Self-orthogonal designs and equitable partitions

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University (joint work with Masaaki Harada and Tsuyoshi Miezaki)

September 20, 2015 International Workshop on Algebraic Combinatorics Zhejiang University

- **(**) \exists a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- an equitable partition of the folded halved 8-cube with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}$$

)
$$\mu \in \{1, 2, 3, 4, 5\}.$$

- **(**) \exists a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- an equitable partition of the folded halved 8-cube with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}$$

)
$$\mu \in \{1, 2, 3, 4, 5\}.$$

- **1** a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- an equitable partition of the folded halved 8-cube with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}$$

)
$$\mu \in \{1, 2, 3, 4, 5\}.$$

- **③** \exists a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- ② ∃ an equitable partition of the folded halved
 8-cube with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}$$

)
$$\mu \in \{1, 2, 3, 4, 5\}.$$

- **③** \exists a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- an equitable partition of the folded halved 8-cube with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}$$

)
$$\mu \in \{1, 2, 3, 4, 5\}.$$

- $\textcircled{0} \exists \text{ a self-orthogonal } 3\text{-}(16,8,3\mu) \text{ design,}$
- an equitable partition of the folded halved 8-cube with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}$$

)
$$\mu \in \{1, 2, 3, 4, 5\}.$$

The following are equivalent:

- **(**) \exists a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- an equitable partition of the folded halved 8-cube with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}$$

 $\ \, \bullet \in \{1,2,3,4,5\}.$

A *t*-(v, k, λ) design (X, \mathcal{B})

e.g., 3- $(16, 8, 3\mu)$ design

$$\lambda = |\{B \in \mathcal{B} \mid B \supset T\}|.$$

Elements of X are called "points", elements of \mathcal{B} are called "blocks".

Self-orthogonal designs

A t- (v, k, λ) design (X, \mathcal{B}) is self-orthogonal if $|B \cap B'| \equiv 0 \pmod{2} \quad (\forall B, B' \in \mathcal{B}).$ In particular $k \equiv 0 \pmod{2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Self-orthogonal designs

A t- (v, k, λ) design (X, \mathcal{B}) is self-orthogonal if $|B \cap B'| \equiv 0 \pmod{2} \quad (\forall B, B' \in \mathcal{B}).$

In particular $k \equiv 0 \pmod{2}$.

Let ${\cal M}$ be the block-point incidence matrix. Then

self-orthogonal $\iff MM^{\top} = 0$ over \mathbb{F}_2 .

We call the row space C of M the (binary) code of the design. Then $C \subset C^{\perp}$. (Often $C \subset D = D^{\perp} \subset C^{\perp}$).

If H is a Hadamard matrix of order 8n, i.e., H is a $8n \times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^{\top} = 8nI$,

 \implies a self-orthogonal 3-(8n, 4n, 2n-1) design.

If H is a Hadamard matrix of order 8n, i.e., H is a $8n \times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^{\top} = 8nI$,

 \implies a self-orthogonal 3-(8n, 4n, 2n - 1) design. Indeed, after normalizing H so that its first row is 1:

$$H = \begin{bmatrix} \mathbf{1} \\ H_1 \end{bmatrix},$$

an incidence matrix is given by

$$M = \frac{1}{2} \begin{bmatrix} J - H_1 \\ J + H_1 \end{bmatrix}$$

If H is a Hadamard matrix of order 8n, i.e., H is a $8n \times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^{\top} = 8nI$,

 \implies a self-orthogonal 3-(8n, 4n, 2n - 1) design. Indeed, after normalizing H so that its first row is 1:

$$H = \begin{bmatrix} \mathbf{1} \\ H_1 \end{bmatrix},$$

an incidence matrix is given by

$$M = \frac{1}{2} \begin{bmatrix} J - H_1 \\ J + H_1 \end{bmatrix}$$

If H is a Hadamard matrix of order 8n, i.e., H is a $8n\times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^{\top}=8nI$,

 \implies a self-orthogonal 3-(8n, 4n, 2n - 1) design.

