Self-orthogonal designs and equitable partitions

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
(joint work with Masaaki Harada and Tsuyoshi Miezaki)
September 20, 2015
International Workshop on Algebraic Combinatorics
Zhejiang University

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of the folded halved 8 -cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of the folded halved 8 -cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of the folded halved 8 -cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of the folded halved 8-cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of the folded halved 8 -cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of the folded halved 8 -cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of the folded halved 8 -cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

$\operatorname{A} t-(v, k, \lambda) \operatorname{design}(X, \mathcal{B})$

e.g., 3-(16, $8,3 \mu)$ design

- X is a finite set, $|X|=v$,
- $\mathcal{B} \subset\binom{X}{k}=\{k$-element subsets of $X\}$,
- $\forall T \in\binom{X}{t}$,

$$
\lambda=|\{B \in \mathcal{B} \mid B \supset T\}| .
$$

Elements of X are called "points", elements of \mathcal{B} are called "blocks".

Self-orthogonal designs

A $t-(v, k, \lambda)$ design (X, \mathcal{B}) is self-orthogonal if

$$
\left|B \cap B^{\prime}\right| \equiv 0 \quad(\bmod 2) \quad\left(\forall B, B^{\prime} \in \mathcal{B}\right)
$$

In particular $k \equiv 0(\bmod 2)$.

Self-orthogonal designs

A $t-(v, k, \lambda)$ design (X, \mathcal{B}) is self-orthogonal if

$$
\left|B \cap B^{\prime}\right| \equiv 0 \quad(\bmod 2) \quad\left(\forall B, B^{\prime} \in \mathcal{B}\right)
$$

In particular $k \equiv 0(\bmod 2)$.
Let M be the block-point incidence matrix. Then

$$
\text { self-orthogonal } \Longleftrightarrow M M^{\top}=0 \text { over } \mathbb{F}_{2} .
$$

We call the row space C of M the (binary) code of the design. Then $C \subset C^{\perp}$.
(Often $C \subset D=D^{\perp} \subset C^{\perp}$).

Hadamard 3-designs

If H is a Hadamard matrix of order $8 n$, i.e., H is a $8 n \times 8 n$ matrix with entries in $\{ \pm 1\}$ satisfying $H H^{\top}=8 n I$,
\Longrightarrow a self-orthogonal 3-($8 n, 4 n, 2 n-1)$ design.

Hadamard 3-designs

If H is a Hadamard matrix of order $8 n$, i.e., H is a $8 n \times 8 n$ matrix with entries in $\{ \pm 1\}$ satisfying $H H^{\top}=8 n I$,
\Longrightarrow a self-orthogonal 3 - $(8 n, 4 n, 2 n-1)$ design.
Indeed, after normalizing H so that its first row is 1:

$$
H=\left[\begin{array}{c}
\mathbf{1} \\
H_{1}
\end{array}\right]
$$

an incidence matrix is given by

$$
M=\frac{1}{2}\left[\begin{array}{l}
J-H_{1} \\
J+H_{1}
\end{array}\right]
$$

Hadamard 3-designs

If H is a Hadamard matrix of order $8 n$, i.e., H is a $8 n \times 8 n$ matrix with entries in $\{ \pm 1\}$ satisfying $H H^{\top}=8 n I$,
\Longrightarrow a self-orthogonal 3 - $(8 n, 4 n, 2 n-1)$ design.
Indeed, after normalizing H so that its first row is 1:

$$
H=\left[\begin{array}{c}
\mathbf{1} \\
H_{1}
\end{array}\right]
$$

an incidence matrix is given by

$$
M=\frac{1}{2}\left[\begin{array}{l}
J-H_{1} \\
J+H_{1}
\end{array}\right]
$$

Hadamard 3-designs

If H is a Hadamard matrix of order $8 n$, i.e., H is a $8 n \times 8 n$ matrix with entries in $\{ \pm 1\}$ satisfying $H H^{\top}=8 n I$,
\Longrightarrow a self-orthogonal 3 - $(8 n, 4 n, 2 n-1)$ design.
$3-(16,8,3)$ Hadamard design is self-orthogonal. Do there exist $3-(16,8,3 \mu)$ designs for $\mu>1$?

