have an opposite answer.

Note that the $5-(24,8,1)$ design by Witt [11] is self-orthogonal, and the Assmus-Mattson theorem [1] gives why one obtains a 5-design: every extremal binary self-dual code of length multiple of 24 gives 5 -designs. In our work we only consider orthogonality mod 2 . For example, the $5-(12,6,1)$ design of Witt [11] is not self-orthogonal. It is, however, self-orthogonal in some other sense.

The Assmus-Mattson theorem [1] implies that every binary doubly even self-dual $[24 m, 12 m, 4 m+4]$ code supports a $5-(24 m, 4 m+4, \lambda)$ design.

- $m=1$: Witt design; related designs were characterized by Tonchev [10].
- $m=2$: Harada-Munemasa-Tonchev [7].

For $m \geq 3$, existence is unknown:

- $m=3$ by Harada-Munemasa-Kitazume [6], $m=4$ by Harada [5], $m \geq 5$ by de la Cruz and Willems [2].

For a systematic study for a more general case, we refer Lalaude-Labayle [8]. In this talk, however, instead of considering the problem: given a self-dual code C of length v and minimum weight k, what is the maximum t such that

$$
\mathcal{B}=\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}
$$

is a t-design?
we take a design-theoretic viewpoint and aim for a classification of designs, not of codes. This problem is more general in the following sense. Let C be the code of a self-orthogonal design. Identifying subsets with their characteristic vectors, we have

$$
\mathcal{B} \subset\{x \in C \mid \operatorname{wt}(x)=k\} \subset C \subset C^{\perp}, \quad 0<k \leq \text { minimum weight of } C .
$$

In the previously considered situation of Lalaude-Labayle [8],

$$
\mathcal{B}=\left\{x \in C=C^{\perp} \mid \mathrm{wt}(x)=k\right\},
$$

which we call "saturated".
In the unsaturated case, the situation could be different in three ways:
(i) $C \varsubsetneqq C^{\perp}$
(ii) $\mathcal{B} \varsubsetneqq\{x \in C \mid \operatorname{wt}(x)=k\}$
(iii) $k>\min \{\operatorname{wt}(x) \mid x \in C, x \neq 0\}$

Out main tool for the investigation is so-called the Mendelsohn equations. Let (X, \mathcal{B}) be a $t-(v, k, \lambda)$ design, $S \subset X$.

$$
n_{j}=|\{B \in \mathcal{B}|j=|B \cap S|\} \mid .
$$

Then

$$
\begin{equation*}
\sum_{j \geq 1}\binom{j}{i} n_{j}=\lambda_{i}\binom{|S|}{i} \quad(i=1, \ldots, t) \tag{1}
\end{equation*}
$$

is a system of t linear equations in unknowns n_{1}, n_{2}, \ldots (at most $\left.\min \{k,|S|\}\right)$. The number of unknowns can be reduced if

- $S \in C^{\perp}$, then $n_{j}=0$ for j odd.
- $k=\min C^{\perp}$, then $n_{j}=0$ for $j>k / 2$.

Clearly, the dual code C^{\perp} of the code C of a t-design has minimum weight at least $t+1$. Moreover, if equality holds with $t=3$, then we have the following consequence.

Lemma 1. If (X, \mathcal{B}) is a self-orthogonal $3-(v, k, \lambda)$ design, and the dual code of its code has minimum weight 4 , then $v=2 k$.

Proof. There are $t=3$ Mendelsohn equations (1) for 2 unknowns n_{2}, n_{4}. Existence of a solution gives $v=2 k$.

We now consider self-orthogonal $3-(2 k, k, \lambda)$ designs. Recall $3-(8,4,1)$ design exists, since this is nothing but the unique Hadamard 3-designs.

Note that the $5-(12,6,1)$ design of Witt $[11]$ which is $3-(12,6,12)$ design is not self-orthogonal. Let (X, \mathcal{B}) be a $3-(12,6, \lambda)$ design. Divisibility implies $\lambda \equiv 0(\bmod 2)$, and $|\mathcal{B}|=11 \lambda$. Moreover, if (X, \mathcal{B}) is self-orthogonal, then its code C is contained in the unique self-dual $[12,6,4]$ code which has 32 vectors of weight 6 , so $\lambda \leq 2$, hence $\lambda=2$. Since a $3-(12,6,2)$ design is an extension of a symmetric $2-(11,5,2)$ design, it cannot be self-orthogonal. Alternatively, Mendelsohn equations (1) with respect to a block leads to a contradiction for all λ.