3-(16, 8, 3) Hadamard design is self-orthogonal. Do there exist $3-(16, 8, 3\mu)$ designs for $\mu > 1$?

If H is a Hadamard matrix of order 8n, i.e., H is a $8n \times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^{\top} = 8nI$,

 \implies a self-orthogonal 3-(8n, 4n, 2n-1) design.

3-(16, 8, 3) Hadamard design is self-orthogonal. Do there exist $3-(16, 8, 3\mu)$ designs for $\mu > 1$? (take union?)

Given t, v, k, λ , does there exist a t- (v, k, λ) design?

Before Teirlinck (1987), only a few *t*-designs with $t \ge 5$ were known.

Given t, v, k, λ , does there exist a t- (v, k, λ) design?

Before Teirlinck (1987), only a few *t*-designs with $t \ge 5$ were known.

The 5-(24, 8, 1) design by Witt (1938) is self-orthogonal.

Given t, v, k, λ , does there exist a t- (v, k, λ) design?

Before Teirlinck (1987), only a few *t*-designs with $t \ge 5$ were known.

The 5-(24, 8, 1) design by Witt (1938) is self-orthogonal.

Assmus-Mattson theorem (1969) gives a reason: extremal binary self-dual code \rightarrow 5-designs.

Given t, v, k, λ , does there exist a t- (v, k, λ) design?

Before Teirlinck (1987), only a few *t*-designs with $t \ge 5$ were known.

The 5-(24, 8, 1) design by Witt (1938) is self-orthogonal.

Assmus-Mattson theorem (1969) gives a reason: extremal binary self-dual code \rightarrow 5-designs.

In our work we only consider orthogonality mod 2. The 5-(12, 6, 1) design of Witt (1938) is not self-orthogonal.

Binary codes

A k-dimensional subspace of \mathbb{F}_2^n is called an [n,k] code. For an [n,k] code C, its minimum weight is

$$\min C = \min\{\operatorname{wt}(x) \mid 0 \neq x \in C\}.$$

and C is called an [n, k, d] code if $d = \min C$.

Binary codes

A k-dimensional subspace of \mathbb{F}_2^n is called an [n,k] code. For an [n,k] code C, its minimum weight is

$$\min C = \min\{\operatorname{wt}(x) \mid 0 \neq x \in C\}.$$

and C is called an [n, k, d] code if $d = \min C$. A code C is doubly even if

$$\operatorname{wt}(x) \equiv 0 \pmod{4} \quad (\forall x \in C),$$

self-orthogonal if

$$C \subset C^{\perp},$$

self-dual if

5-designs from binary self-dual codes

A consequence of the Assmus–Mattson theorem: Doubly even self-dual [24m, 12m, 4m + 4] code $\rightarrow 5$ - $(24m, 4m + 4, \lambda)$ design.

5-designs from binary self-dual codes

A consequence of the Assmus–Mattson theorem: Doubly even self-dual [24m, 12m, 4m + 4] code $\rightarrow 5$ - $(24m, 4m + 4, \lambda)$ design.

- m = 1: Witt design; related designs were characterized by Tonchev (1986)
- m = 2: Harada-M.-Tonchev (2005)

5-designs from binary self-dual codes

A consequence of the Assmus–Mattson theorem: Doubly even self-dual [24m, 12m, 4m + 4] code $\rightarrow 5$ - $(24m, 4m + 4, \lambda)$ design.

- m = 1: Witt design; related designs were characterized by Tonchev (1986)
- m = 2: Harada-M.-Tonchev (2005)

For $m \geq 3$, existence is unknown:

- m = 3 by Harada-M.-Kitazume (2004),
- m = 4 by Harada (2005),
- $m \ge 5$ by de la Cruz and Willems (2012).