Hadamard 3-designs

If H is a Hadamard matrix of order $8 n$, i.e., H is a $8 n \times 8 n$ matrix with entries in $\{ \pm 1\}$ satisfying $H H^{\top}=8 n I$,
\Longrightarrow a self-orthogonal 3-($8 n, 4 n, 2 n-1$) design.
$3-(16,8,3)$ Hadamard design is self-orthogonal. Do there exist $3-(16,8,3 \mu)$ designs for $\mu>1$?
(take union?)

Existence problem

Given t, v, k, λ, does there exist a $t-(v, k, \lambda)$ design?
Before Teirlinck (1987), only a few t-designs with $t \geq 5$ were known.

Existence problem

Given t, v, k, λ, does there exist a $t-(v, k, \lambda)$ design?
Before Teirlinck (1987), only a few t-designs with $t \geq 5$ were known.

The $5-(24,8,1)$ design by Witt (1938) is self-orthogonal.

Existence problem

Given t, v, k, λ, does there exist a $t-(v, k, \lambda)$ design?
Before Teirlinck (1987), only a few t-designs with $t \geq 5$ were known.

The $5-(24,8,1)$ design by Witt (1938) is self-orthogonal.

Assmus-Mattson theorem (1969) gives a reason: extremal binary self-dual code $\rightarrow 5$-designs.

Existence problem

Given t, v, k, λ, does there exist a $t-(v, k, \lambda)$ design?
Before Teirlinck (1987), only a few t-designs with $t \geq 5$ were known.

The $5-(24,8,1)$ design by Witt (1938) is self-orthogonal.

Assmus-Mattson theorem (1969) gives a reason: extremal binary self-dual code $\rightarrow 5$-designs.

In our work we only consider orthogonality mod 2 . The $5-(12,6,1)$ design of Witt (1938) is not self-orthogonal.

Binary codes

A k-dimensional subspace of \mathbb{F}_{2}^{n} is called an $[n, k]$ code. For an $[n, k]$ code C, its minimum weight is

$$
\min C=\min \{\mathrm{wt}(x) \mid 0 \neq x \in C\} .
$$

and C is called an $[n, k, d]$ code if $d=\min C$.

Binary codes

A k-dimensional subspace of \mathbb{F}_{2}^{n} is called an $[n, k]$ code. For an $[n, k]$ code C, its minimum weight is

$$
\min C=\min \{\mathrm{wt}(x) \mid 0 \neq x \in C\} .
$$

and C is called an $[n, k, d]$ code if $d=\min C$. A code C is doubly even if

$$
\mathrm{wt}(x) \equiv 0 \quad(\bmod 4) \quad(\forall x \in C)
$$

self-orthogonal if

$$
C \subset C^{\perp}
$$

self-dual if

$$
C=C^{\perp}
$$

5-designs from binary self-dual codes

A consequence of the Assmus-Mattson theorem: Doubly even self-dual [$24 m, 12 m, 4 m+4]$ code $\rightarrow 5-(24 m, 4 m+4, \lambda)$ design.

5-designs from binary self-dual codes

A consequence of the Assmus-Mattson theorem:
Doubly even self-dual [$24 m, 12 m, 4 m+4]$ code $\rightarrow 5-(24 m, 4 m+4, \lambda)$ design.

- $m=1$: Witt design; related designs were characterized by Tonchev (1986)
- $m=2$: Harada-M.-Tonchev (2005)

5-designs from binary self-dual codes

A consequence of the Assmus-Mattson theorem:
Doubly even self-dual [$24 m, 12 m, 4 m+4]$ code $\rightarrow 5-(24 m, 4 m+4, \lambda)$ design.

- $m=1$: Witt design; related designs were characterized by Tonchev (1986)
- $m=2$: Harada-M.-Tonchev (2005)

For $m \geq 3$, existence is unknown:

- $m=3$ by Harada-M.-Kitazume (2004),
- $m=4$ by Harada (2005),
- $m \geq 5$ by de la Cruz and Willems (2012).

