Butson-Hadamard matrices in association

schemes of class 6 on Galois rings of characteristic 4

Akihiro Munemasa
Tohoku University
(joint work with Takuya Ikuta)

July 17, 2017
Workshop on Group Theory and Algebraic Combinatorics Novosibirsk State University

About this talk

Coherent Configuration
Association Scheme Schur Ring \leftarrow
\leftarrow Permutation Group
\leftarrow Transitive Permutation Group Transitive Permutation Group with Regular Subgroup

- This is a continuation of my talk
"Amorphous association schemes over Galois rings of characteristic 4" at Vladimir, Russia in August 1991.
- Common theme: Construction of an association scheme from Galois rings of characteristic 4, in terms of a Schur ring.
- Related work: Evdokimov-Ponomarenko: Schur rings over a Galois ring

Complex Hadamard matrices

An $\boldsymbol{n} \times \boldsymbol{n}$ matrix $\boldsymbol{H}=\left(\boldsymbol{h}_{\boldsymbol{i j}}\right)$ is called a complex Hadamard matrix if

$$
H H^{*}=n I \text { and }\left|h_{i j}\right|=1 \quad(\forall i, j)
$$

It is called a Butson-Hadamard matrix if all $\boldsymbol{h}_{\boldsymbol{i j}}$ are roots of unity. It is called a (real) Hadamard matrix if all $\boldsymbol{h}_{i j}$ are ± 1. The 5th workshop on Real and Complex Hadamard Matrices and Applications, 10-14 July, 2017, Budapest, aimed at
(1) The Hadamard conjecture: a (real) Hadamard matrix exists for every order which is a multiple of 4 (yes for order ≤ 664).
(2) Complete set of mutually unbiased bases (MUB) exists for non-prime power dimension?

Mutually unbiased bases

Given a positive integer \boldsymbol{n}, does there exist complex Hadamard matrices $\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{n}$ of order \boldsymbol{n} such that

$$
\frac{1}{\sqrt{n}} H_{i} H_{j}^{*}
$$

is a complex Hadamard matrix for all $i \neq j$?
Yes for $n=$ prime power. Unknown for all other \boldsymbol{n}.
An equivalent problem is orthogonal decomposition of the Lie algebra $\mathfrak{s l}(n, \mathbb{C})$ by Cartan subalgebras, as formulated independently by Kostrikin-Kostrikin-Ufnarowskii (1981).

Hadamard matrices and association schemes

For real Hadamard matrices:

- Goethals-Seidel (1970), regular symmetric Hadamard matrices with constant diagonal are equivalent to certain strongly regular graphs (symmetric association schemes of class 2).
- Delsarte (1973), skew Hadamard matrices are equivalent to nonsymmetric association schemes of class 2.
For complex Hadamard matrices (or more generally "inverse-orthogonal", or "Type II" matrices),
- Jaeger-Matsumoto-Nomura (1998)
- Chan-Godsil (2010)
- Ikuta-Munemasa (2015)

Coherent Algebras and Coherent Configuration

Let \boldsymbol{G} be a finite permutation group acting on a finite set \boldsymbol{X}. From the set of orbits of $\boldsymbol{X} \times \boldsymbol{X}$, one defines adjacency matrices

$$
A_{0}, A_{1}, \ldots, A_{d} \text { with } \sum_{i=0}^{d} A_{i}=J \text { (all-one matrix). }
$$

Then the linear span $\left\langle\boldsymbol{A}_{\mathbf{0}}, \boldsymbol{A}_{\mathbf{1}}, \ldots, \boldsymbol{A}_{\boldsymbol{d}}\right\rangle$ is closed under multiplication and transposition (\rightarrow coherent algebra, coherent configuration).
If \boldsymbol{G} acts transitively, we may assume $\boldsymbol{A}_{\mathbf{0}}=\boldsymbol{I}(\rightarrow$ Bose-Mesner algebra of an association scheme).
If \boldsymbol{G} contains a regular subgroup \boldsymbol{H}, we may identify \boldsymbol{X} with \boldsymbol{H}, $\boldsymbol{A}_{\boldsymbol{i}} \leftrightarrow \boldsymbol{T}_{\boldsymbol{i}} \subseteq \boldsymbol{H}$, and

$$
H=\bigcup_{i=0}^{d} T_{i}, T_{0}=\left\{1_{H}\right\}, \quad \mathbb{C}[H] \supseteq\left\langle\sum_{g \in T_{i}} g \mid 0 \leq i \leq d\right\rangle .
$$

Schur rings

$$
\begin{aligned}
H & =\bigcup_{i=0}^{d} T_{i}, \quad T_{0}=\left\{1_{H}\right\} \\
\mathbb{C}[H] & \supseteq \mathcal{A}=\left\langle\sum_{g \in T_{i}} g \mid 0 \leq i \leq d\right\rangle \quad \text { (subalgebra). }
\end{aligned}
$$

\mathcal{A} is called a Schur ring if, in addition

$$
\left\{T_{i}^{-1} \mid 0 \leq i \leq d\right\}=\left\{T_{i} \mid 0 \leq i \leq d\right\}
$$

where

$$
T^{-1}=\left\{t^{-1} \mid t \in T\right\} \quad \text { for } T \subseteq H
$$

Examples: $\boldsymbol{A G L}(\mathbf{1}, \boldsymbol{q})>\boldsymbol{G}>\boldsymbol{H}=\boldsymbol{G F}(\boldsymbol{q})$ (cyclotomic).

