Nonexistence of a quasi-symmetric 2-(37, 9, 8) design

Akihiro Munemasa
(joint work with Masaaki Harada and Vladimir D. Tonchev) arXiv:1606.08909

Tohoku University
November 29, 2016
Design of experiments, codes and related combinatorial structures
AkiuResort Hotel Crescent

Classification of doubly even self-dual codes

Conway and Pless, J. Combin. Theory, Ser. A (1980)
...so 17000 might be a poor lower bound. However, even this weak bound makes it clear that it would not be sensible to enumerate the $[40,20]$ doubly even self-dual codes.

Betsumiya, Harada and Munemasa, Elec. J. Combin. (2012) There are

16470 doubly even self-dual [$40,20,8$] codes, 77873 doubly even self-dual $[40,20,4]$ codes.

This classification was crucial in proving the nonexistence of a quasi-symmetric $2-(37,9,8)$ design.

A 2-($v, k, \lambda)$ design is a pair $(\mathcal{P}, \mathcal{B})$, where

- $|\mathcal{P}|=v, \mathcal{B} \subset\binom{\mathcal{P}}{k}$,
- $|\{B \in \mathcal{B} \mid B \ni p, q\}|=\lambda$ for all $\{p, q\} \in\binom{\mathcal{P}}{2}$.

Write

$$
b=|\mathcal{B}|, \quad r=|\{B \in \mathcal{B} \mid B \ni p\}| .
$$

> symmetric if $\left|\left\{\left|B \cap B^{\prime}\right| \mid B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime}\right\}\right|=1$, quasi-symmetric if $\left|\left\{\left|B \cap B^{\prime}\right| \mid B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime}\right\}\right|=2$.

For a quasi-symmetric design, write

$$
\left\{\left|B \cap B^{\prime}\right| \mid B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime}\right\}=\{x, y\}
$$

with $x<y$ (intersection numbers, uniquely determined by v, k, λ).

A. Neumaier (1982)

(1) Steiner systems 2-($v, k, 1)$ designs, $x=0, y=1$.
(2) Hadamard 3 -design, 2-($4 n, 2 n, 2 n-1), x=0, y=n$; more generally, resolvable designs $(x=0)$
(3) residual of biplanes (finitely many known)

Other examples:
(1) (if we allow repeated blocks) multiples of symmetric designs.
(2) Exceptional designs: not in the above classes.
(3) 4-(23,7,1) design or its complement is the only quasi-symmetric design which is a 4-design.

Theorem (Harada-M.-Tonchev)

There is no quasi-symmetric $2-(37,9,8)$ design.
Bouyuklieava-Varbanov (2005) showed the non-existence with the assumption that an automorphism of order 5 exists.

Incidence matrix

Suppose that $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is a quasi-symmetric $2-(37,9,8)$ design with intersection numbers $x=1$ and $y=3$. Let A be its incidence matrix:

$$
A=\begin{gathered}
B \in \mathcal{B} \\
(b=148)
\end{gathered}\left[\begin{array}{c}
p \in \mathcal{P}(v=37) \\
A_{B, p}=\left\{\begin{array}{ll}
1 & \text { if } p \in B \\
0 & \text { otherwise }
\end{array}\right]
\end{array}\right.
$$

Then

$$
\begin{aligned}
& A^{\top} A=36 I+8(J-I) \\
& A A^{\top}=9 I+[r=36) \\
& \\
& 1,3
\end{aligned} \quad \begin{array}{ccc}
0 & & 1,3 \\
& \ddots &
\end{array}
$$

Since

$$
A A^{\top}=9 I+\left[\begin{array}{ccc}
0 & & 1,3 \\
& \ddots & \\
1,3 & & 0
\end{array}\right]
$$

we have

$$
\begin{aligned}
{\left[\begin{array}{llll}
A & \mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right]\left[\begin{array}{l}
A^{\top} \\
\mathbf{1}^{\top} \\
\mathbf{1}^{\top} \\
\mathbf{1}^{\top}
\end{array}\right] } & =A A^{\top}+3 J \\
& =12 I+\left[\begin{array}{lll}
0 & & 4,6 \\
& \ddots & \\
4,6 & & 0
\end{array}\right] \\
& \equiv 0(\bmod 2) .
\end{aligned}
$$

Thus the \mathbb{F}_{2}-linear span of $\left[\begin{array}{llll}A & \mathbf{1} & \mathbf{1} & \mathbf{1}\end{array}\right]$ is a doubly even code.

