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Theorem
The following are equivalent:

1 ∃ a self-orthogonal 3-(16, 8, 3µ) design,
2 ∃ an equitable partition of the folded halved

8-cube with quotient matrix[
4(µ− 1) 4(8− µ)

4µ 4(7− µ)

]
.

3 µ ∈ {1, 2, 3, 4, 5}.
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A t-(v, k, λ) design (X,B)

e.g., 3-(16, 8, 3µ) design

X is a finite set, |X| = v,

B ⊂
(
X
k

)
= {k-element subsets of X},

∀T ∈
(
X
t

)
,

λ = |{B ∈ B | B ⊃ T}|.

Elements of X are called “points”, elements of B
are called “blocks”.

Akihiro Munemasa Self-orthogonal designs



Self-orthogonal designs

A t-(v, k, λ) design (X,B) is self-orthogonal if

|B ∩B′| ≡ 0 (mod 2) (∀B,B′ ∈ B).

In particular k ≡ 0 (mod 2).

Let M be the block-point incidence matrix. Then

self-orthogonal ⇐⇒ MM> = 0 over F2.

We call the row space C of M the (binary) code of
the design. Then C ⊂ C⊥.
(Often C ⊂ D = D⊥ ⊂ C⊥).
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Hadamard 3-designs

If H is a Hadamard matrix of order 8n, i.e., H is a
8n× 8n matrix with entries in {±1} satisfying
HH> = 8nI,
=⇒ a self-orthogonal 3-(8n, 4n, 2n− 1) design.
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Hadamard 3-designs

If H is a Hadamard matrix of order 8n, i.e., H is a
8n× 8n matrix with entries in {±1} satisfying
HH> = 8nI,
=⇒ a self-orthogonal 3-(8n, 4n, 2n− 1) design.
Indeed, after normalizing H so that its first row is 1:

H =

[
1
H1

]
,

an incidence matrix is given by

M =
1

2

[
J −H1

J +H1

]
.
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Hadamard 3-designs

If H is a Hadamard matrix of order 8n, i.e., H is a
8n× 8n matrix with entries in {±1} satisfying
HH> = 8nI,
=⇒ a self-orthogonal 3-(8n, 4n, 2n− 1) design.

3-(16, 8, 3) Hadamard design is self-orthogonal. Do
there exist 3-(16, 8, 3µ) designs for µ > 1?
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Hadamard 3-designs

If H is a Hadamard matrix of order 8n, i.e., H is a
8n× 8n matrix with entries in {±1} satisfying
HH> = 8nI,
=⇒ a self-orthogonal 3-(8n, 4n, 2n− 1) design.

3-(16, 8, 3) Hadamard design is self-orthogonal. Do
there exist 3-(16, 8, 3µ) designs for µ > 1?
(take union?)
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Existence problem

Given t, v, k, λ, does there exist a t-(v, k, λ) design?

Before Teirlinck (1987), only a few t-designs with
t ≥ 5 were known.

The 5-(24, 8, 1) design by Witt (1938) is
self-orthogonal.

Assmus-Mattson theorem (1969) gives a reason:
extremal binary self-dual code → 5-designs.

In our work we only consider orthogonality mod 2.
The 5-(12, 6, 1) design of Witt (1938) is not
self-orthogonal.
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Binary codes

A k-dimensional subspace of Fn
2 is called an [n, k]

code. For an [n, k] code C, its minimum weight is

minC = min{wt(x) | 0 6= x ∈ C}.

and C is called an [n, k, d] code if d = minC.

A code C is doubly even if

wt(x) ≡ 0 (mod 4) (∀x ∈ C),

self-orthogonal if
C ⊂ C⊥,

self-dual if
C = C⊥.
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5-designs from binary self-dual codes

A consequence of the Assmus–Mattson theorem:
Doubly even self-dual [24m, 12m, 4m+ 4] code
→ 5-(24m, 4m+ 4, λ) design.

m = 1: Witt design; related designs were
characterized by Tonchev (1986)

m = 2: Harada-M.-Tonchev (2005)

For m ≥ 3, existence is unknown:

m = 3 by Harada-M.-Kitazume (2004),

m = 4 by Harada (2005),

m ≥ 5 by de la Cruz and Willems (2012).
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Lalaude-Labayle (2001), determined binary
self-orthogonal codes of min. wt. k whose min. wt.
codewords support:

3-design for k ≤ 10,
5-design for k ≤ 18.