Lalaude-Labayle (2001), determined binary self-orthogonal codes of min . wt . k whose min . wt . codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Lalaude-Labayle (2001), determined binary self-orthogonal codes of min . wt . k whose min . wt . codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Motivated by spherical analogue:

- Venkov's theorem on spherical designs supported by an even unimodular lattice
- Martinet (2001): lattices of min ≤ 3 with spherical 5 -design, $\min \leq 5$ with spherical 7-design

Lalaude-Labayle (2001), determined binary self-orthogonal codes of min . wt . k whose min . wt . codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Motivated by spherical analogue:

- Venkov's theorem on spherical designs supported by an even unimodular lattice
- Martinet (2001): lattices of min ≤ 3 with spherical 5 -design, $\min \leq 5$ with spherical 7-design
- Nossek (2014): lattices of min ≤ 7 with spherical 9 -design, $\min \leq 9$ with spherical 11 -design, \nexists lattices of $\min \leq 11$ with spherical 13-design.

Design theoretic viewpoint

Instead of classifying self-orthogonal codes C of min. wt. k such that

$$
\mathcal{B}=\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}
$$

forms a t-design,

Design theoretic viewpoint

Instead of classifying self-orthogonal codes C of min. wt. k such that

$$
\mathcal{B}=\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}
$$

forms a t-design,
we hope to classify self-orthogonal designs:

$$
\mathcal{B} \subset\{x \in C \mid \operatorname{wt}(x)=k\} \subset C \subset C^{\perp}
$$

Lalaude-Labayle (2001), determined binary self-orthogonal codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Lalaude-Labayle (2001), determined binary self-orthogonal codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

More generally, we assume

$$
t \geq\left\lfloor\frac{k}{4}\right\rfloor+1
$$

Note: k is even.
Mendelsohn equations are "overdetermined" system.

Mendelsohn equations

Let (X, \mathcal{B}) be a $t-(v, k, \lambda)$ design, $S \subset X$.

$$
n_{j}=|\{B \in \mathcal{B}|j=|B \cap S|\} \mid .
$$

Then

$$
\sum_{j \geq 1}\binom{j}{i} n_{j}=\lambda_{i}\binom{|S|}{i} \quad(i=1, \ldots, t),
$$

a system of t linear equations in unknowns n_{1}, n_{2}, \ldots (at most $\left.\min \{k,|S|\}\right)$.

Mendelsohn equations

Let (X, \mathcal{B}) be a $t-(v, k, \lambda)$ design, $S \subset X$.

$$
n_{j}=|\{B \in \mathcal{B}|j=|B \cap S|\} \mid
$$

Then

$$
\sum_{j \geq 1}\binom{j}{i} n_{j}=\lambda_{i}\binom{|S|}{i} \quad(i=1, \ldots, t),
$$

a system of t linear equations in unknowns
n_{1}, n_{2}, \ldots (at most $\left.\min \{k,|S|\}\right)$.
If $S \in C^{\perp}$, then $n_{j}=0$ for j odd.
If $S \in \mathcal{B}$ and $k=\min C^{\perp}$, then $n_{j}=0$ for $j>k / 2$,
so there are $\lfloor k / 4\rfloor$ unknowns.

Dual weight 4

The dual code C^{\perp} of the code C of a t-design has minimum weight at least $t+1$.

Dual weight 4

The dual code C^{\perp} of the code C of a t-design has minimum weight at least $t+1$.

Lemma

If (X, \mathcal{B}) is a self-orthogonal $3-(v, k, \lambda)$ design, and the dual code of its code has minimum weight 4 , then $v=2 k \equiv 0(\bmod 4)$.

Dual weight 4

The dual code C^{\perp} of the code C of a t-design has minimum weight at least $t+1$.

Lemma

If (X, \mathcal{B}) is a self-orthogonal $3-(v, k, \lambda)$ design, and the dual code of its code has minimum weight 4 , then $v=2 k \equiv 0(\bmod 4)$.

Recall 3-(8, 4, 1) Hadamard design exists.

Dual weight 4

The dual code C^{\perp} of the code C of a t-design has minimum weight at least $t+1$.