$A G L(1, q)>G>H=G F(q)$ (cyclotomic)

More generally,

$$
R: \boldsymbol{R}^{\times}>G>H=R: \text { a ring. }
$$

In Ito-Munemasa-Yamada (1991), we wanted to construct an association scheme with eigenvalue a multiple of $i=\sqrt{-1}$. Not possible with $\boldsymbol{R}=\boldsymbol{G F}(\boldsymbol{q})$.

$$
\begin{aligned}
G F(p) & \rightarrow G F\left(p^{e}\right) \\
\mathbb{Z}_{p^{n}} & \rightarrow G R\left(p^{n}, e\right)
\end{aligned}
$$

A Galois ring $\boldsymbol{R}=\boldsymbol{G R}\left(\boldsymbol{p}^{n}, \boldsymbol{e}\right)$ is a commutative local ring with characteristic \boldsymbol{p}^{n}, whose quotient by the maximal ideal $\boldsymbol{p R}$ is $\boldsymbol{G F}\left(\boldsymbol{p}^{e}\right)$.

Structure of $G R\left(p^{n}, e\right)$

Let $\boldsymbol{R}=\boldsymbol{G} \boldsymbol{R}\left(\boldsymbol{p}^{n}, \boldsymbol{e}\right)$ be a Galois ring. Then

$$
|R|=p^{n e}
$$

$\boldsymbol{p} \boldsymbol{R}$ is the unique maximal ideal,

$$
\begin{aligned}
\left|R^{\times}\right| & =|R \backslash p R|=p^{n e}-p^{(n-1) e}=\left(p^{e}-1\right) p^{(n-1) e} \\
R^{\times} & =\mathcal{T} \times \mathcal{U}, \quad \mathcal{T} \cong \mathbb{Z}_{p^{e}-1}, \quad|\mathcal{U}|=p^{(n-1) e}
\end{aligned}
$$

Structure of $G R(4, e)$

Let $\boldsymbol{R}=\boldsymbol{G} \boldsymbol{R}(4, e)$ be a Galois ring of characteristic 4 . Then

$$
\begin{aligned}
|R| & =4^{e}, \\
2 R & \text { is the unique maximal ideal, } \\
\left|R^{\times}\right| & =|R \backslash 2 R|=4^{e}-2^{e}=\left(2^{e}-1\right) 2^{e}, \\
R^{\times} & =\mathcal{T} \times \mathcal{U}, \quad \mathcal{T} \cong \mathbb{Z}_{2^{e}-1}, \\
\mathcal{U} & =1+2 R \cong \mathbb{Z}_{2}^{e} .
\end{aligned}
$$

To construct a Schur ring, we need to partition

$$
R=R^{\times} \cup 2 R
$$

(into even smaller parts). In Ito-Munemasa-Yamada (1991), the orbits of a subgroup of the form $\mathcal{T} \times \mathcal{U}_{0}<\boldsymbol{R}^{\times}$were used.

\mathcal{U}_{0} as a subgroup of \mathcal{U} of index $\mathbf{2}$

$R=G R(4, e)$,

$2 \boldsymbol{R}$ is the unique maximal ideal,

$$
\boldsymbol{R}^{\times}=\mathcal{T} \times \mathcal{U}, \quad \mathcal{T} \cong \mathbb{Z}_{2^{e}-1}
$$

$$
\mathcal{U}=1+2 R \cong \mathbb{Z}_{2}^{e} \text { the principal unit group. }
$$

There is a bijection

So the "trace-0" additive subgroup of $\boldsymbol{G F}\left(\boldsymbol{2}^{e}\right)$ is mapped to \mathcal{P}_{0} and \mathcal{U}_{0} with $\left|2 R: \mathcal{P}_{0}\right|=\left|\mathcal{U}: \mathcal{U}_{0}\right|=2$.
Assume \boldsymbol{e} is odd. Then $1 \notin$ "trace- 0 " subgroup, so $2 \notin \mathcal{P}_{0}$ and $-1=3 \notin \mathcal{U}_{0}$.

$$
\begin{aligned}
& G F\left(2^{e}\right)=R / 2 R \leftarrow \mathcal{T} \cup\{0\} \rightarrow 2 R \rightarrow \mathcal{U}, \\
& a+2 R \leftarrow a \quad \mapsto 2 a \mapsto 1+2 a .
\end{aligned}
$$

Partition of $R=G R(4, e)$

Assume e is odd. Then $2 \notin \mathcal{P}_{0},-1 \notin \mathcal{U}_{0}$.