Definition

A code of length m means a \mathbb{F}_{2}-linear subspace of \mathbb{F}_{2}^{m}. The weight $\mathrm{wt}(\mathbf{u})$ of a vector $\mathbf{u} \in \mathbb{F}_{2}^{m}$ is the number of nonzero coordinates of \mathbf{u}. A code C is doubly even if

$$
w t(\mathbf{u}) \equiv 0 \quad(\bmod 4) \quad(\forall \mathbf{u} \in C) .
$$

Lemma

If A is a $(0,1)$ matrix such that (diagonals of $\left.A A^{\top}\right) \equiv 0(\bmod 4)$ and $A A^{\top} \equiv 0(\bmod 2)$, then the \mathbb{F}_{2}-linear span of A is a doubly even code.

$$
\left[\begin{array}{llll}
A & \mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right]\left[\begin{array}{l}
A^{\top} \\
\mathbf{1}^{\top} \\
\mathbf{1}^{\top} \\
\mathbf{1}^{\top}
\end{array}\right]=12 I+\left[\begin{array}{ccc}
0 & & 4,6 \\
& \ddots & \\
4,6 & & 0
\end{array}\right]
$$

In our case

$$
\text { row space of }\left[\begin{array}{llll}
A & \mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right] \subset \mathbb{F}_{2}^{40} \text { is doubly even. }
$$

In general, it is difficult to get information of these codes such as dimension, minimum weight.

Definition

For a code C of \mathbb{F}_{2}^{m}, the minimum weight of C is

$$
\min \{w t(\mathbf{u}) \mid \mathbf{u} \in C, \mathbf{u} \neq 0\}
$$

The dual C^{\perp} is

$$
C^{\perp}=\left\{\mathbf{u} \in \mathbb{F}_{2}^{m} \mid(\mathbf{u}, \mathbf{v})=0 \quad(\forall \mathbf{v} \in C)\right\}
$$

Lemma (Tonchev (1986))

Let A be the incidence matrix of a $2-(v, k, \lambda)$ design. Then the duals of the \mathbb{F}_{2}-linear spans of

$$
A, \quad\left[\begin{array}{ll}
A & 1
\end{array}\right]
$$

have minimum weights at least $(r+\lambda) / \lambda$ and $(b+r) / r$, respectively.

Lemma (Harada-M.-Tonchev (2016))

Let A be the incidence matrix of a quasi-symmetric 2-(37, 9, 8) design. If \mathbf{u} is in the dual of the \mathbb{F}_{2}-linear spans of

$$
\left[\begin{array}{llll}
A & 1 & 1 & 1
\end{array}\right],
$$

and $\mathbf{u} \notin\{0,(\ldots, 0,1,1),(\ldots, 1,0,1),(\ldots, 1,1,0)\}$, then $\mathrm{wt}(\mathbf{u}) \geq(b+r) / r=(148+36) / 36>5$.

Definition

A doubly even self-dual (d.e.s.d.) [2n, n] code is a doubly even code $C \subset \mathbb{F}_{2}^{2 n}$ with $C=C^{\perp}$. If the minimum weight d, then it is also called a $[2 n, n, d]$ code.

- A doubly even self-dual $[2 n, n]$ code exists iff $2 n \equiv 0(\bmod 8)$.
- If $2 n \equiv 0(\bmod 8)$, then every doubly even code $D \subset \mathbb{F}_{2}^{2 n}$ is contained in some d.e.s.d. [$2 n, n$] code.