Lemma

If (X, \mathcal{B}) is a self-orthogonal $3-(v, k, \lambda)$ design, and the dual code of its code has minimum weight 4 , then $v=2 k \equiv 0(\bmod 4)$.

Recall 3-(8, 4, 1) Hadamard design exists.
\nexists self-orthogonal 3-(12, $6, \lambda)$ design.

$3-(16,8, \lambda)$ design

$$
\lambda \leq\binom{ 16}{8}\binom{8}{3}\binom{16}{3}^{-1}=1287
$$

if we don't require self-orthogonality.

- Divisibility implies $\lambda \equiv 0(\bmod 3)$.

$3-(16,8, \lambda)$ design

$$
\lambda \leq\binom{ 16}{8}\binom{8}{3}\binom{16}{3}^{-1}=1287
$$

if we don't require self-orthogonality.

- Divisibility implies $\lambda \equiv 0(\bmod 3)$.
- Largest number of vectors of weight 8 in a self-orthogonal codes of length 16

$$
\Longrightarrow \lambda \leq 18 .
$$

$3-(16,8, \lambda)$ design

$$
\lambda \leq\binom{ 16}{8}\binom{8}{3}\binom{16}{3}^{-1}=1287
$$

if we don't require self-orthogonality.

- Divisibility implies $\lambda \equiv 0(\bmod 3)$.
- Largest number of vectors of weight 8 in a self-orthogonal codes of length 16

$$
\Longrightarrow \lambda \leq 18
$$

$\lambda=3$: Hadamard designs.
$\lambda=6,9,12,15,18$?
disjoint union?

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of the folded halved 8 -cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

In particular, there is no self-orthogonal 3-(16, 8, 18) design.

The folded halved 8-cube

The 8 -cube is the graph with vertex set $\{0,1\}^{8}$, two vertices are adjacent whenever they differ by exactly one coordinate.

The folded halved 8-cube

The 8 -cube is the graph with vertex set $\{0,1\}^{8}$, two vertices are adjacent whenever they differ by exactly one coordinate.
'halved' = even-weight vectors
'folded' = identify with complement
The folded halved 8 -cube Γ has 2^{6} vertices, and it is 28-regular.

$$
S R G(64,28,12,12)
$$

Equitable partition

Let Γ be a regular graph.
An equitable partition with quotient matrix Q means: the adjacency matrix A is of the form

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad A_{i j} \mathbf{1}=q_{i j} \mathbf{1}, \quad Q=\left(q_{i j}\right)
$$

q_{12}
q_{21}

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of the folded halved 8-cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16,8]$ code.
There are only two such codes, $e_{8} \oplus e_{8}$ and d_{16}.

The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16,8]$ code.
There are only two such codes, $e_{8} \oplus e_{8}$ and d_{16}. The code d_{16} has $128+70$ codewords of weight 8 ,

The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16,8]$ code.
There are only two such codes, $e_{8} \oplus e_{8}$ and d_{16}. The code d_{16} has $128+70$ codewords of weight 8 , $64+35$ complementary pairs of codewords of weight 8 .

The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16,8]$ code.
There are only two such codes, $e_{8} \oplus e_{8}$ and d_{16}. The code d_{16} has $128+70$ codewords of weight 8 , $64+35$ complementary pairs of codewords of weight 8 .

$$
|\mathcal{B}|=30 \mu \quad(15 \mu \text { pairs })
$$

The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16,8]$ code.
There are only two such codes, $e_{8} \oplus e_{8}$ and d_{16}. The code d_{16} has $128+70$ codewords of weight 8 , $64+35$ complementary pairs of codewords of weight 8 .

$$
\begin{aligned}
& |\mathcal{B}|=30 \mu \quad(15 \mu \text { pairs }) \\
& 8 \mu \\
& \begin{array}{c}
64=\left|\frac{1}{2} \overline{H(8,2)}\right| \\
* \\
7 \mu
\end{array} \quad 35=\left|\frac{1}{2} J(8,4)\right| \\
& \quad=\left|J_{2}(4,2)\right|=|P G(3,2)|
\end{aligned}
$$

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition of $\frac{1}{2} \overline{H(8,2)}$ with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