$$
\begin{aligned}
\boldsymbol{R}^{\times} & =\mathcal{T} \times \mathcal{U}, \quad \mathcal{T} \cong \mathbb{Z}_{2^{e}-1} \\
2 R & =\mathcal{P}_{0} \cup\left(2+\mathcal{P}_{0}\right), \\
\mathcal{U} & =\mathcal{U}_{0} \cup\left(-\mathcal{U}_{0}\right) .
\end{aligned}
$$

Then \mathcal{U}_{0} acts on \boldsymbol{R}, and the orbit decomposition is

$$
\begin{aligned}
R= & \left(\bigcup_{t \in \mathcal{T}} t \mathcal{U}_{0} \cup\left(-t \mathcal{U}_{0}\right)\right) \cup\left(\bigcup_{a \in 2 R}\{a\}\right) \\
= & \mathcal{U}_{0} \cup\left(-\mathcal{U}_{0}\right) \cup\left(\bigcup_{t \in \mathcal{T} \backslash\{1\}} t \mathcal{U}_{0}\right) \cup\left(\bigcup_{t \in \mathcal{T} \backslash\{1\}}\left(-t \mathcal{U}_{0}\right)\right) \\
& \cup\{0\} \cup\left(\mathcal{P}_{0} \backslash\{0\}\right) \cup\left(2+\mathcal{P}_{0}\right) .
\end{aligned}
$$

$R \backslash\{0\}$ is partitioned into 6 parts

$$
\begin{aligned}
& T_{0}=\{0\}, \\
& T_{1}=\bigcup_{t \in \mathcal{T} \backslash\{1\}} t \mathcal{U}_{0}, \\
& T_{2}=\bigcup_{t \in \mathcal{T} \backslash\{1\}}\left(-t \mathcal{U}_{0}\right),
\end{aligned}
$$

$$
\begin{aligned}
& T_{3}=\mathcal{U}_{0}, \\
& T_{4}=-\mathcal{U}_{0}, \\
& T_{5}=\mathcal{P}_{0} \backslash\{0\}, \\
& T_{6}=2+\mathcal{P}_{0} .
\end{aligned}
$$

Theorem (Ikuta-M., 2017+)

(1) $\left\{T_{0}, T_{1}, \ldots, T_{6}\right\}$ defines a Schur ring on $G R(4, e)$,
© The matrices

$$
\begin{aligned}
& A_{0}+\epsilon_{1} i\left(A_{1}-A_{2}\right)+\epsilon_{2} i\left(A_{3}-A_{4}\right)+A_{5}+A_{6} \\
& A_{0}+\epsilon_{1} i\left(A_{1}-A_{2}\right)+\epsilon_{2}\left(A_{3}+A_{4}\right)+A_{5}-A_{6}
\end{aligned}
$$

are the only hermitian complex Hadamard matrices in its Bose-Mesner algebra, where $\epsilon_{1}, \epsilon_{2} \in\{ \pm 1\}$.

Example

$$
\begin{aligned}
H & =A_{0}+i\left(A_{1}+A_{3}\right)-i\left(A_{2}+A_{4}\right)+\left(A_{5}+A_{6}\right) \\
& \in\left\langle A_{0}, A_{1}+A_{3}, A_{2}+A_{4}, A_{5}+A_{6}\right\rangle .
\end{aligned}
$$

Smaller Schur ring defined by

$$
\begin{aligned}
T_{0} & =\{0\}, \\
T_{1} \cup T_{3} & =\bigcup_{t \in \mathcal{T}} t \mathcal{U}_{0}, \\
T_{2} \cup T_{4} & =\bigcup_{t \in \mathcal{T}}\left(-t \mathcal{U}_{0}\right), \\
T_{5} \cup T_{6} & =2 R \backslash\{0\} .
\end{aligned}
$$

This defines a nonsymmetric amorphous association scheme of Latin square type $L_{2^{e}, 1}\left(2^{e}\right)$ in the sense of Ito-Munemasa-Yamada (1991).

Theorem (Ikuta-M. (2017+))

Let

$$
A_{0}+w_{1} A_{1}+\overline{w_{1}} A_{1}^{\top}+w_{3} A_{3}
$$

be a hermitian complex Hadamard matrix contained in the Bose-Mesner algebra $\mathcal{A}=\left\langle\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \boldsymbol{A}_{2}=\boldsymbol{A}_{1}^{\top}, \boldsymbol{A}_{3}\right\rangle$ of a $\mathbf{3}$-class nonsymmetric association scheme. Then \mathcal{A} is amorphous of Latin square type $\boldsymbol{L}_{a, 1}(a)$, and $\boldsymbol{w}_{1}= \pm i, w_{3}=1$.

This can be regarded as a nonsymmetric analogue of

Theorem (Goethals-Seidel (1970))

Let

$$
H=A_{0}+A_{1}-A_{2}
$$

be a (real) Hadamard matrix contained in the Bose-Mesner algebra $\mathcal{A}=\left\langle\boldsymbol{A}_{\mathbf{0}}, \boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}\right\rangle$ of a 2-class symmetric association scheme. Then \mathcal{A} is (amorphous) of Latin or negative Latin square type.