Motivated by spherical analogue:
Venkov’s theorem on spherical designs
supported by an even unimodular lattice
Martinet (2001): lattices of min ≤ 3 with
spherical 5-design, min ≤ 5 with spherical
7-design
Nossek (2014): lattices of min ≤ 7 with
spherical 9-design, min ≤ 9 with spherical
11-design, 6 ∃ lattices of min ≤ 11 with
spherical 13-design.

Akihiro Munemasa Self-orthogonal designs



Lalaude-Labayle (2001), determined binary
self-orthogonal codes of min. wt. k whose min. wt.
codewords support:

3-design for k ≤ 10,
5-design for k ≤ 18.

Motivated by spherical analogue:
Venkov’s theorem on spherical designs
supported by an even unimodular lattice
Martinet (2001): lattices of min ≤ 3 with
spherical 5-design, min ≤ 5 with spherical
7-design

Nossek (2014): lattices of min ≤ 7 with
spherical 9-design, min ≤ 9 with spherical
11-design, 6 ∃ lattices of min ≤ 11 with
spherical 13-design.

Akihiro Munemasa Self-orthogonal designs



Lalaude-Labayle (2001), determined binary
self-orthogonal codes of min. wt. k whose min. wt.
codewords support:

3-design for k ≤ 10,
5-design for k ≤ 18.

Motivated by spherical analogue:
Venkov’s theorem on spherical designs
supported by an even unimodular lattice
Martinet (2001): lattices of min ≤ 3 with
spherical 5-design, min ≤ 5 with spherical
7-design
Nossek (2014): lattices of min ≤ 7 with
spherical 9-design, min ≤ 9 with spherical
11-design, 6 ∃ lattices of min ≤ 11 with
spherical 13-design.

Akihiro Munemasa Self-orthogonal designs



Design theoretic viewpoint

Instead of classifying self-orthogonal codes C of
min. wt. k such that

B = {supp(x) | x ∈ C, wt(x) = k}

forms a t-design,

we hope to classify self-orthogonal designs:

B ⊂ {x ∈ C | wt(x) = k} ⊂ C ⊂ C⊥.
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Lalaude-Labayle (2001), determined binary
self-orthogonal codes of min. wt. k whose min. wt.
codewords support:

3-design for k ≤ 10,

5-design for k ≤ 18.

More generally, we assume

t ≥
⌊
k

4

⌋
+ 1.

Note: k is even.
Mendelsohn equations are “overdetermined” system.
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Mendelsohn equations

Let (X,B) be a t-(v, k, λ) design, S ⊂ X.

nj = |{B ∈ B | j = |B ∩ S|}|.

Then ∑
j≥1

(
j

i

)
nj = λi

(
|S|
i

)
(i = 1, . . . , t),

a system of t linear equations in unknowns
n1, n2, . . . (at most min{k, |S|}).

If S ∈ C⊥, then nj = 0 for j odd.
If S ∈ B and k = minC⊥, then nj = 0 for j > k/2,
so there are bk/4c unknowns.
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Dual weight 4

The dual code C⊥ of the code C of a t-design has
minimum weight at least t+ 1.

Lemma

If (X,B) is a self-orthogonal 3-(v, k, λ) design, and
the dual code of its code has minimum weight 4,
then v = 2k ≡ 0 (mod 4).

Recall 3-(8, 4, 1) Hadamard design exists.
6 ∃ self-orthogonal 3-(12, 6, λ) design.
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3-(16, 8, λ) design

λ ≤
(
16

8

)(
8

3

)(
16

3

)−1

= 1287

if we don’t require self-orthogonality.

Divisibility implies λ ≡ 0 (mod 3).

Largest number of vectors of weight 8 in a
self-orthogonal codes of length 16
=⇒ λ ≤ 18.

λ = 3: Hadamard designs.

λ = 6, 9, 12, 15, 18?
disjoint union?
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Theorem
The following are equivalent:

1 ∃ a self-orthogonal 3-(16, 8, 3µ) design,
2 ∃ an equitable partition of the folded halved

8-cube with quotient matrix[
4(µ− 1) 4(8− µ)

4µ 4(7− µ)

]
.