Thus

$$
\text { row space of }\left[\begin{array}{llll}
A & \mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right] \subset \exists C \text { a d.e.s.d. }[40,20,8] \text { code, }
$$

since

$$
\left(\text { row space of }\left[\begin{array}{llll}
A & \mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right]\right)^{\perp}
$$

has minimum weight >5 by the Lemma.

$$
\text { row space of }\left[\begin{array}{llll}
A & \mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right] \subset \exists C \text { a d.e.s.d. }[40,20,8] \text { code. }
$$

Theorem (Betsumiya-Harada-M. (2012))

There are 16470 doubly even self-dual $[40,20,8]$ codes.
If \exists a quasi-symmetric 2-($37,9,8$) design, then

$$
\begin{aligned}
& \exists C \text { : a d.e.s.d. }[40,20,8] \text { code, } \\
& \exists T \subset\{1, \ldots, 40\},|T|=3
\end{aligned}
$$

such that \mathcal{B} can be embedded in

$$
\begin{aligned}
X & =\{\operatorname{supp}(\mathbf{u}) \backslash T \mid \mathbf{u} \in C, \operatorname{wt}(\mathbf{u})=12, \operatorname{supp}(\mathbf{u}) \supset T\} \\
& \subset\binom{\{1, \ldots, 40\} \backslash T}{9} .
\end{aligned}
$$

There are $16470 \times\binom{ 40}{3}$ ways to choose (C, T).

Search method (1)

There are $16470 \times\binom{ 40}{3}$ ways to choose (C, T).

$$
\mathcal{B} \subset X=\{\operatorname{supp}(\mathbf{u}) \backslash T \mid \mathbf{u} \in C, \operatorname{wt}(\mathbf{u})=12, \operatorname{supp}(\mathbf{u}) \supset T\} .
$$

For $\{i, j\} \subset\{1, \ldots, 40\} \backslash T$, let

$$
\Gamma_{i j}=\{B \in X \mid B \supset\{i, j\}\} .
$$

Then " 8 -clique"

$$
\begin{aligned}
& \left|\mathcal{B} \cap \Gamma_{i j}\right|=\lambda=8, \\
& B, B^{\prime} \in \mathcal{B} \cap \Gamma_{i j}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right|=3 .
\end{aligned}
$$

$\Gamma_{i j}$ must contain such an 8 -subset.
This test rules out 15940 of 16470 d.e.s.d [40, 20, 8] codes.

Search method (2)

There are still $16470-15940=530$ d.e.s.d $[40,20,8]$ codes which passes the previous test.

Fix $\left\{i_{0}, j_{0}\right\} \subset\{1, \ldots, 40\} \backslash T$ and enumerate

$$
\mathcal{K}=\left\{8 \text {-cliques in } \Gamma_{i_{0}, j_{0}}\right\} .
$$

Then $\forall K \in \mathcal{K}$, and $\forall\{i, j\} \subset\{1, \ldots, 40\} \backslash T$ the set

$$
\Gamma_{i j}^{\prime}=\left\{B^{\prime} \in \Gamma_{i j}| | B \cap B^{\prime} \mid \in\{1,3,9\}(\forall B \in K)\right\}
$$

must have a 8-clique.
We have verified that this is not the case for the remaining 530 codes.

Theorem (Harada-M.-Tonchev)

There is no quasi-symmetric $2-(37,9,8)$ design.
Further problems:
(1) ? a strongly regular graph with parameters
$(v, k, \lambda, \mu)=(148,84,50,44)$ (could have been obtained if there were a quasi-symmetric 2-(37, 9,8) design)
(2) ? \exists a symmetric $2-(149,37,9)$ design (its derived design is 2 -($37,9,8$) design which can't be quasi-symmetric)
© ? \exists a quasi-symmetric 2 - $(112,28,9)$ design with intersection number $x=6, y=8(112=149-37)$

- ? \exists a 1- $(36,8,8)$ design with intersection numbers 0,2
© ? \exists a quasi-symmetric 2 - $(41,9,9)$ design with intersection number $x=1, y=3$

Thank you for your attention!