Now let (X, \mathcal{B}) be a self-orthogonal $3-(16,8, \lambda)$ design. Divisibility implies $\lambda \equiv 0(\bmod 3)$. The largest number of vectors of weight 8 in a self-orthogonal codes of length 16 gives an upper bound $\lambda \leq 18$.

For $\lambda=3$, we have Hadamard 3 -designs, so (X, \mathcal{B}) comes from the known classification of Hadamard matrices of order 16.

Theorem 1. Let $\lambda=3 \mu \geq 6$, where μ is an integer. The following are equivalent:
(i) there exists a self-orthogonal 3-(16, $8, \lambda$) design,
(ii) there exists an equitable partition of the folded halved 8-cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(iii) $\mu \in\{2,3,4,5\}$.

In particular, there is no self-orthogonal $3-(16,8,18)$ design.
Proof. Let (X, \mathcal{B}) be a self-orthogonal 3-(16, $8, \lambda)$ design, where $\lambda=3 \mu \geq 6$. Then there exists a doubly even self-dual code C containing the code of (X, \mathcal{B}). From the classification of doubly even self-dual codes of length 16 , C has minimum weight 4 . Let S be a codeword of C with weight 8 . Then the Mendelsohn equations (1) give

$$
\left(n_{0}, n_{2}, n_{4}, n_{6}, n_{8}\right)=(1,4(\mu-1), 22 \mu+6,4(\mu-1), 1) \text { or }(0,4 \mu, 22 \mu, 4 \mu, 0) .
$$

In particular, $n_{2} \geq 4(\mu-1)>0$. One of the doubly even self-dual $[16,8,4]$ code, i.e., $e_{8} \oplus e_{8}$ cannot be C, since there exists a codeword x of weight 8 in C such that $|\operatorname{supp}(x) \cap \operatorname{supp}(y)| \neq 2$ for any codeword y of weight 8 in C. This is impossible since $n_{2}>0$ as shown above.

Now we conclude that C is isomorphic to the other doubly even self-dual $[16,8,4]$ code, d_{16}. The following gives a construction of a 3-(16, 8,12$)$ design. Let $\mathcal{P}=\{1, \ldots, 16\}$, and

$$
X=\{\{\operatorname{supp}(x), \mathcal{P} \backslash \operatorname{supp}(x)\} \mid x \in C, \operatorname{wt}(x)=8\}
$$

Then $|X|=99$. Let \mathcal{O}_{1} and \mathcal{O}_{2} be the orbits of length 35 and 64 , respectively, on X under Aut C. Suppose that $(\mathcal{P}, \mathcal{B})$ is a $3-(16,8,3 \mu)$ design. Set

$$
\begin{aligned}
\overline{\mathcal{B}} & =\{\{B, \mathcal{P} \backslash B\} \mid B \in \mathcal{B}\} \\
\overline{\mathcal{B}}_{i} & =\overline{\mathcal{B}} \cap \mathcal{O}_{i} \quad(i=1,2) .
\end{aligned}
$$

We define a graph $\Gamma=(X, E)$, where E consists of pairs $\left\{\left\{B_{1}, \mathcal{P} \backslash B_{1}\right\},\left\{B_{2}, \mathcal{P} \backslash\right.\right.$ $\left.\left.B_{2}\right\}\right\}$ such that $\left|B_{1} \cap B_{2}\right| \in\{2,6\}$. Then Γ has two connected components \mathcal{O}_{1} and \mathcal{O}_{2}. The induced subgraphs on \mathcal{O}_{1} and \mathcal{O}_{2} are regular of valency 16 and 28, respectively. From the solution of the Mendelsohn equations, we see that \mathcal{O}_{i} admits an equitable partition $\overline{\mathcal{B}_{i}} \cup\left(\mathcal{O}_{i} \backslash \overline{\mathcal{B}}_{i}\right)$ whose collapsed adjacency matrices are