Self-orthogonal 3-design

- $\exists 3$ - $(8,4,1)$ Hadamard design
- $\nexists 3-(12,6, \lambda)$ design
- $\exists 3$ - $(16,8,3 \mu)$ design for $\mu \in\{1, \ldots, 5\}$

Self-orthogonal 3-design

- $\exists 3$ - $(8,4,1)$ Hadamard design
- $\nexists 3-(12,6, \lambda)$ design
- $\exists 3$ - $(16,8,3 \mu)$ design for $\mu \in\{1, \ldots, 5\}$
- $\nexists 3-(20,10, \lambda)$ design

Self-orthogonal 3-design

- $\exists 3$ - $(8,4,1)$ Hadamard design
- $\nexists 3-(12,6, \lambda)$ design
- $\exists 3$ - $(16,8,3 \mu)$ design for $\mu \in\{1, \ldots, 5\}$
- $\nexists 3-(20,10, \lambda)$ design

These satisfy $\lfloor k / 4\rfloor+1 \leq t=3$.

Self-orthogonal 3-design

- $\exists 3$ - $(8,4,1)$ Hadamard design
- $\nexists 3-(12,6, \lambda)$ design
- $\exists 3$ - $(16,8,3 \mu)$ design for $\mu \in\{1, \ldots, 5\}$
- $\nexists 3-(20,10, \lambda)$ design

These satisfy $\lfloor k / 4\rfloor+1 \leq t=3$.

- $\exists 5$ - $(24,12,48)$ design (Uniqueness by Tonchev, 1986)

Lalaude-Labayle (2001), determined binary codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Lalaude-Labayle (2001), determined binary codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

More generally, we assume

$$
t=\left\lfloor\frac{k}{4}\right\rfloor+1, \quad k=\min C
$$

but we allow

$$
\mathcal{B} \varsubsetneqq\{x \in C \mid \mathrm{wt}(x)=k\} .
$$

Theorem

\exists self-orthogonal $t-(v, k, \lambda)$ design with code C,

$$
t=\left\lfloor\frac{k}{4}\right\rfloor+1, \quad k=\min C .
$$

Then

$$
\frac{2^{2 t-1} t\binom{k / 2}{k / 2-t} \prod_{j=i}^{t-1}(k-j)}{\sum_{i=1}^{t} i(-2)^{i-1}\binom{2 t-i-1}{t-1}\binom{k}{i} \prod_{j=i}^{t-1}(v-j)} \in \mathbb{Z} .
$$

Note: Given k, there are only finitely many v satisfying the conclusion. Lalaude-Labayle: $k \leq 18$. The only $k>18$ we found which satisfies the conclusion is $k=24, v=120, t=7$ (but \nexists).

Theorem

\exists self-orthogonal t - (v, k, λ) design (X, \mathcal{B}) with code $C, d^{\perp}=\min C^{\perp}$,

$$
t=\left\lfloor\frac{k}{4}\right\rfloor+1, \mathcal{B} \neq\left\{x \in C^{\perp} \mid \mathrm{wt}(x)=d^{\perp}\right\}
$$

Then

$$
\sum_{i=1}^{t} i(-2)^{i-1}\binom{2 t-i-1}{t-1}\binom{d^{\perp}}{i} \prod_{j=i}^{t-1} \frac{v-j}{k-j}=0
$$

Problem Determine all the solutions of this Diophantine equation in $\left(d^{\perp}, k, v\right)$.

Theorem

\exists self-orthogonal $t-(v, k, \lambda)$ design (X, \mathcal{B}) with code $C, d^{\perp}=\min C^{\perp}$,

$$
t=\left\lfloor\frac{k}{4}\right\rfloor+1, \mathcal{B} \neq\left\{x \in C^{\perp} \mid \mathrm{wt}(x)=d^{\perp}\right\}
$$

Then

$$
\sum_{i=1}^{t} i(-2)^{i-1}\binom{2 t-i-1}{t-1}\binom{d^{\perp}}{i} \prod_{j=i}^{t-1} \frac{v-j}{k-j}=0
$$

Problem Determine all the solutions of this
Diophantine equation in $\left(d^{\perp}, k, v\right)$.
Thank you for your attention!