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Motivated by spherical analogue:

- Venkov's theorem on spherical designs supported by an even unimodular lattice
- Martinet (2001): lattices of min ≤ 3 with spherical 5-design, min ≤ 5 with spherical 7-design

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Motivated by spherical analogue:

- Venkov's theorem on spherical designs supported by an even unimodular lattice
- Martinet (2001): lattices of min ≤ 3 with spherical 5-design, min ≤ 5 with spherical 7-design

Design theoretic viewpoint

Instead of classifying self-orthogonal codes ${\cal C}$ of min. wt. k such that

$$\mathcal{B} = \{ \operatorname{supp}(x) \mid x \in C, \ \operatorname{wt}(x) = k \}$$

forms a *t*-design,

Instead of classifying self-orthogonal codes ${\cal C}$ of min. wt. k such that

$$\mathcal{B} = \{ \operatorname{supp}(x) \mid x \in C, \ \operatorname{wt}(x) = k \}$$

forms a *t*-design,

we hope to classify self-orthogonal designs:

$$\mathcal{B} \subset \{x \in C \mid \operatorname{wt}(x) = k\} \subset C \subset C^{\perp}.$$

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

More generally, we assume

$$t \ge \left\lfloor \frac{k}{4} \right\rfloor + 1.$$

Note: k is even. Mendelsohn equations are "overdetermined" system.

Mendelsohn equations

Let
$$(X, \mathcal{B})$$
 be a t - (v, k, λ) design, $S \subset X$.
 $n_j = |\{B \in \mathcal{B} \mid j = |B \cap S|\}|.$

Then

$$\sum_{j\geq 1} \binom{j}{i} n_j = \lambda_i \binom{|S|}{i} \quad (i = 1, \dots, t),$$

a system of t linear equations in unknowns n_1, n_2, \ldots (at most $\min\{k, |S|\}$).

Mendelsohn equations

Let
$$(X, \mathcal{B})$$
 be a t - (v, k, λ) design, $S \subset X$.
 $n_j = |\{B \in \mathcal{B} \mid j = |B \cap S|\}|.$

Then

$$\sum_{j\geq 1} \binom{j}{i} n_j = \lambda_i \binom{|S|}{i} \quad (i = 1, \dots, t),$$

a system of t linear equations in unknowns n_1, n_2, \ldots (at most $\min\{k, |S|\}$). If $S \in C^{\perp}$, then $n_j = 0$ for j odd. If $S \in \mathcal{B}$ and $k = \min C^{\perp}$, then $n_j = 0$ for j > k/2, so there are $\lfloor k/4 \rfloor$ unknowns. The dual code C^{\perp} of the code C of a *t*-design has minimum weight at least t + 1.

The dual code C^{\perp} of the code C of a *t*-design has minimum weight at least t + 1.

Lemma

If (X, \mathcal{B}) is a self-orthogonal 3- (v, k, λ) design, and the dual code of its code has minimum weight 4, then $v = 2k \equiv 0 \pmod{4}$.

The dual code C^{\perp} of the code C of a *t*-design has minimum weight at least t + 1.

Lemma

If (X, \mathcal{B}) is a self-orthogonal 3- (v, k, λ) design, and the dual code of its code has minimum weight 4, then $v = 2k \equiv 0 \pmod{4}$.

Recall 3-(8, 4, 1) Hadamard design exists.

The dual code C^{\perp} of the code C of a *t*-design has minimum weight at least t + 1.

Lemma

If (X, \mathcal{B}) is a self-orthogonal 3- (v, k, λ) design, and the dual code of its code has minimum weight 4, then $v = 2k \equiv 0 \pmod{4}$.

Recall 3-(8, 4, 1) Hadamard design exists. $\not\exists$ self-orthogonal 3-(12, 6, λ) design.

$3\text{-}(16,8,\lambda)$ design

$$\lambda \le \binom{16}{8} \binom{8}{3} \binom{16}{3}^{-1} = 1287$$

if we don't require self-orthogonality.

• Divisibility implies $\lambda \equiv 0 \pmod{3}$.

$3\text{-}(16,8,\lambda)$ design

$$\lambda \le \binom{16}{8} \binom{8}{3} \binom{16}{3}^{-1} = 1287$$

if we don't require self-orthogonality.