3 µ ∈ {1, 2, 3, 4, 5}.

In particular, there is no self-orthogonal 3-(16, 8, 18)
design.
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The folded halved 8-cube

The 8-cube is the graph with vertex set {0, 1}8, two
vertices are adjacent whenever they differ by exactly
one coordinate.

‘halved’ = even-weight vectors
‘folded’ = identify with complement

The folded halved 8-cube Γ has 26 vertices, and it is
28-regular.

SRG(64, 28, 12, 12)
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Equitable partition

Let Γ be a regular graph.
An equitable partition with quotient matrix Q
means: the adjacency matrix A is of the form

A =

[
A11 A12

A21 A22

]
, Aij1 = qij1, Q = (qij).

q12

q21
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The following are equivalent:
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The code d16

The code of a self-orthogonal design is contained in
a doubly even self-dual [16, 8] code.
There are only two such codes, e8 ⊕ e8 and d16.

The code d16 has 128 + 70 codewords of weight 8,
64 + 35 complementary pairs of codewords of
weight 8.

|B| = 30µ (15µ pairs).

8µ 64 = |12H(8, 2)|
∗
7µ 35 = |12J(8, 4)|

= |J2(4, 2)| = |PG(3, 2)|
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Theorem
The following are equivalent:

1 ∃ a self-orthogonal 3-(16, 8, 3µ) design,

2 ∃ an equitable partition of 1
2H(8, 2) with

quotient matrix[
4(µ− 1) 4(8− µ)

4µ 4(7− µ)

]
.

3 µ ∈ {1, 2, 3, 4, 5}.
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Self-orthogonal 3-design

∃ 3-(8, 4, 1) Hadamard design

6 ∃ 3-(12, 6, λ) design

∃ 3-(16, 8, 3µ) design for µ ∈ {1, . . . , 5}

6 ∃ 3-(20, 10, λ) design

These satisfy bk/4c+ 1 ≤ t = 3.

∃ 5-(24, 12, 48) design (Uniqueness by
Tonchev, 1986)
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Lalaude-Labayle (2001), determined binary codes of
min. wt. k whose min. wt. codewords support:

3-design for k ≤ 10,

5-design for k ≤ 18.

More generally, we assume

t =

⌊
k

4

⌋
+ 1, k = minC,

but we allow

B $ {x ∈ C | wt(x) = k}.
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5-design for k ≤ 18.

More generally, we assume

t =

⌊
k

4

⌋
+ 1, k = minC,

but we allow

B $ {x ∈ C | wt(x) = k}.
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Theorem

∃ self-orthogonal t-(v, k, λ) design with code C,

t =

⌊
k

4

⌋
+ 1, k = minC.

Then

22t−1t
(

k/2
k/2−t

)∏t−1
j=i(k − j)∑t

i=1 i(−2)i−1
(
2t−i−1
t−1

)(
k
i

)∏t−1
j=i(v − j)

∈ Z.

Note: Given k, there are only finitely many v
satisfying the conclusion. Lalaude-Labayle: k ≤ 18.
The only k > 18 we found which satisfies the
conclusion is k = 24, v = 120, t = 7 (but 6 ∃).
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Theorem

∃ self-orthogonal t-(v, k, λ) design (X,B) with code
C, d⊥ = minC⊥,

t =

⌊
k

4

⌋
+ 1, B 6= {x ∈ C⊥ | wt(x) = d⊥}.

Then

t∑
i=1

i(−2)i−1

(
2t− i− 1

t− 1

)(
d⊥

i

) t−1∏
j=i

v − j

k − j
= 0.

Problem Determine all the solutions of this
Diophantine equation in (d⊥, k, v).

Thank you for your attention!
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Theorem

∃ self-orthogonal t-(v, k, λ) design (X,B) with code
C, d⊥ = minC⊥,

t =

⌊
k

4

⌋
+ 1, B 6= {x ∈ C⊥ | wt(x) = d⊥}.

Then

t∑
i=1

i(−2)i−1

(
2t− i− 1

t− 1

)(
d⊥

i

) t−1∏
j=i

v − j

k − j
= 0.

Problem Determine all the solutions of this
Diophantine equation in (d⊥, k, v).
Thank you for your attention!
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