$$
\begin{align*}
& {\left[\begin{array}{cc}
4(\mu-1) & 4(5-\mu) \\
4 \mu & 4(4-\mu)
\end{array}\right]} \tag{2}\\
& {\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]} \tag{3}
\end{align*}
$$

respectively. Moreover, we have

$$
\begin{aligned}
& 4(5-\mu)\left|\overline{\mathcal{B}}_{1}\right|=4 \mu\left(\left|\mathcal{O}_{1}\right|-\left|\overline{\mathcal{B}}_{1}\right|\right) \\
& 4(8-\mu)\left|\overline{\mathcal{B}}_{2}\right|=4 \mu\left(\left|\mathcal{O}_{2}\right|-\left|\overline{\mathcal{B}}_{2}\right|\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left|\overline{\mathcal{B}}_{1}\right|=7 \mu, \\
& \left|\overline{\mathcal{B}}_{2}\right|=8 \mu .
\end{aligned}
$$

The induced subgraph on \mathcal{O}_{1} is isomorphic to the Grassmann graph $J_{2}(4,2)$, and an equitable partition with quotient matrix (2) exists. Indeed, for $\mu=1$,
it is simply the set of all lines through a point in $P G(3,2)$. For $\mu=2$, it is the set of all lines through a point p and all lines on an plane $\pi \not \supset p$. For $\mu=3$ and 4, we simply take the complementary set for $\mu=2$ and 1 , respectively. For $\mu=5$, the partition is trivial. Therefore, the existence of a self-orthogonal $3-(16,8,3 \mu)$ design for $\mu \in\{2,3,4,5\}$ is equivalent to the existence of an equitable partition of the subgraph induced by \mathcal{O}_{2} with quotient matrix (3). It turns out that the subgraph induced by \mathcal{O}_{2} is isomorphic to the folded halved 8 -cube, and the existence of an appropriate equitable partition can be verified easily by computer.

Comparing the solution of the Mendelsohn equations with the weight distribution of the self-dual codes of length 20 whose classification is already known, we obtain the following theorem.

Theorem 2. There is no self-orthogonal 3-($20,10, \lambda$) design.
Regarding a self-orthogonal 3-(24, 12, λ) design, the Assmus-Mattson theorem implies that there is a $5-(24,12,48)$ design which is $3-(24,12,280)$ design. Does there exist other self-orthogonal $3-(24,12, \lambda)$ designs?

References

[1] E.F. Assmus and H.F. Mattson, New 5-designs, J. Combin. Theory 6 (1969), 122-151.
[2] J. de la Cruz and W. Willems, 5-designs related to binary extremal selfdual codes of length $24 m$, Theory and applications of finite fields, 75-80, Contemp. Math., 579, Amer. Math. Soc., Providence, RI, 2012.
[3] J. Dinitz and C. Colbourn, eds., The CRC Handbook of Combinatorial Designs, 2nd ed., Chapman \& Hall/CRC Press, 2006.
[4] A. Nakić, Non-existence of a simple 3-(16, 7,5$)$ design with an automorphism of order 3, Discrete Math. 338 (2015), 555-565.
[5] M. Harada, Remark on a putative extremal doubly-even self-dual code of length 96 and its 5-design, Designs, Codes and Cryptography 37 (2005), 355-358.
[6] M. Harada, M. Kitazume and A. Munemasa, On a 5-design related to an extremal doubly-even self-dual code of length 72, J. Combin. Theory, Ser. A 107 (2004), 143-146.
[7] M. Harada, A. Munemasa and V.D. Tonchev, A characterization of designs related to an extremal doubly-even self-dual code of length 48, Annals of Combinatorics 9 (2005), 189-198.
[8] M. Lalaude-Labayle, On binary linear codes supporting t-designs, IEEE Trans. Inform. Theory 47 (2001), 2249-2255.
[9] L. Teirlinck, Non-trivial t-designs without repeated blocks exist for all t, Discrete Math. 65 (1987), 301-311.
[10] V.D. Tonchev, A characterization of designs related to the Witt system $S(5,8,24)$, Math. Z. 191 (1986), 225-230.
[11] E. Witt, Über Steinersche systeme, Abh. Math. Sem. Univ. Hamburg. 12 (1938), 265-275.