- Divisibility implies $\lambda \equiv 0 \pmod{3}$.
- Largest number of vectors of weight 8 in a self-orthogonal codes of length 16 ⇒ λ ≤ 18.

$3\text{-}(16,8,\lambda)$ design

$$\lambda \le \binom{16}{8} \binom{8}{3} \binom{16}{3}^{-1} = 1287$$

if we don't require self-orthogonality.

- Divisibility implies $\lambda \equiv 0 \pmod{3}$.
- Largest number of vectors of weight 8 in a self-orthogonal codes of length 16 ⇒ λ ≤ 18.
- $\lambda = 3$: Hadamard designs.

```
\begin{split} \lambda &= 6, 9, 12, 15, 18? \\ \text{disjoint union?} \end{split}
```

The following are equivalent:

- **(**) \exists a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- ② ∃ an equitable partition of the folded halved 8-cube with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}.$$

3
$$\mu \in \{1, 2, 3, 4, 5\}.$$

In particular, there is no self-orthogonal $3\mathchar`-(16,8,18)$ design.

The 8-cube is the graph with vertex set $\{0,1\}^8$, two vertices are adjacent whenever they differ by exactly one coordinate.

The 8-cube is the graph with vertex set $\{0,1\}^8$, two vertices are adjacent whenever they differ by exactly one coordinate.

'halved' = even-weight vectors 'folded' = identify with complement

The folded halved 8-cube Γ has 2^6 vertices, and it is 28-regular.

SRG(64, 28, 12, 12)

Let Γ be a regular graph.

An equitable partition with quotient matrix ${\cal Q}$ means: the adjacency matrix ${\cal A}$ is of the form

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad A_{ij}\mathbf{1} = q_{ij}\mathbf{1}, \quad Q = (q_{ij}).$$

 q_{12}

 q_{21}

The following are equivalent:

- **③** \exists a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- an equitable partition of the folded halved 8-cube with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}$$

)
$$\mu \in \{1, 2, 3, 4, 5\}.$$

The code of a self-orthogonal design is contained in a doubly even self-dual [16,8] code. There are only two such codes, $e_8 \oplus e_8$ and d_{16} .

The code of a self-orthogonal design is contained in a doubly even self-dual [16, 8] code. There are only two such codes, $e_8 \oplus e_8$ and d_{16} . The code d_{16} has 128 + 70 codewords of weight 8,

The code of a self-orthogonal design is contained in a doubly even self-dual [16, 8] code. There are only two such codes, $e_8 \oplus e_8$ and d_{16} . The code d_{16} has 128 + 70 codewords of weight 8, 64 + 35 complementary pairs of codewords of weight 8.

The code of a self-orthogonal design is contained in a doubly even self-dual [16, 8] code. There are only two such codes, $e_8 \oplus e_8$ and d_{16} . The code d_{16} has 128 + 70 codewords of weight 8, 64 + 35 complementary pairs of codewords of weight 8.

$$|\mathcal{B}| = 30\mu$$
 (15 μ pairs).

The code of a self-orthogonal design is contained in a doubly even self-dual [16, 8] code. There are only two such codes, $e_8 \oplus e_8$ and d_{16} . The code d_{16} has 128 + 70 codewords of weight 8, 64 + 35 complementary pairs of codewords of weight 8.

$$|\mathcal{B}| = 30\mu$$
 (15 μ pairs).

$$8\mu \quad 64 = |\frac{1}{2}\overline{H(8,2)}| \\ * \\ 7\mu \quad 35 = |\frac{1}{2}J(8,4)| \\ = |J_2(4,2)| = |PG(3,2)|$$

The following are equivalent:

- **(**) \exists a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- ② ∃ an equitable partition of $\frac{1}{2}\overline{H(8,2)}$ with quotient matrix

$$\begin{bmatrix} 4(\mu - 1) & 4(8 - \mu) \\ 4\mu & 4(7 - \mu) \end{bmatrix}$$

 $\ \, \bullet \ \, \mu \in \{1,2,3,4,5\}.$

- \exists 3-(8,4,1) Hadamard design
- $\not\exists$ 3-(12, 6, λ) design
- $\exists \ 3{\text{-}}(16,8,3\mu)$ design for $\mu \in \{1,\ldots,5\}$

- \exists 3-(8,4,1) Hadamard design
- $\not\exists$ 3-(12, 6, λ) design
- $\exists \ 3$ - $(16, 8, 3\mu)$ design for $\mu \in \{1, \dots, 5\}$
- $\not\exists$ 3-(20, 10, λ) design

- \exists 3-(8,4,1) Hadamard design
- $\not\exists$ 3-(12, 6, λ) design
- $\exists \ 3$ - $(16, 8, 3\mu)$ design for $\mu \in \{1, \dots, 5\}$
- $\not\exists$ 3-(20, 10, λ) design

These satisfy $\lfloor k/4 \rfloor + 1 \leq t = 3$.

- \exists 3-(8,4,1) Hadamard design
- $\not\exists$ 3-(12, 6, λ) design
- $\exists \ 3$ - $(16, 8, 3\mu)$ design for $\mu \in \{1, \dots, 5\}$
- $\not\exists$ 3-(20, 10, λ) design

These satisfy $\lfloor k/4 \rfloor + 1 \leq t = 3$.

• \exists 5-(24, 12, 48) design (Uniqueness by Tonchev, 1986)

Lalaude-Labayle (2001), determined binary codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Lalaude-Labayle (2001), determined binary codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

More generally, we assume

$$t = \left\lfloor \frac{k}{4} \right\rfloor + 1, \quad k = \min C,$$

but we allow

$$\mathcal{B} \subsetneqq \{x \in C \mid \operatorname{wt}(x) = k\}.$$

 \exists self-orthogonal t- (v,k,λ) design with code C,

$$t = \left\lfloor \frac{k}{4} \right\rfloor + 1, \quad k = \min C.$$

Then

$$\frac{2^{2t-1}t\binom{k/2}{k/2-t}\prod_{j=i}^{t-1}(k-j)}{\sum_{i=1}^{t}i(-2)^{i-1}\binom{2t-i-1}{t-1}\binom{k}{i}\prod_{j=i}^{t-1}(v-j)}\in\mathbb{Z}.$$

Note: Given k, there are only finitely many vsatisfying the conclusion. Lalaude-Labayle: $k \le 18$. The only k > 18 we found which satisfies the conclusion is k = 24, v = 120, t = 7 (but $\not\exists$).

\exists self-orthogonal $t\text{-}(v,k,\lambda)$ design (X,\mathcal{B}) with code C , $d^{\perp}=\min C^{\perp}$,

$$t = \left\lfloor \frac{k}{4} \right\rfloor + 1, \ \mathcal{B} \neq \{ x \in C^{\perp} \mid \operatorname{wt}(x) = d^{\perp} \}.$$

Then

$$\sum_{i=1}^{t} i(-2)^{i-1} \binom{2t-i-1}{t-1} \binom{d^{\perp}}{i} \prod_{j=i}^{t-1} \frac{v-j}{k-j} = 0.$$

Problem Determine all the solutions of this Diophantine equation in (d^{\perp}, k, v) .

\exists self-orthogonal $t\text{-}(v,k,\lambda)$ design (X,\mathcal{B}) with code C , $d^{\perp}=\min C^{\perp}$,

$$t = \left\lfloor \frac{k}{4} \right\rfloor + 1, \ \mathcal{B} \neq \{ x \in C^{\perp} \mid \operatorname{wt}(x) = d^{\perp} \}.$$

Then

$$\sum_{i=1}^{t} i(-2)^{i-1} \binom{2t-i-1}{t-1} \binom{d^{\perp}}{i} \prod_{j=i}^{t-1} \frac{v-j}{k-j} = 0.$$

Problem Determine all the solutions of this Diophantine equation in (d^{\perp}, k, v) . Thank you for your attention!